Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (655)

Search Parameters:
Keywords = full-factorial design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1888 KB  
Article
Adsorption of Phenol from Aqueous Solution Utilizing Activated Carbon Prepared from Catha edulis Stem
by Meseret Dawit Teweldebrihan, Mikiyas Abewaa Gnaro and Megersa Olumana Dinka
Environments 2025, 12(9), 314; https://doi.org/10.3390/environments12090314 (registering DOI) - 5 Sep 2025
Abstract
Phenol and its derivatives in water and wastewater are highly toxic and challenging to degrade, posing serious environmental and health risks. Therefore, this research focuses on the removal of phenol from aqueous solutions using activated carbon made from Catha edulis stems. The activation [...] Read more.
Phenol and its derivatives in water and wastewater are highly toxic and challenging to degrade, posing serious environmental and health risks. Therefore, this research focuses on the removal of phenol from aqueous solutions using activated carbon made from Catha edulis stems. The activation process involved impregnating the Catha edulis stems with phosphoric acid followed by thermal treatment at 500 °C for 2 h. The resulting adsorbent was extensively characterized using various techniques, including Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area analysis, and proximate analysis. Batch adsorption experiments were designed using a full factorial approach with four factors at two levels, resulting in 16 different experimental conditions. The characterization results showed that the activated carbon has a high surface area of 1323 m2/g, a porous and heterogeneous structure, and an amorphous surface with multiple functional groups. Under optimal conditions of pH 2, a contact time of 60 min, an adsorbent dosage of 0.1 g/100 mL, and an initial phenol concentration of 100 mg/L, the adsorbent achieved a phenol removal efficiency of 99.9%. Isotherm and kinetics analyses revealed that phenol adsorption fits the Langmuir model and pseudo-second-order kinetics, indicating a uniform interaction and chemisorptive process. This study highlights the effectiveness of Catha edulis stem-based activated carbon as a promising material for phenol removal in water treatment applications. Full article
(This article belongs to the Special Issue Advanced Technologies of Water and Wastewater Treatment (2nd Edition))
Show Figures

Figure 1

16 pages, 3270 KB  
Article
Mass Impact of a Mounted Sprayer on the Operational Balance of an Agricultural Tractor
by Bruno Passador Lombardi, Alex Portelinha, Igor Cristian de Oliveira Vieira, Breno Santos-Silva, Samir Paulo Jasper, Rouverson Pereira da Silva and Tiago Rodrigo Francetto
AgriEngineering 2025, 7(9), 289; https://doi.org/10.3390/agriengineering7090289 - 4 Sep 2025
Abstract
The operational stability of agricultural tractors is directly influenced by the mass distribution between axles, particularly when using mounted implements with variable loads. This study aimed to evaluate how different masses of a mounted sprayer (550 kg, 850 kg, and 1150 kg) and [...] Read more.
The operational stability of agricultural tractors is directly influenced by the mass distribution between axles, particularly when using mounted implements with variable loads. This study aimed to evaluate how different masses of a mounted sprayer (550 kg, 850 kg, and 1150 kg) and tire inflation pressures (151.7–193.1 kPa) affect the load distribution between axles, tire contact area, center of gravity (CG) displacement, and tractor lead ratio. A 3 × 4 factorial design was adopted with a statistical analysis of key parameters across 12 experimental combinations. The results demonstrated that increasing implement mass significantly shifted the load toward the rear axle, reducing the front axle load by up to 46% and displacing the CG rearward by more than 11 cm, thereby compromising stability. Tire pressure, as well as the interaction between mass and pressure, also exhibited statistically significant influence on load distribution and CG positioning while modulating the tire contact area. The lead ratio increased linearly with mass, exceeding the recommended 5% threshold when the sprayer was at full capacity. These findings indicate that while the implement mass exerts a dominant effect, tire pressure management represents a statistically relevant factor for stability, requiring integrated management that considers the interaction between ballasting and tire inflation to mitigate operational risks. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

