Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = free-form deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2039 KB  
Article
Optimising Multimodal Image Registration Techniques: A Comprehensive Study of Non-Rigid and Affine Methods for PET/CT Integration
by Babar Ali, Mansour M. Alqahtani, Essam M. Alkhybari, Ali H. D. Alshehri, Mohammad Sayed and Tamoor Ali
Diagnostics 2025, 15(19), 2484; https://doi.org/10.3390/diagnostics15192484 - 28 Sep 2025
Abstract
Background/Objective: Multimodal image registration plays a critical role in modern medical imaging, enabling the integration of complementary modalities such as positron emission tomography (PET) and computed tomography (CT). This study compares the performance of three widely used image registration techniques—Demons Image Registration [...] Read more.
Background/Objective: Multimodal image registration plays a critical role in modern medical imaging, enabling the integration of complementary modalities such as positron emission tomography (PET) and computed tomography (CT). This study compares the performance of three widely used image registration techniques—Demons Image Registration with Modality Transformation, Free-Form Deformation using the Medical Image Registration Toolbox (MIRT), and MATLAB Intensity-Based Registration—in terms of improving PET/CT image alignment. Methods: A total of 100 matched PET/CT image slices from a clinical scanner were analysed. Preprocessing techniques, including histogram equalisation and contrast enhancement (via imadjust and adapthisteq), were applied to minimise intensity discrepancies. Each registration method was evaluated under varying parameter conditions with regard to sigma fluid (range 4–8), histogram bins (100 to 256), and interpolation methods (linear and cubic). Performance was assessed using quantitative metrics: root mean square error (RMSE), mean squared error (MSE), mean absolute error (MAE), the Pearson correlation coefficient (PCC), and standard deviation (STD). Results: Demons registration achieved optimal performance at a sigma fluid value of 6, with an RMSE of 0.1529, and demonstrated superior computational efficiency. The MIRT showed better adaptability to complex anatomical deformations, with an RMSE of 0.1725. MATLAB Intensity-Based Registration, when combined with contrast enhancement, yielded the highest accuracy (RMSE = 0.1317 at alpha = 6). Preprocessing improved registration accuracy, reducing the RMSE by up to 16%. Conclusions: Each registration technique has distinct advantages: the Demons algorithm is ideal for time-sensitive tasks, the MIRT is suited to precision-driven applications, and MATLAB-based methods offer flexible processing for large datasets. This study provides a foundational framework for optimising PET/CT image registration in both research and clinical environments. Full article
(This article belongs to the Special Issue Diagnostics in Oncology Research)
Show Figures

Figure 1

21 pages, 2419 KB  
Article
Application Features of a VOF Method for Simulating Boiling and Condensation Processes
by Andrey Kozelkov, Andrey Kurkin, Andrey Puzan, Vadim Kurulin, Natalya Tarasova and Vitaliy Gerasimov
Algorithms 2025, 18(10), 604; https://doi.org/10.3390/a18100604 - 26 Sep 2025
Abstract
This article presents the results of a study on the possibility of using a single-speed multiphase model with free surface allowance for simulating boiling and condensation processes. The simulation is based on the VOF method, which allows the position of the interphase boundary [...] Read more.
This article presents the results of a study on the possibility of using a single-speed multiphase model with free surface allowance for simulating boiling and condensation processes. The simulation is based on the VOF method, which allows the position of the interphase boundary to be tracked. To increase the stability of the iterative procedure for numerically solving volume fraction transfer equations using a finite volume discretization method on arbitrary unstructured grids, the basic VOF method is been modified by writing these equations in a semi-divergent form. The models of Tanasawa, Lee, and Rohsenow are considered models of interphase mass transfer, in which the evaporated or condensed mass linearly depends on the difference between the local temperature and the saturation temperature with accuracy in empirical parameters. This paper calibrates these empirical parameters for each mass transfer model. The results of our study of the influence of the values of the empirical parameters of models on the intensity of boiling and evaporation, as well as on the dynamics of the interphase boundary, are presented. This research is based on Stefan’s problem of the movement of the interphase boundary due to the evaporation of a liquid and the problem of condensation of vapor bubbles water columns. As a result of a series of numerical experiments, it is shown that the average error in the position of the interfacial boundary for the Tanasawa and Lee models does not exceed 3–6%. For the Rohsenow model, the result is somewhat worse, since the interfacial boundary moves faster than it should move according to calculations based on analytical formulas. To investigate the possibility of condensation modeling, the results of a numerical solution of the problem of an emerging condensing vapor bubble are considered. A numerical assessment of its position in space and the shape and dynamics of changes in its diameter over time is carried out using the VOF method, taking into account the free surface. It is shown herein that the Tanasawa model has the highest accuracy for modeling the condensation process using a VOF method taking into account the free surface, while the Rohsenow model is most unstable and prone to deformation of the bubble shape. At the same time, the dynamics of bubble ascent are modeled by all three models. The results obtained confirm the fundamental possibility of using a VOF method to simulate the processes of boiling and condensation and taking into account the dynamics of the free surface. At the same time, the problem of the studied models of phase transitions is revealed, which consists of the need for individual selection of optimal values of empirical parameters for each specific task. Full article
Show Figures

