Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = fractional generalized nonlinear wave equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1806 KB  
Article
A Novel Approach to Solving Generalised Nonlinear Dynamical Systems Within the Caputo Operator
by Mashael M. AlBaidani and Rabab Alzahrani
Fractal Fract. 2025, 9(8), 503; https://doi.org/10.3390/fractalfract9080503 - 31 Jul 2025
Viewed by 313
Abstract
In this study, we focus on solving the nonlinear time-fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations, using the Yang transform iterative method (YTIM). This method combines the Yang transform with a new iterative scheme to construct reliable and [...] Read more.
In this study, we focus on solving the nonlinear time-fractional Hirota–Satsuma coupled Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations, using the Yang transform iterative method (YTIM). This method combines the Yang transform with a new iterative scheme to construct reliable and efficient solutions. Readers can understand the procedures clearly, since the implementation of Yang transform directly transforms fractional derivative sections into algebraic terms in the given problems. The new iterative scheme is applied to generate series solutions for the provided problems. The fractional derivatives are considered in the Caputo sense. To validate the proposed approach, two numerical examples are analysed and compared with exact solutions, as well as with the results obtained from the fractional reduced differential transform method (FRDTM) and the q-homotopy analysis transform method (q-HATM). The comparisons, presented through both tables and graphical illustrations, confirm the enhanced accuracy and reliability of the proposed method. Moreover, the effect of varying the fractional order is explored, demonstrating convergence of the solution as the order approaches an integer value. Importantly, the time-fractional Hirota–Satsuma coupled KdV and modified Korteweg–de Vries (MKdV) equations investigated in this work are not only of theoretical and computational interest but also possess significant implications for achieving global sustainability goals. Specifically, these equations contribute to the Sustainable Development Goal (SDG) “Life Below Water” by offering advanced modelling capabilities for understanding wave propagation and ocean dynamics, thus supporting marine ecosystem research and management. It is also relevant to SDG “Climate Action” as it aids in the simulation of environmental phenomena crucial to climate change analysis and mitigation. Additionally, the development and application of innovative mathematical modelling techniques align with “Industry, Innovation, and Infrastructure” promoting advanced computational tools for use in ocean engineering, environmental monitoring, and other infrastructure-related domains. Therefore, the proposed method not only advances mathematical and numerical analysis but also fosters interdisciplinary contributions toward sustainable development. Full article
(This article belongs to the Special Issue Recent Trends in Computational Physics with Fractional Applications)
Show Figures

Figure 1

20 pages, 2399 KB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Cited by 1 | Viewed by 527
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

20 pages, 11438 KB  
Article
Investigating Chaotic Techniques and Wave Profiles with Parametric Effects in a Fourth-Order Nonlinear Fractional Dynamical Equation
by Jan Muhammad, Ali H. Tedjani, Ejaz Hussain and Usman Younas
Fractal Fract. 2025, 9(8), 487; https://doi.org/10.3390/fractalfract9080487 - 24 Jul 2025
Viewed by 477
Abstract
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the [...] Read more.
In this article, we investigate the fractional soliton solutions as well as the chaotic analysis of the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur wave equation. This model is considered an intriguing high-order nonlinear partial differential equation that integrates additional spatial and dispersive effects to extend the concepts to more intricate wave dynamics, relevant in engineering and science for understanding complex phenomena. To examine the solitary wave solutions of the proposed model, we employ sophisticated analytical techniques, including the generalized projective Riccati equation method, the new improved generalized exponential rational function method, and the modified F-expansion method, along with mathematical simulations, to obtain a deeper insight into wave propagation. To explore desirable soliton solutions, the nonlinear partial differential equation is converted into its respective ordinary differential equations by wave transforms utilizing β-fractional derivatives. Further, the solutions in the forms of bright, dark, singular, combined, and complex solitons are secured. Various physical parameter values and arrangements are employed to investigate the soliton solutions of the system. Variations in parameter values result in specific behaviors of the solutions, which we illustrate via various types of visualizations. Additionally, a key aspect of this research involves analyzing the chaotic behavior of the governing model. A perturbed version of the system is derived and then analyzed using chaos detection techniques such as power spectrum analysis, Poincaré return maps, and basin attractor visualization. The study of nonlinear dynamics reveals the system’s sensitivity to initial conditions and its dependence on time-decay effects. This indicates that the system exhibits chaotic behavior under perturbations, where even minor variations in the starting conditions can lead to drastically different outcomes as time progresses. Such behavior underscores the complexity and unpredictability inherent in the system, highlighting the importance of understanding its chaotic dynamics. This study evaluates the effectiveness of currently employed methodologies and elucidates the specific behaviors of the system’s nonlinear dynamics, thus providing new insights into the field of high-dimensional nonlinear scientific wave phenomena. The results demonstrate the effectiveness and versatility of the approach used to address complex nonlinear partial differential equations. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