33 pages, 410 KB  
Article
The SRAQ-HP: Development and Initial Validation of a Tool to Assess Perceived Resource Adequacy Among Healthcare Professionals
by Olga Cerela-Boltunova, Inga Millere and Ingrida Trups-Kalne
Int. J. Environ. Res. Public Health 2025, 22(9), 1380; https://doi.org/10.3390/ijerph22091380 - 3 Sep 2025
Abstract
Healthcare systems worldwide face growing challenges related to staff shortages, excessive workload, and deteriorating working conditions, which compromise both staff well-being and care quality. Despite these issues, there is a lack of validated tools that capture healthcare professionals’ subjective perceptions of resource adequacy. [...] Read more.
Healthcare systems worldwide face growing challenges related to staff shortages, excessive workload, and deteriorating working conditions, which compromise both staff well-being and care quality. Despite these issues, there is a lack of validated tools that capture healthcare professionals’ subjective perceptions of resource adequacy. This study presents the development and initial validation of the Staff Resource Adequacy Questionnaire for Healthcare Professionals (SRAQ-HP), a multidimensional tool designed to assess staffing adequacy and workload, quality of care, and working conditions and support. The development process followed a mixed-methods design, incorporating theoretical foundations from Kanter’s empowerment theory, role enactment models, and professional competence frameworks. The initial item pool of 32 statements was reduced to 26 through expert reviews, focus groups, and pilot testing (n = 35). Content validity index (CVI = 0.931) and face validity index (FVI = 0.976) demonstrated high content relevance and clarity. Cronbach’s alpha for the full scale was 0.841, confirming internal consistency. Expert re-review confirmed strong content (S-CVI/Ave = 0.931) and face validity (FVI = 0.976) for the final 26-item version. Three core dimensions were retained: Staffing Adequacy and Workload, Quality of Care, and Working Conditions and Support. The SRAQ-HP provides a novel, evidence-based approach to systematically assess workforce sufficiency and support structures in clinical settings. It can guide decision-making in healthcare institutions and inform national workforce policies. Further research with larger and more diverse samples is needed to confirm its factorial validity and practical applicability. Full article
24 pages, 11780 KB  
Article
Additive Manufacturing of Carbon Fiber Cores for Sandwich Structures: Optimization of Infill Patterns and Fiber Orientation for Improved Impact Resistance
by Claudio Tosto, Lorena Saitta, Ignazio Blanco, Gabriele Fichera, Mattia Evangelista, Jerin Jose, Alessia Pantaleoni and Irene Bavasso
J. Manuf. Mater. Process. 2025, 9(9), 299; https://doi.org/10.3390/jmmp9090299 - 1 Sep 2025
Viewed by 250
Abstract
Carbon fiber-reinforced composites (CFRCs) are widely used in aerospace, automotive, and defense applications due to their high strength-to-weight ratio and excellent mechanical performance. In this study, cores and sandwich panels were fabricated via fused filament fabrication (FFF) using co-polyester filaments reinforced with 20 [...] Read more.
Carbon fiber-reinforced composites (CFRCs) are widely used in aerospace, automotive, and defense applications due to their high strength-to-weight ratio and excellent mechanical performance. In this study, cores and sandwich panels were fabricated via fused filament fabrication (FFF) using co-polyester filaments reinforced with 20 wt.% short carbon fibers. The mechanical response of the structures was evaluated under low-velocity impact (LVI) conditions using instrumented drop weight testing at energy levels ranging from 2 to 20 J. A three-factor, three-level full factorial experimental design was employed, considering build orientation (flat vs. upright), infill pattern (trihexagonal vs. triangular), and impact energy as factors. The maximum contact force was selected as the primary response variable. The results revealed that upright-printed specimens exhibited significantly improved impact resistance compared to flat-printed ones, with increases in peak force of up to 28% for cores and over 68% for sandwich structures. Among the tested infill geometries, the triangular pattern outperformed the trihexagonal one across all configurations and energy levels. The combination of upright orientation and triangular infill proved to be the most effective, providing enhanced energy absorption and reduced rear-side damage, especially under higher impact energies. These findings offer valuable insights into the design of lightweight, impact-resistant structures produced by additive manufacturing, with direct implications for structural components in demanding engineering environments. Full article
Show Figures