Figure 1

29 pages, 7933 KB  
Article
Hybrid Ship Design Optimization Framework Integrating a Dual-Mode CFD–Surrogate Mechanism
by Yicun Dong, Lin Du and Guangnian Li
Appl. Sci. 2025, 15(19), 10318; https://doi.org/10.3390/app151910318 - 23 Sep 2025
Viewed by 198
Abstract
Reducing hydrodynamic resistance remains a central concern in modern ship design. The Simulation-Based Design technique offers high-fidelity optimization through computational fluid dynamics, but this comes at the cost of computational efficiency. In contrast, surrogate models trained offline can accelerate the process but often [...] Read more.
Reducing hydrodynamic resistance remains a central concern in modern ship design. The Simulation-Based Design technique offers high-fidelity optimization through computational fluid dynamics, but this comes at the cost of computational efficiency. In contrast, surrogate models trained offline can accelerate the process but often compromise on accuracy. To address this issue, this study proposes a hybrid optimization framework connecting a computational fluid dynamics solver and a convolutional neural network surrogate model within a dual-mode mechanism. By comparing selected computational fluid dynamics evaluations with surrogate predictions during each iteration, the system is able to balance the precision and efficiency adaptively. The framework integrates a particle swarm optimizer, a free-form deformation modeler, and a dual-mode solver. Case studies on three benchmark hulls including KCS, KVLCC1, and JBC have shown 3.40%, 3.95%, and 2.74% resistance reduction, respectively, with computation efficiency gains exceeding 44% compared to the traditional Simulation-Based Design process using full computational fluid dynamics. This study provides a practical attempt to enhance the efficiency of hull form optimization while maintaining accuracy. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

18 pages, 3720 KB  
Article
Computational Design and Additive Manufacturing of 3D-Printed Prosthetics for Enhanced Mobility and Performance
by Jahid Hasan and Khalil Khanafer
J. Manuf. Mater. Process. 2025, 9(9), 312; https://doi.org/10.3390/jmmp9090312 - 10 Sep 2025
Viewed by 428
Abstract
This paper discusses the potential application of computational design and additive manufacturing in veterinary prosthetics, demonstrated with the example of a feline limb. A finite element analysis (FEA)-based design optimization framework was used to develop eight prosthetic leg geometries in CAD and analyze [...] Read more.
This paper discusses the potential application of computational design and additive manufacturing in veterinary prosthetics, demonstrated with the example of a feline limb. A finite element analysis (FEA)-based design optimization framework was used to develop eight prosthetic leg geometries in CAD and analyze them in ANSYS (2024R) under a static loading condition, to evaluate their performance under the loading condition. Structural variations were in the form of grooves, holes and shell reinforcements, which were investigated to see how they affect stiffness, stress distribution and viability of the 3D-printed prosthetics. Design variations were introduced through the inclusion or exclusion of structural attributes such as grooves, holes, and shell reinforcements. The simulations evaluated total deformation, von Mises stress, and equivalent elastic strain to determine the mechanical efficiency of each configuration. Results showed that designs incorporating shells and holes provided the best overall performance, as groove-free designs minimized stress concentrations and achieved the highest stiffness. Notably, the configuration featuring a hole and shell without grooves achieved the lowest mean deformation (14.09 µm) and stress values, making it the most structurally viable and suitable for real-life application. This study highlights the potential of 3D printing to produce cost-effective, patient-specific prosthetics and underscores the importance of structural optimization for improving biomechanical compatibility and mobility. The next stage of this work will involve fabricating the optimized design using 3D printing, followed by mechanical testing to validate the simulation results and assess real-world performance. Future work will also incorporate topology optimization to further reduce weight while maintaining structural integrity. Full article
Show Figures