26 pages, 4796 KB  
Article
Novel Analytical Methods for and Qualitative Analysis of the Generalized Water Wave Equation
by Haitham Qawaqneh, Abdulaziz S. Al Naim and Abdulrahman Alomair
Mathematics 2025, 13(14), 2280; https://doi.org/10.3390/math13142280 - 15 Jul 2025
Viewed by 258
Abstract
For a significant fluid model and the truncated M-fractional (1 + 1)-dimensional nonlinear generalized water wave equation, distinct types of truncated M-fractional wave solitons are obtained. Ocean waves, tidal waves, weather simulations, river and irrigation flows, tsunami predictions, and more are all explained [...] Read more.
For a significant fluid model and the truncated M-fractional (1 + 1)-dimensional nonlinear generalized water wave equation, distinct types of truncated M-fractional wave solitons are obtained. Ocean waves, tidal waves, weather simulations, river and irrigation flows, tsunami predictions, and more are all explained by this model. We use the improved (G/G) expansion technique and a modified extended direct algebraic technique to obtain these solutions. Results for trigonometry, hyperbolic, and rational functions are obtained. The impact of the fractional-order derivative is also covered. We use Mathematica software to verify our findings. Furthermore, we use contour graphs in two and three dimensions to illustrate some wave solitons that are obtained. The results obtained have applications in ocean engineering, fluid dynamics, and other fields. The stability analysis of the considered equation is also performed. Moreover, the stationary solutions of the concerning equation are studied through modulation instability. Furthermore, the used methods are useful for other nonlinear fractional partial differential equations in different areas of applied science and engineering. Full article
Show Figures

Figure 1

17 pages, 1168 KB  
Article
Analytical Solitary Wave Solutions of Fractional Tzitzéica Equation Using Expansion Approach: Theoretical Insights and Applications
by Wael W. Mohammed, Mst. Munny Khatun, Mohamed S. Algolam, Rabeb Sidaoui and M. Ali Akbar
Fractal Fract. 2025, 9(7), 438; https://doi.org/10.3390/fractalfract9070438 - 3 Jul 2025
Cited by 1 | Viewed by 404
Abstract
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/ [...] Read more.
In this study, we investigate the fractional Tzitzéica equation, a nonlinear evolution equation known for modeling complex phenomena in various scientific domains such as solid-state physics, crystal dislocation, electromagnetic waves, chemical kinetics, quantum field theory, and nonlinear optics. Using the (G′/G, 1/G)-expansion approach, we derive different categories of exact solutions, like hyperbolic, trigonometric, and rational functions. The beta fractional derivative is used here to generalize the classical idea of the derivative, which preserves important principles. The derived solutions with broader nonlinear wave structures are periodic waves, breathers, peakons, W-shaped solitons, and singular solitons, which enhance our understanding of nonlinear wave dynamics. In relation to these results, the findings are described by showing the solitons’ physical behaviors, their stabilities, and dispersions under fractional parameters in the form of contour plots and 2D and 3D graphs. Comparisons with earlier studies underscore the originality and consistency of the (G′/G, 1/G)-expansion approach in addressing fractional-order evolution equations. It contributes new solutions to analytical problems of fractional nonlinear integrable systems and helps understand the systems’ dynamic behavior in a wider scope of applications. Full article
Show Figures