Graphical abstract

18 pages, 1534 KB  
Article
Designing Spoonable Milk Kefir Gels: From Fermentation Optimization to Clean-Label Gel Structuring with Psyllium
by María Cardenete-Fernández, Alicia Castillo-Rivas, M. Montaña Durán-Barrantes, Luis A. Trujillo-Cayado and Jenifer Santos
Gels 2025, 11(9), 693; https://doi.org/10.3390/gels11090693 - 1 Sep 2025
Viewed by 92
Abstract
Kefir is a fermented dairy product whose structural properties can be modified to enhance its nutritional and sensory profile. The objective of this study was to develop spoonable milk kefir gels by optimizing fermentation conditions and incorporating psyllium and calcium chloride as structuring [...] Read more.
Kefir is a fermented dairy product whose structural properties can be modified to enhance its nutritional and sensory profile. The objective of this study was to develop spoonable milk kefir gels by optimizing fermentation conditions and incorporating psyllium and calcium chloride as structuring agents. In the initial phase of the study, a full factorial design was employed to conduct a comparative analysis of whole milk and skimmed milk during the fermentation process of kefir. The study encompassed the evaluation of the impact of various parameters, including inoculum level, temperature, and fermentation time, on the acidification kinetics of the fermentation process. This evaluation was facilitated through the measurement of pH and total acidity levels. Skimmed milk demonstrated accelerated acidification, consistently attaining a final pH of 4.08 and a total acidity of 9.99 g·L−1 lactic acid equivalents under optimized conditions (5.5% weight:weight grains, 26 °C, 24 h). In the subsequent phase, kefir obtained under these conditions was gelled with varying concentrations of psyllium and calcium chloride. Rheological characterization revealed that psyllium markedly strengthened the gel network: at 3.06% w:w psyllium, the elastic modulus increased up to 209.6 Pa, while the critical stress improved from 0.64 Pa at low psyllium/Ca2+ to 10.42 Pa at high psyllium content. Furthermore, zero-shear viscosity increased substantially, exceeding 1500 Pa·s in high-psyllium, low-calcium formulations. The findings demonstrate that combining fermentation optimization with clean-label structuring agents enables the development of low-fat kefir gels with enhanced textural and processing properties, supporting their potential as synbiotic, functional dairy products. Full article
(This article belongs to the Special Issue Food Gel-Based Systems: Gel-Forming and Food Applications)
Show Figures