Figure 1

26 pages, 8015 KB  
Article
Polar Fitting and Hermite Interpolation for Freeform Droplet Geometry Measurement
by Mike Dohmen, Andreas Heinrich and Cornelius Neumann
Metrology 2025, 5(3), 56; https://doi.org/10.3390/metrology5030056 - 5 Sep 2025
Viewed by 321
Abstract
Droplet-based microlens fabrication using Ultra Violet (UV) curable polymers demands the precise measurement of three-dimensional geometries, especially for non-axisymmetric shapes influenced by electric field deformation. In this work, we present a polar coordinate-based contour fitting method combined with Hermite interpolation to reconstruct 3D [...] Read more.
Droplet-based microlens fabrication using Ultra Violet (UV) curable polymers demands the precise measurement of three-dimensional geometries, especially for non-axisymmetric shapes influenced by electric field deformation. In this work, we present a polar coordinate-based contour fitting method combined with Hermite interpolation to reconstruct 3D droplet geometries from two orthogonal shadowgraphy images. The image segmentation process integrates superpixel clustering with active contours to extract the droplet boundary, which is then approximated using a spline-based polar fitting approach. The two resulting contours are merged using a polar Hermite interpolation algorithm, enabling the reconstruction of freeform droplet shapes. We validate the method against both synthetic Computer-Aided Design (CAD) data and precision-machined reference objects, achieving volume deviations below 1% for axisymmetric shapes and approximately 3.5% for non-axisymmetric cases. The influence of focus, calibration, and alignment errors is quantitatively assessed through Monte Carlo simulations and empirical tests. Finally, the method is applied to real electrically deformed droplets, with volume deviations remaining within the experimental uncertainty range. This demonstrates the method’s robustness and suitability for metrology tasks involving complex droplet geometries. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

16 pages, 3623 KB  
Article
A New Microstructural Concept and Water-Free Manufacturing of an Al2O3-Based Refractory Material for Auxiliary Equipment of Sintering Furnaces
by Monika Spyrka, Piotr Kula and Sebastian Miszczak
Materials 2025, 18(17), 4144; https://doi.org/10.3390/ma18174144 - 4 Sep 2025
Viewed by 778
Abstract
This study presents the development of a novel alumina-based ceramic composite designed for refractory applications in auxiliary components of sintering furnaces. The innovative concept relies on a three-phase microstructural architecture: a fine-grained alumina matrix improves cohesion, coarse particles act as crack propagation barriers, [...] Read more.
This study presents the development of a novel alumina-based ceramic composite designed for refractory applications in auxiliary components of sintering furnaces. The innovative concept relies on a three-phase microstructural architecture: a fine-grained alumina matrix improves cohesion, coarse particles act as crack propagation barriers, and spherical granules are intentionally introduced to increase porosity while preserving mechanical strength. This design reduces thermal capacity, enhancing the material’s energy efficiency under high-frequency thermal cycling and offering potential for operating cost reduction. A further novelty is the water-free forming process, which eliminates issues related to drying and deformation. The material was characterized using scanning electron microscopy (SEM), mechanical strength testing, and refractoriness under load (RUL) analysis to establish the structure–property relationships of the developed composite. The results demonstrate that the developed spherical alumina-based composite possesses excellent thermal and mechanical properties, making it a promising candidate for high-temperature industrial applications, particularly as auxiliary refractory plates. Full article
(This article belongs to the Special Issue High Temperature-Resistant Ceramics and Composites)
Show Figures