Figure 1

13 pages, 2490 KB  
Article
Soliton Dynamics of the Nonlinear Kodama Equation with M-Truncated Derivative via Two Innovative Schemes: The Generalized Arnous Method and the Kudryashov Method
by Khizar Farooq, Ali. H. Tedjani, Zhao Li and Ejaz Hussain
Fractal Fract. 2025, 9(7), 436; https://doi.org/10.3390/fractalfract9070436 - 2 Jul 2025
Cited by 2 | Viewed by 445
Abstract
The primary aim of this research article is to investigate the soliton dynamics of the M-truncated derivative nonlinear Kodama equation, which is useful for optical solitons on nonlinear media, shallow water waves over complex media, nonlocal internal waves, and fractional viscoelastic wave propagation. [...] Read more.
The primary aim of this research article is to investigate the soliton dynamics of the M-truncated derivative nonlinear Kodama equation, which is useful for optical solitons on nonlinear media, shallow water waves over complex media, nonlocal internal waves, and fractional viscoelastic wave propagation. We utilized two recently developed analytical techniques, the generalized Arnous method and the generalized Kudryashov method. First, the nonlinear Kodama equation is transformed into a nonlinear ordinary differential equation using the homogeneous balance principle and a traveling wave transformation. Next, various types of soliton solutions are constructed through the application of these effective methods. Finally, to visualize the behavior of the obtained solutions, three-dimensional, two-dimensional, and contour plots are generated using Maple (2023) mathematical software. Full article
Show Figures

Figure 1

33 pages, 1215 KB  
Article
On the Extended Simple Equations Method (SEsM) for Obtaining Numerous Exact Solutions to Fractional Partial Differential Equations: A Generalized Algorithm and Several Applications
by Elena V. Nikolova
Algorithms 2025, 18(7), 402; https://doi.org/10.3390/a18070402 - 30 Jun 2025
Viewed by 290
Abstract
In this article, we present the extended simple equations method (SEsM) for finding exact solutions to systems of fractional nonlinear partial differential equations (FNPDEs). The expansions made to the original SEsM algorithm are implemented in several directions: (1) In constructing analytical solutions: exact [...] Read more.
In this article, we present the extended simple equations method (SEsM) for finding exact solutions to systems of fractional nonlinear partial differential equations (FNPDEs). The expansions made to the original SEsM algorithm are implemented in several directions: (1) In constructing analytical solutions: exact solutions to FNPDE systems are presented by simple or complex composite functions, including combinations of solutions to two or more different simple equations with distinct independent variables (corresponding to different wave velocities); (2) in selecting appropriate fractional derivatives and appropriate wave transformations: the choice of the type of fractional derivatives for each system of FNPDEs depends on the physical nature of the modeled real process. Based on this choice, the range of applicable wave transformations that are used to reduce FNPDEs to nonlinear ODEs has been expanded. It includes not only various forms of fractional traveling wave transformations but also standard traveling wave transformations. Based on these methodological enhancements, a generalized SEsM algorithm has been developed to derive exact solutions of systems of FNPDEs. This algorithm provides multiple options at each step, enabling the user to select the most appropriate variant depending on the expected wave dynamics in the modeled physical context. Two specific variants of the generalized SEsM algorithm have been applied to obtain exact solutions to two time-fractional shallow-water-like systems. For generating these exact solutions, it is assumed that each system variable in the studied models exhibits multi-wave behavior, which is expressed as a superposition of two waves propagating at different velocities. As a result, numerous novel multi-wave solutions are derived, involving combinations of hyperbolic-like, elliptic-like, and trigonometric-like functions. The obtained analytical solutions can provide valuable qualitative insights into complex wave dynamics in generalized spatio-temporal dynamical systems, with relevance to areas such as ocean current modeling, multiphase fluid dynamics and geophysical fluid modeling. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

14 pages, 6794 KB  
Article
Soliton Dynamics and Modulation Instability in the (3+1)-Dimensional Generalized Fractional Kadomtsev–Petviashvili Equation
by Nadiyah Hussain Alharthi, Melike Kaplan and Rubayyi T. Alqahtani
Symmetry 2025, 17(5), 666; https://doi.org/10.3390/sym17050666 - 27 Apr 2025
Viewed by 577
Abstract
In this article, novel methods of analysis to solve the (3+1)-dimensional generalized fractional Kadomtsev–Petviashvili equation, which plays a crucial role in the modelling of fluid dynamics, particularly wave propagation in complicated media, are presented. The fractional KP equation, a well-established mathematical model, uses [...] Read more.
In this article, novel methods of analysis to solve the (3+1)-dimensional generalized fractional Kadomtsev–Petviashvili equation, which plays a crucial role in the modelling of fluid dynamics, particularly wave propagation in complicated media, are presented. The fractional KP equation, a well-established mathematical model, uses fractional derivatives to more adequately describe more general types of nonlinear wave phenomena, with a richer and improved understanding of the dynamics of fluids with non-classical characteristics, such as anomalous diffusion or long-range interactions. Two efficient methods, the exponential rational function technique (ERFT) and the generalized Kudryashov technique (GKT), have been applied to find exact travelling solutions describing soliton behaviour. Solitons, localized waveforms that do not deform during propagation, are central to the dynamics of waves in fluid systems. The characteristics of the obtained results are explored in depth and presented both by three-dimensional plots and by two-dimensional contour plots. Plots provide an explicit picture of how the solitons evolve in space and time and provide insight into the underlying physical phenomena. We also added modulation instability. Our analysis of modulation instability further underscores the robustness and physical relevance of the obtained solutions, bridging theoretical advancements with observable phenomena. Full article
(This article belongs to the Special Issue Recent Developments and Applications in Nonlinear Optics)
Show Figures