Graphical abstract

21 pages, 2603 KB  
Article
Targeted Recovery of Phenolic Antioxidants from Grape Stems: A Sequential Approach
by Violeta Jevtovic, Khulood Fahad Saud Alabbosh, Zoran Pržić, Jelena Nikolić, Reem Ali Alyami, Maha Raghyan Alshammari, Badriah Alshammari, Violeta Rakic, Odeh A. O. Alshammari and Milan Mitić
Molecules 2025, 30(17), 3546; https://doi.org/10.3390/molecules30173546 - 29 Aug 2025
Viewed by 201
Abstract
Grape stems are an abundant by-product of winemaking and a promising source of phenolic antioxidants representing an underutilized biomass within the circular economy. Seven Vitis vinifera L. cultivars were analysed by HPLC DAD, with Merlot (Me), Cabernet Sauvignon (CS) and Italian Riesling (IR) [...] Read more.
Grape stems are an abundant by-product of winemaking and a promising source of phenolic antioxidants representing an underutilized biomass within the circular economy. Seven Vitis vinifera L. cultivars were analysed by HPLC DAD, with Merlot (Me), Cabernet Sauvignon (CS) and Italian Riesling (IR) identified as the richest sources. This comparative screening provided the basis for a multi-index optimization of extraction. A 23 full factorial design (ethanol 30–60% v/v; 30–80 min; 25–65 °C) was used for optimization. The optimal green conditions—60% ethanol, 80 min, 65 °C—yielded 1.860 mg/g CA, 1.098 mg/g Q-gluc and 0.409 mg/g Q-glc, with the Merlot stems showing the highest extraction efficiency and Merlot consistently outperforming the other varieties. Kinetic modeling using an unsteady state diffusion model showed excellent agreement (R2 ≈ 0.99, RMS < 2%), suggesting a leaching-diffusion mechanism. The thermodynamic parameters confirmed an endothermic, spontaneous and irreversible process with ΔH° between 19.5 and 36.6 kJ/mol, ΔS° between 69.1 and 131.6 J/molK and ΔG° between −1.1 and −9.2 kJ/mol, depending on the compound and grape stem variety. This study shows that grape stems can be efficiently utilised as a sustainable source of phenolic antioxidants, with potential applications in the production of functional foods and dietary supplements. This integration highlights the novelty of the study and supports the valorization of grape stems in the framework of sustainability and the circular economy. Full article
(This article belongs to the Special Issue Antioxidant Activity of Plant Phenolics, 2nd Edition)
Show Figures

Figure 1

25 pages, 5624 KB  
Article
Curve-Based Infill Pattern Optimization for 3D Printed Polymeric Scaffolds for Trabecular Bone Applications
by Gisela Vega, Rubén Paz, Mario Monzón, Ricardo Donate and Andrew Gleadall
Materials 2025, 18(17), 4055; https://doi.org/10.3390/ma18174055 - 29 Aug 2025
Viewed by 311
Abstract
Additive manufacturing technology, specifically material extrusion, offers great potential for scaffold manufacturing in tissue engineering. This study presents a novel methodology for the design and optimization of 3D printed polymeric scaffolds to enhance cell viability, thereby promoting improved cell proliferation for tissue engineering [...] Read more.
Additive manufacturing technology, specifically material extrusion, offers great potential for scaffold manufacturing in tissue engineering. This study presents a novel methodology for the design and optimization of 3D printed polymeric scaffolds to enhance cell viability, thereby promoting improved cell proliferation for tissue engineering applications. Different infill patterns, including gyroid, parallel sinusoidal, and symmetric sinusoidal, were evaluated to determine their impact on cell proliferation and tissue regeneration. To overcome the limitations of existing slicer software, a novel open-source software called FullControl GCode Designer was utilized, enabling the creation of customized infill patterns without restrictions. VOLCO software was employed to generate voxelized 3D models of the scaffolds, simulating the material extrusion process. Finite element analysis was conducted using Abaqus software to evaluate the mechanical properties of the different designs. Additionally, new scripts were developed to evaluate the interconnectivity and pore size of the voxelized models. A factorial design of experiments and a genetic algorithm (combined with Kriging metamodels) were applied to identify the optimal configuration based on optimization criteria (keeping the mechanical stiffness and pore size within the recommended values for trabecular bone and maximizing the surface and interconnectivity). Biological testing was conducted on polylactic acid scaffolds to preliminarily validate the effectiveness of the modeling and optimization methodologies in this regard. The results demonstrated the agreement between the optimization methodology and the biological test since the optimum in both cases was a symmetric sinusoidal pattern design with a configuration resulting in a structure with 53.08% porosity and an equivalent pore size of 584 µm. Therefore, this outcome validates the proposed methodologies, emphasizing the role of pore surface area and interconnectivity in supporting cell proliferation. Overall, this research contributes to the advancement of AM technology in tissue engineering and paves the way for further optimization studies in scaffold design. Full article
(This article belongs to the Special Issue Design and Application of Additive Manufacturing: 3rd Edition)
Show Figures