Figure 1

18 pages, 5808 KB  
Article
Numerical Investigation of the Reinforcement Effect of Fully Grouted Bolts on Layered Rock Masses Under Triaxial Loading with One Free Surface
by Shiming Jia, Yiming Zhao, Zhengzheng Xie, Zhe Xiang and Yanpei An
Appl. Sci. 2025, 15(17), 9689; https://doi.org/10.3390/app15179689 - 3 Sep 2025
Viewed by 447
Abstract
The layered composite roof of a coal mine roadway exhibits heterogeneity, with pronounced variations in layer thickness and strength. Fully grouted rock bolts installed in such layered roofs usually penetrate two or more strata and bond with them to form an integrated anchorage [...] Read more.
The layered composite roof of a coal mine roadway exhibits heterogeneity, with pronounced variations in layer thickness and strength. Fully grouted rock bolts installed in such layered roofs usually penetrate two or more strata and bond with them to form an integrated anchorage system. Roof failure typically initiates in the shallow strata and progressively propagates to deeper layers; thus, the mechanical properties of the rock at the free surface critically influence the overall stability of the layered roof and the load-transfer behavior of the bolts. In this study, a layered rock mass model was developed using three-dimensional particle flow code (PFC3D), and a triaxial loading scheme with a single free surface was applied to investigate the effects of free-surface rock properties, support parameters, and confining pressure on the load-bearing performance of the layered rock mass. The main findings are as follows: (1) Without support, the ultimate bearing capacity of a hard-rock-free-surface specimen is about 1.2 times that of a soft-rock-free-surface specimen. Applying support strengths of 0.2 MPa and 0.4 MPa enhanced the bearing capacity by 29–38% and 46–75%, respectively. (2) The evolution of axial stress in the bolts reflects the migration of the load-bearing core of the anchored body. Enhancing support strength improves the stress state of bolts and effectively mitigates the effects of high-stress conditions. (3) Under loading, soft rock layers exhibit greater deformation than hard layers. A hard-rock free surface effectively resists extrusion deformation from deeper soft rocks and provides higher bearing capacity. Shallow free-surface failure is significantly suppressed in anchored bodies, and “compression arch” zones are formed within multiple layers due to bolt support. Full article
(This article belongs to the Special Issue Innovations in Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

17 pages, 3688 KB  
Article
Feature-Based Modeling of Subject-Specific Lower Limb Skeletons from Medical Images
by Sentong Wang, Itsuki Fujita, Koun Yamauchi and Kazunori Hase
Biomechanics 2025, 5(3), 63; https://doi.org/10.3390/biomechanics5030063 - 1 Sep 2025
Viewed by 415
Abstract
Background/Objectives: In recent years, 3D shape models of the human body have been used for various purposes. In principle, CT and MRI tomographic images are necessary to create such models. However, CT imaging and MRI generally impose heavy physical and financial burdens on [...] Read more.
Background/Objectives: In recent years, 3D shape models of the human body have been used for various purposes. In principle, CT and MRI tomographic images are necessary to create such models. However, CT imaging and MRI generally impose heavy physical and financial burdens on the person being imaged, the model creator, and the hospital where the imaging facility is located. To reduce these burdens, the purpose of this study was to propose a method of creating individually adapted models by using simple X-ray images, which provide relatively little information and can therefore be easily acquired, and by transforming an existing base model. Methods: From medical images, anatomical feature values and scanning feature values that use the points that compose the contour line that can represent the shape of the femoral knee joint area were acquired, and deformed by free-form deformation. Free-form deformations were automatically performed to match the feature values using optimization calculations based on the confidence region method. The accuracy of the deformed model was evaluated by the distance between surfaces of the deformed model and the node points of the reference model. Results: Deformation and evaluation were performed for 13 cases, with a mean error of 1.54 mm and a maximum error of 12.88 mm. In addition, the deformation using scanning feature points was more accurate than the deformation using anatomical feature points. Conclusions: This method is useful because it requires only the acquisition of feature points from two medical images to create the model, and overall average accuracy is considered acceptable for applications in biomechanical modeling and motion analysis. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