Figure 1

24 pages, 8587 KB  
Article
Integrable Riesz Fractional-Order Generalized NLS Equation with Variable Coefficients: Inverse Scattering Transform and Analytical Solutions
by Hongwei Li, Sheng Zhang and Bo Xu
Fractal Fract. 2025, 9(4), 228; https://doi.org/10.3390/fractalfract9040228 - 3 Apr 2025
Viewed by 535
Abstract
Significant new progress has been made in nonlinear integrable systems with Riesz fractional-order derivative, and it is impressive that such nonlocal fractional-order integrable systems exhibit inverse scattering integrability. The focus of this article is on extending this progress to nonlocal fractional-order Schrödinger-type equations [...] Read more.
Significant new progress has been made in nonlinear integrable systems with Riesz fractional-order derivative, and it is impressive that such nonlocal fractional-order integrable systems exhibit inverse scattering integrability. The focus of this article is on extending this progress to nonlocal fractional-order Schrödinger-type equations with variable coefficients. Specifically, based on the analysis of anomalous dispersion relation (ADR), a novel variable-coefficient Riesz fractional-order generalized NLS (vcRfgNLS) equation is derived. By utilizing the relevant matrix spectral problems (MSPs), the vcRfgNLS equation is solved through the inverse scattering transform (IST), and analytical solutions including n-soliton solution as a special case are obtained. In addition, an explicit form of the vcRfgNLS equation depending on the completeness of squared eigenfunctions (SEFs) is presented. In particular, the 1-soliton solution and 2-soliton solution are taken as examples to simulate their spatial structures and analyze their structural properties by selecting different variable coefficients and fractional orders. It turns out that both the variable coefficients and fractional order can influence the velocity of soliton propagation, but there is no energy dissipation throughout the entire motion process. Such soliton solutions may not only have important value for studying the super-dispersion transport of nonlinear waves in non-uniform media, but also for realizing a new generation of ultra-high-speed optical communication engineering. Full article
Show Figures