Figure 1

25 pages, 10072 KB  
Article
A Study on the Influence of the Properties of Commercial Soft Magnetic Composite Somaloy Materials on the Compaction Process
by Minseop Sim and Seonbong Lee
Appl. Mech. 2025, 6(3), 65; https://doi.org/10.3390/applmech6030065 - 27 Aug 2025
Viewed by 308
Abstract
This study aimed to determine optimal forming conditions by comparing the compaction behavior and microstructural characteristics of two Fe-based Soft Magnetic Composite (SMC) powders, Somaloy 700HR 5P and Somaloy 130i 5P. A full factorial design was employed with powder type, compaction temperature, and [...] Read more.
This study aimed to determine optimal forming conditions by comparing the compaction behavior and microstructural characteristics of two Fe-based Soft Magnetic Composite (SMC) powders, Somaloy 700HR 5P and Somaloy 130i 5P. A full factorial design was employed with powder type, compaction temperature, and punch speed as variables. Finite element modeling (FEM) using experimentally derived properties predicted density and stress distributions in toroidal geometries. 700HR 5P exhibited higher stress under most conditions, while both powders showed similar axial density gradients. Experimental results validated the simulations. SEM analysis revealed that 130i 5P had fewer microvoids and clearer particle boundaries. As revealed by TEM-EDS analyses, after heat treatment, both powders exhibited a tendency for the insulation layers to become more uniform and continuous. The insulation layer of 700HR 5P was relatively thicker but retained some pores, whereas that of 130i 5P was thinner yet exhibited smoother and more continuous coverage. XRD analysis indicated that both powders retained an α-Fe solid solution. These results demonstrate that powder properties, composition, and insulation stability significantly influence compaction and microstructural evolution. This work systematically compares the formability and insulation stability of two commercial Somaloy powders and elucidates process–structure–property relationships through an application-oriented evaluation integrating experimental design, FEM, and microstructural characterization, providing practical insights for optimal process design. Full article
Show Figures

Figure 1

29 pages, 2147 KB  
Article
Use of Factorial Design for Calculation of Second Hyperpolarizabilities
by Igors Mihailovs, Ekaterina Belobrovko, Arturs Bundulis, Dmitry V. Bocharov, Eugene A. Kotomin and Martins Rutkis
Nanomaterials 2025, 15(17), 1302; https://doi.org/10.3390/nano15171302 - 23 Aug 2025
Viewed by 489
Abstract
There has been considerable scientific interest in third-order nonlinear optical materials for photonic applications. In particular, materials exhibiting a strong electronic optical Kerr effect serve as essential components in the ultrafast nonlinear photonic devices and are instrumental in the development of all-optical signal [...] Read more.
There has been considerable scientific interest in third-order nonlinear optical materials for photonic applications. In particular, materials exhibiting a strong electronic optical Kerr effect serve as essential components in the ultrafast nonlinear photonic devices and are instrumental in the development of all-optical signal processing technologies. Therefore, the accurate prediction of material-relevant properties, such as second hyperpolarizabilities, remains a key topic in the search for efficient photonic materials. However, the field standards in quantum chemical computation are still inconsistent, as studies often lack a firm statistical foundation. This work presents a comprehensive in silico investigation based on multiple full-factorial experiments, aiming to clarify the strengths and limitations of various computational approaches. Our results indicate that the coupled-cluster approach at the CCSD level in its current response-equation implementations is not yet able to outperform the range-separated hybrid density functionals, such as LC-BLYP(0.33). The exceptional performance of the specifically tailored basis set Sadlej-pVTZ is also described. Not only was the presence of diffuse functions found to be mandatory, but also adding ample polarization functions is shown to be inefficient resource-wise. HF/Sadlej-pVTZ is proven to be reliable enough to use in molecular screening. Meta functionals are confirmed to produce poorly consistent results, and specific guidelines for constructing range-separated functionals for polarizability calculations are drawn out. Additionally, it was shown that many of the contemporary solvation models exhibit significant limitations in accurately capturing nonlinear optical properties. Therefore, further refinement in the current methods is pending. This extends to the statistical description as well: the mean absolute deviation descriptor is found to be deficient in rating various computational methods and should rather be replaced with the parameters of the linear correlation (the slope, the intercept, and the R2). Full article
Show Figures