29 pages, 5957 KB  
Article
Multistage Fluid Evolution and P-T Path at Ity Gold Deposit and Dahapleu Prospect (Western Ivory Coast)
by Yacouba Coulibaly, Michel Cathelineau and Marie-Christine Boiron
Minerals 2025, 15(9), 918; https://doi.org/10.3390/min15090918 - 28 Aug 2025
Viewed by 640
Abstract
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite [...] Read more.
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite or as a Bi–Te–Au–Ag telluride assemblage. Fluid inclusion data indicate that Ity formed through a hybrid model: a mesothermal orogenic gold system dominated by CO2–CH4 fluids at >350 °C, superimposed on earlier skarn mineralisation characterised by saline fluids. At Dahapleu, no skarn fluids were identified, but volatile-rich inclusions with more variable signatures (CO2, CO2–CH4, CO2–N2) indicate metamorphic fluids circulating in convective, fault-related systems and recording distinct fluid–rock interactions. The Ity–Dahapleu mineralising system thus displays fluid inclusion characteristics typical of mesothermal orogenic gold systems, likely at higher temperatures than most West African Birimian deposits. Overall, the Ity system reflects a long-lived thermal anomaly driving fluid circulation and metal deposition, with successive favourable events: rapid exhumation of hot lithospheric crust, granite intrusion, and skarn formation, followed by shear deformation and hydrothermal activity. Full article
Show Figures

Figure 1

22 pages, 10667 KB  
Article
Integrated Surrogate Model-Based Approach for Aerodynamic Design Optimization of Three-Stage Axial Compressor in Gas Turbine Applications
by Jinxin Cheng, Bin Li, Xiancheng Song, Xinfang Ji, Yong Zhang, Jiang Chen and Hang Xiang
Energies 2025, 18(17), 4514; https://doi.org/10.3390/en18174514 - 25 Aug 2025
Viewed by 624
Abstract
The refined aerodynamic design optimization of multistage compressors is a typical high-dimensional and expensive optimization problem. This study proposes an integrated surrogate model-assisted evolutionary algorithm combined with a Directly Manipulated Free-Form Deformation (DFFD)-based parametric dimensionality reduction method, establishing a high-precision and efficient global [...] Read more.
The refined aerodynamic design optimization of multistage compressors is a typical high-dimensional and expensive optimization problem. This study proposes an integrated surrogate model-assisted evolutionary algorithm combined with a Directly Manipulated Free-Form Deformation (DFFD)-based parametric dimensionality reduction method, establishing a high-precision and efficient global parallel aerodynamic optimization platform for multistage axial compressors. The DFFD method achieves a balance between flexibility and low-dimensional characteristics by directly controlling the surface points of blades, which demonstrates a particular suitability for the aerodynamic design optimization of multistage axial compressors. The integrated surrogate model enhances prediction accuracy by simultaneously identifying optimal solutions and the most uncertain solutions, effectively addressing highly nonlinear design space challenges. A three-stage axial compressor in a heavy-duty gas turbine is selected as the optimization object. The results demonstrate that the optimization task takes less than 48 h and achieves an improvement of 0.6% and 4% in the adiabatic efficiency and surge margin, respectively, while maintaining a nearly unchanged flow rate and pressure ratio at the design point. The proposed approach provides an efficient and reliable solution for complex aerodynamic optimization problems. Full article
(This article belongs to the Special Issue Advanced Methods for the Design and Optimization of Turbomachinery)
Show Figures