Figure 1

39 pages, 391 KB  
Article
Applications of Inverse Operators to a Fractional Partial Integro-Differential Equation and Several Well-Known Differential Equations
by Chenkuan Li and Wenyuan Liao
Fractal Fract. 2025, 9(4), 200; https://doi.org/10.3390/fractalfract9040200 - 25 Mar 2025
Cited by 3 | Viewed by 452
Abstract
This paper mainly consists of two parts: (i) We study the uniqueness, existence, and stability of a new fractional nonlinear partial integro-differential equation in Rn with three-point conditions and variable coefficients in a Banach space using inverse operators containing multi-variable functions, a [...] Read more.
This paper mainly consists of two parts: (i) We study the uniqueness, existence, and stability of a new fractional nonlinear partial integro-differential equation in Rn with three-point conditions and variable coefficients in a Banach space using inverse operators containing multi-variable functions, a generalized Mittag-Leffler function, as well as a few popular fixed-point theorems. These studies have good applications in general since uniqueness, existence and stability are key and important topics in many fields. Several examples are presented to demonstrate applications of results obtained by computing approximate values of the generalized Mittag-Leffler functions. (ii) We use the inverse operator method and newly established spaces to find analytic solutions to a number of notable partial differential equations, such as a multi-term time-fractional convection problem and a generalized time-fractional diffusion-wave equation in Rn with initial conditions only, which have never been previously considered according to the best of our knowledge. In particular, we deduce the uniform solution to the non-homogeneous wave equation in n dimensions for all n1, which coincides with classical results such as d’Alembert and Kirchoff’s formulas but is much easier in the computation of finding solutions without any complicated integrals on balls or spheres. Full article
29 pages, 748 KB  
Article
Numerous Multi-Wave Solutions of the Time-Fractional Boussinesq-like System via a Variant of the Extended Simple Equations Method (SEsM)
by Elena V. Nikolova and Mila Chilikova-Lubomirova
Mathematics 2025, 13(7), 1029; https://doi.org/10.3390/math13071029 - 21 Mar 2025
Cited by 1 | Viewed by 417
Abstract
In this study, we propose a generalized framework based on the Simple Equations Method (SEsM) for finding exact solutions to systems of fractional nonlinear partial differential equations (FNPDEs). The key developments over the original SEsM in the proposed analytical framework include the following: [...] Read more.
In this study, we propose a generalized framework based on the Simple Equations Method (SEsM) for finding exact solutions to systems of fractional nonlinear partial differential equations (FNPDEs). The key developments over the original SEsM in the proposed analytical framework include the following: (1) an extension of the original SEsM by constructing the solutions of the studied FNPDEs as complex composite functions which combine two single composite functions, comprising the power series of the solutions of two simple equations or two special functions with different independent variables (different wave coordinates); (2) an extension of the scope of fractional wave transformations used to reduce the studied FNPDEs to different types of ODEs, depending on the physical nature of the studied FNPDEs and the type of selected simple equations. One variant of the proposed generalized SEsM is applied to a mathematical generalization inspired by the classical Boussinesq model. The studied time-fractional Boussinesq-like system describes more intricate or multiphase environments, where classical assumptions (such as constant wave speed and energy conservation) are no longer applicable. Based on the applied SEsM variant, we assume that each system variable in the studied model supports multi-wave dynamics, which involves combined propagation of two distinct waves traveling at different wave speeds. As a result, numerous new multi-wave solutions including combinations of different hyperbolic, elliptic, and trigonometric functions are derived. To visualize the wave dynamics and validate the theoretical results, some of the obtained analytical solutions are numerically simulated. The new analytical solutions obtained in this study can contribute to the prediction and control of more specific physical processes, including diffusion in porous media, nanofluid dynamics, ocean current modeling, multiphase fluid dynamics, as well as several geophysical phenomena. Full article
(This article belongs to the Special Issue Advances in Nonlinear Analysis: Theory, Methods and Applications)
Show Figures

Figure 1

26 pages, 5784 KB  
Article
Certain Analytic Solutions for Time-Fractional Models Arising in Plasma Physics via a New Approach Using the Natural Transform and the Residual Power Series Methods
by Asad Freihat, Mohammed Alabedalhadi, Shrideh Al-Omari, Sharifah E. Alhazmi, Shaher Momani and Mohammed Al-Smadi
Fractal Fract. 2025, 9(3), 152; https://doi.org/10.3390/fractalfract9030152 - 28 Feb 2025
Viewed by 598
Abstract
This paper studies three time-fractional models that arise in plasma physics: the modified Korteweg–deVries–Zakharov–Kuznetsov equation, the stochastic potential Korteweg–deVries equation, and the forced Korteweg–deVries equation. These equations are significant in plasma physics for modeling nonlinear ion acoustic waves and thus helping us to [...] Read more.
This paper studies three time-fractional models that arise in plasma physics: the modified Korteweg–deVries–Zakharov–Kuznetsov equation, the stochastic potential Korteweg–deVries equation, and the forced Korteweg–deVries equation. These equations are significant in plasma physics for modeling nonlinear ion acoustic waves and thus helping us to understand wave dynamics in plasmas. We introduce a new approach that relies on a new fractional expansion in the natural transform space and residual power series method to construct analytical solutions to the governing models. We investigate the theoretical analysis of the proposed method for these equations to expose this approach’s applicability, efficiency, and effectiveness in constructing analytical solutions to the governing equations. Moreover, we present a comparative discussion between the solutions derived during the work and those given in the literature to confirm that the proposed approach generates analytical solutions that rapidly converge to exact solutions, which proves the effectiveness of the proposed method. Full article
Show Figures