Figure 1

20 pages, 3369 KB  
Article
Machinability Evaluation of PM Vanadis 4 Extra Steel Under Varying Milling Conditions
by Jarosław Tymczyszyn, Artur Szajna, Anna Bazan and Grażyna Mrówka-Nowotnik
Appl. Sci. 2025, 15(17), 9256; https://doi.org/10.3390/app15179256 - 22 Aug 2025
Viewed by 511
Abstract
Powder metallurgy tool steels, such as Vanadis 4 Extra (1.2210), are increasingly used in cold-work applications due to their superior hardness, wear resistance, and microstructural uniformity. Despite their growing popularity, there is limited data regarding their machinability, especially in milling processes. In this [...] Read more.
Powder metallurgy tool steels, such as Vanadis 4 Extra (1.2210), are increasingly used in cold-work applications due to their superior hardness, wear resistance, and microstructural uniformity. Despite their growing popularity, there is limited data regarding their machinability, especially in milling processes. In this study, experimental milling tests were performed on Vanadis 4 Extra steel using AlCrN-coated carbide tools. A full factorial experimental design (34) was applied to investigate the effects of cutting speed, depth of cut, width of cut, and feed per tooth on cutting forces (Fx, Fy, Fz, Fc), surface roughness parameters (Ra, Rz), and tool wear. Cutting forces were measured using a Kistler dynamometer, and surface roughness was evaluated using a contact profilometer. Regression models were developed and statistically validated. The results indicate that depth of cut had the most significant influence on cutting force, while cutting speed had the greatest impact on surface roughness. Moderate correlation between cutting forces and roughness was observed, particularly under low-load conditions. SEM analysis revealed abrasive wear and chipping of the coating layer. The findings provide insights into the machinability of Vanadis 4 Extra and offer guidelines for optimizing milling parameters to enhance tool life and surface integrity. Full article
(This article belongs to the Special Issue Advances in Precision Machining Technology)
Show Figures

Figure 1

29 pages, 5378 KB  
Article
Multivariable Model Predictive Control of Cleanroom Pressure Cascades
by Branislav M. Jeremić and Aleksandar Ž. Rakić
Electronics 2025, 14(16), 3296; https://doi.org/10.3390/electronics14163296 - 19 Aug 2025
Viewed by 238
Abstract
Cleanrooms are a fundamental setup of every semiconductor and life science factory, representing strictly controlled ambient conditions designed to minimize the air contamination that could affect a product within the production process. A cleanroom pressure cascade is a technological process associated with the [...] Read more.
Cleanrooms are a fundamental setup of every semiconductor and life science factory, representing strictly controlled ambient conditions designed to minimize the air contamination that could affect a product within the production process. A cleanroom pressure cascade is a technological process associated with the ventilation and air treatment in these plants, with the goal of keeping the rooms within strict parameters. From a control systems perspective, it represents an MIMO ensemble of coupled control loops related to the technological process of air dynamics. In this research, we solve the multivariable control problem and present a novel, systematic approach with a conceptual solution for the following: (1) technological process and modeling challenges; (2) system identification and black-box MIMO process modeling; (3) full-blown controller design with model predictive control in its central place. This research was conducted on a real system at the “Fabrika COVID Vakcina” factory in Belgrade, Serbia. Full article
Show Figures