Figure 1

25 pages, 3250 KB  
Article
A Thermoelastic Plate Model for Shot Peen Forming Metal Panels Based on Effective Torque
by Conor Rowan
J. Manuf. Mater. Process. 2025, 9(8), 280; https://doi.org/10.3390/jmmp9080280 - 15 Aug 2025
Viewed by 469
Abstract
A common technique used in factories to shape metal panels is shot peen forming, where the panel is sprayed with a high-velocity stream of small steel pellets called “shot.” The impacts between the hard steel shot and the softer metal of the panel [...] Read more.
A common technique used in factories to shape metal panels is shot peen forming, where the panel is sprayed with a high-velocity stream of small steel pellets called “shot.” The impacts between the hard steel shot and the softer metal of the panel cause localized plastic deformation, which is used to improve the fatigue properties of the material’s surface. The residual stress distribution imparted by impacts also results in bending, which suggests that a torque is associated with it. In this paper, we model shot peen forming as the application of spatially varying torques to a Kirchhoff plate, opting to use the language of thermoelasticity in order to introduce these torque distributions. First, we derive the governing equations for the thermoelastic thin plate model and show that only a torque-type resultant of the temperature distribution shows up in the bending equation. Next, to calibrate from the shot peen operation, an empirical “effective torque” parameter used in the thermoelastic model, a simple and non-invasive test is devised. This test relies only on measuring the maximum displacement of a uniformly shot peened plate as opposed to characterizing the residual stress distribution. After discussing how to handle the unconventional fully free boundary conditions germane to shot peened plates, we introduce an approach to solving the inverse problem whereby the peening distribution required to obtain a specified plate contour can be obtained. Given that the relation between shot peen distributions and bending displacements at a finite set of points is non-unique, we explore a regularization of the inverse problem which gives rise to shot peen distributions that match the capabilities of equipment in the factory. In order to validate our proposed model, an experiment with quantified uncertainty is designed and carried out which investigates the agreement between the predictions of the calibrated model and real shot peen-forming operations. Full article
Show Figures

Graphical abstract

13 pages, 2770 KB  
Article
Tribocatalytic Degradation of Organic Dyes by Disk-Shaped PTFE and Titanium: A Powder-Free Catalytic Technology for Wastewater Treatment
by Hanze Zhu, Zeren Zhou, Senhua Ke, Chenyue Mao, Jiannan Song and Wanping Chen
Catalysts 2025, 15(8), 754; https://doi.org/10.3390/catal15080754 - 7 Aug 2025
Viewed by 555
Abstract
Tribocatalysis is receiving more and more attention for its great potential in environmental remediation. In this study, a special tribocatalysis was explored as a powder-free catalytic technology for the degradation of organic dyes. Polytetrafluoroethylene (PTFE) and titanium (Ti) disks were first assembled as [...] Read more.
Tribocatalysis is receiving more and more attention for its great potential in environmental remediation. In this study, a special tribocatalysis was explored as a powder-free catalytic technology for the degradation of organic dyes. Polytetrafluoroethylene (PTFE) and titanium (Ti) disks were first assembled as magnetic rotary disks and then driven to rotate through magnetic stirring in dye solutions in beakers with PTFE, Ti, and Al2O3 disks coated on bottoms separately. PTFE and Ti generated dynamic friction with the disks on the beaker bottoms in the course of magnetic stirring, from which some interesting dye degradations resulted. Among those dynamic frictions generated, 40 mg/L rhodamine b (RhB), 30 mg/L methyl orange (MO), and 20 mg/L methylene blue (MB) were effectively degraded by the one between PTFE and PTFE, the one between Ti and Ti, and the one between PTFE and Ti, respectively. Hydroxyl radicals and superoxide radicals were detected for two frictions, one between PTFE and PTFE and the other between Ti and Ti. It is proposed that Ti in friction increases the pressure in blocked areas through deformation and then catalyzes reactions under high pressure. Mechano-radicals are formed by PTFE through deformation, and are responsible for dye degradation. This work demonstrates a powder-free tribocatalysis for organic pollutant degradation and suggests an especially eco-friendly catalytic technology to wastewater treatment. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

20 pages, 5650 KB  
Article
The In-Plane Deformation and Free Vibration Analysis of a Rotating Ring Resonator of a Gyroscope with Evenly Distributed Mass Imperfections
by Dongsheng Zhang and Shuming Li
Sensors 2025, 25(15), 4764; https://doi.org/10.3390/s25154764 - 1 Aug 2025
Viewed by 2490
Abstract
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic [...] Read more.
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic equations are formulated by using Hamilton’s principle in the ground-fixed coordinates. The coordinate transformation is applied to facilitate the solution of the steady deformation, and the displacements and tangential tension for the deformation are calculated by the perturbation method. Employing Galerkin’s method, the governing equation of the free vibration is casted in matrix differential operator form after the separation of the real and imaginary parts with the inextensional assumption. The natural frequencies are calculated through the eigenvalue analysis, and the numerical results are obtained. The effects of the point masses on the natural frequencies of the forward and backward traveling wave curves of different orders are discussed, especially on the measurement accuracy of gyroscopes for different cases. In the ground-fixed coordinates, the frequency splitting results in a crosspoint of the natural frequencies of the forward and backward traveling waves. The finite element method is applied to demonstrate the validity and accuracy of the model. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