Figure 1

17 pages, 2172 KB  
Article
Nonlinear Dynamical Analysis and New Solutions of the Space-Fractional Stochastic Davey–Stewartson Equations for Nonlinear Water Waves
by Adel Elmandouh, Muneerah Al Nuwairan and M. M. El-Dessoky
Mathematics 2025, 13(5), 692; https://doi.org/10.3390/math13050692 - 21 Feb 2025
Cited by 3 | Viewed by 735
Abstract
We investigate how novelly generated solutions of the stochastic space-fractional Davey–Stewartson equations are affected by spatial-fractional derivatives and multiplicative Brownian motion (in the Stratonovich sense). These equations model the behavior of weakly nonlinear water waves on a fluid surface. By applying the qualitative [...] Read more.
We investigate how novelly generated solutions of the stochastic space-fractional Davey–Stewartson equations are affected by spatial-fractional derivatives and multiplicative Brownian motion (in the Stratonovich sense). These equations model the behavior of weakly nonlinear water waves on a fluid surface. By applying the qualitative theory of planar systems, some new fractional and stochastic solutions are obtained. These solutions gain significance from the application of Davey–Stewartson equations to the theory of turbulence for plasma waves, as they can explain several fascinating physical phenomena. Some solutions are graphically displayed to illustrate the influence of noise strength and fractional derivatives on the obtained solutions. These effects influence the solution’s amplitude and width, as well as its smoothness. Full article
Show Figures

Figure 1

22 pages, 343 KB  
Article
Hyers–Ulam and Hyers–Ulam–Rassias Stability for a Class of Fractional Evolution Differential Equations with Neutral Time Delay
by Kholoud N. Alharbi
Symmetry 2025, 17(1), 83; https://doi.org/10.3390/sym17010083 - 7 Jan 2025
Cited by 1 | Viewed by 862
Abstract
In this paper, we demonstrate that neutral fractional evolution equations with finite delay possess a stable mild solution. Our model incorporates a mixed fractional derivative that combines the Riemann–Liouville and Caputo fractional derivatives with orders 0<α<1 and [...] Read more.
In this paper, we demonstrate that neutral fractional evolution equations with finite delay possess a stable mild solution. Our model incorporates a mixed fractional derivative that combines the Riemann–Liouville and Caputo fractional derivatives with orders 0<α<1 and 1<β<2. We identify the infinitesimal generator of the cosine family and analyze the stability of the mild solution using both Hyers–Ulam–Rassias and Hyers–Ulam stability methodologies, ensuring robust and reliable results for fractional dynamic systems with delay. In order to guarantee that the features of invariance under transformations, such as rotations or reflections, result in the presence of fixed points that remain unchanging and represent the consistency and balance of the underlying system, fixed-point theorems employ the symmetry idea. Lastly, the results obtained are applied to a fractional order nonlinear wave equation with finite delay with respect to time. Full article
17 pages, 1777 KB  
Article
Solitary Wave Solutions to a Fractional-Order Fokas Equation via the Improved Modified Extended Tanh-Function Approach
by M. B. Almatrafi
Mathematics 2025, 13(1), 109; https://doi.org/10.3390/math13010109 - 30 Dec 2024
Cited by 2 | Viewed by 1056
Abstract
This research employs the improved modified extended tanh-function technique to explore several solitary wave solutions to the fractional-order Fokas equation. The propagation of waves in fluid dynamics and optical systems are two examples of various natural phenomena that are effectively addressed by the [...] Read more.
This research employs the improved modified extended tanh-function technique to explore several solitary wave solutions to the fractional-order Fokas equation. The propagation of waves in fluid dynamics and optical systems are two examples of various natural phenomena that are effectively addressed by the fractional-order Fokas equation. The model captures a generalization of the integer derivative form by including fractional derivatives defined in the conformable sense. We use the phase portrait theory to investigate the existence of traveling wave solutions. The improved modified extended tanh-function technique is successfully applied as a reliable analytical procedure to derive several solitary wave solutions, providing an approachable structure to deal with the complexity introduced by the fractional order. The extracted solutions, which are illustrated by hyperbolic, trigonometric, and rational functions, exhibit a variety of solitary wave shapes, such as bell-shaped, kink, and anti-kink patterns. We additionally evaluate how well the employed method performs in comparison to other approaches. Furthermore, some graphical visualizations are provided to clearly demonstrate the physical behavior of the obtained solutions under various parameter values. The outcomes highlight the effectiveness and adaptability of the proposed strategy in resolving fractional nonlinear differential equations and expand our knowledge of fractional-order systems. Full article
Show Figures

Figure 1

Back to TopTop