Figure 1

52 pages, 10078 KB  
Article
PLA, PBS, and PBAT Biocomposites—Part A: Matrix–Filler Interactions with Agro-Industrial Waste Fillers (Brewer’s Spent Grain, Orange Peel) and Their Influence on Thermal, Mechanical, and Water Sorption Properties
by Jules Bellon, Feriel Bacoup, Stéphane Marais and Richard Gattin
Materials 2025, 18(16), 3867; https://doi.org/10.3390/ma18163867 - 18 Aug 2025
Viewed by 489
Abstract
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by [...] Read more.
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by melt extrusion followed by thermo-compression. A full factorial design was implemented to assess matrix–filler interactions and compare biocomposites to pure polymer fragments. OP particles, smaller and rougher than BSG, exhibited a higher specific surface area, influencing composite morphology and behavior. The OP slightly plasticized PLA, possibly due to volatile release during processing, whereas BSG increased stiffness in PBS and PBAT. Both fillers reduced mechanical strength, especially in PLA, due to limited interfacial adhesion, and significantly decreased PLA’s thermal stability. The addition of fillers also increased water sorption and modified the sorption kinetics of the three main modes (Langmuir-type, Henry’s law sorption, and water molecule clustering), as well as the values of the half-sorption diffusion coefficients (D1 and D2), with notable differences between the OP and BSG linked to their structure and composition. These findings provide a better understanding of structure–property relationships in biodegradable composites and highlight their potential for sustainable packaging and other industrial applications. Full article
Show Figures

Figure 1

23 pages, 3049 KB  
Article
Bioconversion of Date Waste into Bacterial Nanocellulose by a New Isolate Komagataeibacter sp. IS22 and Its Use as Carrier Support for Probiotics Delivery
by Islam Sayah, Ibtissem Chakroun, Claudio Gervasi, Davide Barreca, Giovanni Lanteri, Daniela Iannazzo, Consuelo Celesti, Antonello Santini, Sami Achour and Teresa Gervasi
Foods 2025, 14(16), 2853; https://doi.org/10.3390/foods14162853 - 18 Aug 2025
Viewed by 550
Abstract
Bacterial nanocellulose (BNC) has gained considerable interest over the last decade due to its unique properties and versatile applications. However, the low yield and the high production cost significantly limit its industrial scalability. The proposed study explores the isolation of new BNC producers [...] Read more.
Bacterial nanocellulose (BNC) has gained considerable interest over the last decade due to its unique properties and versatile applications. However, the low yield and the high production cost significantly limit its industrial scalability. The proposed study explores the isolation of new BNC producers from date palm sap and the use of date waste extract as a sustainable carbon source to improve BNC productivity. Results revealed three potential BNC producers identified as Komagataeibacter sp. IS20, Komagataeibacter sp. IS21, and Komagataeibacter sp. IS22 with production yield of 1.7 g/L, 0.8 g/L and 1.8 g/L, respectively, in Hestrin-Schramm (HS) medium. The biopolymer characterization indicated the presence of type I cellulose, a high thermal stability, and a highly dense network made of cellulose nanofibrils for all BNC samples. The isolate IS22, showing the highest productivity, was selected for an optimization procedure using a full factorial design with date waste extract as a carbon source. The BNC yield increased to 6.59 g/L using 4% date waste extract and 2% ethanol after 10 days of incubation compared to the standard media (1.8 g/L). Two probiotic strains, including Bacillus subtilis (BS), and Lactobacillus plantarum (LP) were successfully encapsulated into BNC matrix through a co-culture approach. The BNC-LP and BNC-BS composites showed antibacterial activity against Pseudomonas aeruginosa. BNC–probiotic composites have emerged as a promising strategy for the effective delivery of viable probiotics in a wide range of applications. Overall, this study supports the use of date waste extract as a sustainable carbon source to enhance BNC productivity and reduce the environmental footprint using a high-yielding producer (IS22). Furthermore, the produced BNC demonstrated promising potential as an efficient carrier matrix for probiotic delivery. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