15 pages, 6582 KB  
Article
Microstructure and Mechanical Properties of the TC4 Alloy Obtained by Equal-Channel Angular Pressing in Combination with Reversible Hydrogen Alloying
by Irina P. Semenova, Luiza R. Rezyapova, Alexander V. Polyakov, Yuecheng Dong, Zhonggang Sun and Igor V. Alexandrov
Metals 2025, 15(8), 839; https://doi.org/10.3390/met15080839 - 27 Jul 2025
Viewed by 401
Abstract
This paper studies the effect of reversible hydrogen alloying of the TC4 alloy on the microstructure, phase composition, and mechanical properties before and after equal-channel angular pressing. It is shown that the introduction of 0.3% hydrogen followed by quenching from a temperature of [...] Read more.
This paper studies the effect of reversible hydrogen alloying of the TC4 alloy on the microstructure, phase composition, and mechanical properties before and after equal-channel angular pressing. It is shown that the introduction of 0.3% hydrogen followed by quenching from a temperature of 850 °C leads to the formation of a thin-plate α″-martensite, which made it possible to implement 6 passes (ε ~ 4.2) of pressing at 600 °C. As a result of the deformation of the TC4-H alloy and subsequent thermal vacuum treatment to remove hydrogen, an ultrafine-grained structure with an average size of the α-phase of 0.15 μm was formed, which led to strengthening of the alloy to 1490 MPa with a relative elongation of about 5% at room temperature. The reasons for a more significant refinement of the grain/subgrain structure and an increase in the tensile strength of the hydrogenated alloy after equal-channel angular pressing in comparison with hydrogen-free TC4 alloy are discussed. Full article
Show Figures

Figure 1

20 pages, 4182 KB  
Article
A Soft Reconfigurable Inverted Climbing Robot Based on Magneto-Elastica-Reinforced Elastomer
by Fuwen Hu, Bingyu Zhao and Wenyu Jiang
Micromachines 2025, 16(8), 855; https://doi.org/10.3390/mi16080855 - 25 Jul 2025
Viewed by 601
Abstract
This work presents a novel type of soft reconfigurable mobile robot with multimodal locomotion, which is created using a controllable magneto-elastica-reinforced composite elastomer. The rope motor-driven method is employed to modulate magnetics–mechanics coupling effects and enable the magneto-elastica-reinforced elastomer actuator to produce controllable [...] Read more.
This work presents a novel type of soft reconfigurable mobile robot with multimodal locomotion, which is created using a controllable magneto-elastica-reinforced composite elastomer. The rope motor-driven method is employed to modulate magnetics–mechanics coupling effects and enable the magneto-elastica-reinforced elastomer actuator to produce controllable deformations. Furthermore, the 3D-printed magneto-elastica-reinforced elastomer actuators are assembled into several typical robotic patterns: linear configuration, parallel configuration, and triangular configuration. As a proof of concept, a few of the basic locomotive modes are demonstrated including squirming-type crawling at a speed of 1.11 mm/s, crawling with turning functions at a speed of 1.11 mm/s, and omnidirectional crawling at a speed of 1.25 mm/s. Notably, the embedded magnetic balls produce magnetic adhesion on the ferromagnetic surfaces, which enables the soft mobile robot to climb upside-down on ferromagnetic curved surfaces. In the experiment, the inverted ceiling-based inverted crawling speed is 2.17 mm/s, and the inverted freeform surface-based inverted crawling speed is 3.40 mm/s. As indicated by the experimental results, the proposed robot has the advantages of a simple structure, low cost, reconfigurable multimodal motion ability, and so on, and has potential application in the inspection of high-value assets and operations in confined environments. Full article
(This article belongs to the Special Issue Development and Applications of Small-Scale Soft Robotics)
Show Figures

Figure 1

Back to TopTop