24 pages, 2664 KB  
Article
AIoT-Based Eyelash Extension Durability Evaluation Using LabVIEW Data Analysis
by Sumei Chiang, Shao-Hsun Chang, Kai-Chao Yao, Po-Yu Kuo and Chien-Tai Hsu
Sensors 2025, 25(16), 5057; https://doi.org/10.3390/s25165057 - 14 Aug 2025
Viewed by 286
Abstract
This study introduces a novel platform, the Artificial Intelligence of Things Experimental Device Platform (AIoTEDP), to evaluate the durability of eyelash extensions under various environmental factors, including temperature, wind speed, and compression frequency. The experiment employs a three-factor full factorial design, utilizing LabVIEW [...] Read more.
This study introduces a novel platform, the Artificial Intelligence of Things Experimental Device Platform (AIoTEDP), to evaluate the durability of eyelash extensions under various environmental factors, including temperature, wind speed, and compression frequency. The experiment employs a three-factor full factorial design, utilizing LabVIEW to collect and analyze independent variables. The retention rate of eyelash extensions is the dependent variable for evaluating the durability. The proposed AIoTEDP regulates thermostats, stepper motors, and heating fans to simulate real-world eyelash extension usage conditions. Quantitative analyses are performed through visual assessments and image recognition technologies. The experimental results indicate that high temperatures and strong winds significantly reduce the durability of eyelash extensions. However, moderate bending damage (3000 repetitions) still allows for sufficient retention. This study validates the practicality and accuracy of the proposed AIoTEDP, showcasing its potential for innovative cosmetic testing systems to assess eyelash extension durability. Full article
(This article belongs to the Special Issue AI-Empowered Internet of Things)
Show Figures

Figure 1

31 pages, 6204 KB  
Article
Optimization and Validation of CO2 Laser-Machining Parameters for Wood–Plastic Composites (WPCs)
by Sharizal Ahmad Sobri, Teoh Ping Chow, Tan Koon Tatt, Mohd Hisham Nordin, Andi Hermawan, Mohd Hazim Mohamad Amini, Mohd Natashah Norizan, Norshah Afizi Shuaib and Wan Omar Ali Saifuddin Wan Ismail
Polymers 2025, 17(16), 2216; https://doi.org/10.3390/polym17162216 - 13 Aug 2025
Viewed by 592
Abstract
Wood–plastic composites (WPCs) offer a sustainable alternative to solid wood, yet their heterogeneous structure presents challenges in laser machining due to thermal sensitivity and inconsistent material behaviour. This study investigates the optimization of CO2 laser-cutting parameters for WPCs, focusing on feed rate [...] Read more.
Wood–plastic composites (WPCs) offer a sustainable alternative to solid wood, yet their heterogeneous structure presents challenges in laser machining due to thermal sensitivity and inconsistent material behaviour. This study investigates the optimization of CO2 laser-cutting parameters for WPCs, focusing on feed rate and assist-gas pressure. Using a 1500 W CO2 laser, a full factorial experimental design was employed to cut 18 mm thick WPC panels at varying feed rates (1000–3000 mm/min) and gas pressures (1–3 bar). Statistical analyses including MANOVA and linear regression were conducted to evaluate their effects on key machining responses: cutting depth, heat-affected zone (HAZ) width, cut-edge quality, and surface finish. Results indicated that feed rate significantly influences both cutting depth and thermal damage, while gas pressure plays a major role in improving surface quality and reducing HAZ. Optimal combinations were identified for various performance goals, and validation trials at the selected parameters confirmed alignment with predicted outcomes. The optimized settings yielded high-quality cuts with reduced HAZ and enhanced surface characteristics. This study demonstrates the effectiveness of a statistical optimization approach in refining CO2 laser-cutting conditions for WPCs, offering insights for improved process control and sustainable manufacturing applications. This study also introduces a multi-objective optimization approach that verifies the interaction effects of feed rate and assist-gas pressure, enabling precise and efficient CO2 laser cutting of 18 mm thick WPCs. Full article
Show Figures

Graphical abstract

Back to TopTop