Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,735)

Search Parameters:
Keywords = functional food industries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 3957 KiB  
Review
Advances in Hydrogel-Integrated SERS Platforms: Innovations, Applications, Challenges, and Future Prospects in Food Safety Detection
by Xorlali Nunekpeku, Huanhuan Li, Ayesha Zahid, Chenhui Li and Wei Zhang
Biosensors 2025, 15(6), 363; https://doi.org/10.3390/bios15060363 (registering DOI) - 5 Jun 2025
Abstract
Background: Food safety remains a global concern due to biological and chemical contaminants, including adulterants, pathogens, antibiotic residues, and pesticides. Traditional detection methods are accurate but limited by time requirements, complex sample preparation, high costs, and poor field applicability. Surface-Enhanced Raman Spectroscopy [...] Read more.
Background: Food safety remains a global concern due to biological and chemical contaminants, including adulterants, pathogens, antibiotic residues, and pesticides. Traditional detection methods are accurate but limited by time requirements, complex sample preparation, high costs, and poor field applicability. Surface-Enhanced Raman Spectroscopy (SERS) offers non-destructive analysis with low detection limits and high specificity, yet conventional SERS substrates face challenges with reproducibility, nanoparticle aggregation, and sensitivity in food matrices. Hydrogels have emerged as supporting materials for SERS due to their water content, tunable porosity, flexibility, and ability to entrap plasmonic nanostructures. Scope and Approach: This review examines recent advances in hydrogel-integrated SERS platforms for food safety applications. The three-dimensional structure of hydrogels enables homogeneous distribution of metal nanoparticles, prevents aggregation, and offers analyte enrichment. We analyze material design, functionalization strategies, and how hydrogel properties—crosslinking density, porosity, surface charge, and nanoparticle distribution—influence SERS performance in food matrices. Key Findings and Conclusions: Hydrogel-integrated SERS platforms demonstrate superior performance in detecting various food contaminants—including pesticides, adulterants, and additives—in real food matrices, often achieving detection limits in the nanomolar to picomolar range, depending on the analyte and substrate design. Current limitations include storage stability concerns, batch-to-batch variability, and regulatory acceptance hurdles. Future research directions should focus on multiplex detection capabilities, integration with smart sensing technologies, and industrial scalability to facilitate practical deployment in global food safety monitoring across diverse supply chains. Full article
(This article belongs to the Special Issue Advanced SERS Biosensors for Detection and Analysis)
20 pages, 1370 KiB  
Article
Valorization of Grape Seed By-Products Using Subcritical Water Extraction: A Sustainable Approach for Bioactive Compound Recovery
by Marion Breniaux, Benjamin Poulain, Sandra Mariño-Cortegoso, Letricia Barbosa-Pereira, Claudia Nioi and Rémy Ghidossi
Processes 2025, 13(6), 1788; https://doi.org/10.3390/pr13061788 - 5 Jun 2025
Abstract
Grape seeds are a major by-product of the winemaking industry and a great source of bioactive compounds such as polyphenols and proteins. These compounds have a wide range of applications including those in nutraceutical products and cosmetics and within the wine industry itself. [...] Read more.
Grape seeds are a major by-product of the winemaking industry and a great source of bioactive compounds such as polyphenols and proteins. These compounds have a wide range of applications including those in nutraceutical products and cosmetics and within the wine industry itself. Subcritical water extraction (SWE) was explored as a global method to valorize grape seed by-products for their different bioactive compounds in the context of waste valorization, green chemistry (solvent-free extraction), and circular economy. A Box–Behnken design was applied to generate mathematical responses and the ANOVA analysis determined the optimal extraction conditions (pressure, temperature, and time of extraction) for different responses such as total polyphenol content (TPC), antioxidant activity (AA), and total protein (Tprot). Extraction temperature was found to be the most significant factor influencing all responses while pressure had no significant impact on them. Optimal conditions were derived from the mathematical models for each response. For polyphenol extraction, the optimal conditions were as follows: 170 °C and 20 bar for 39 min with 288 mg GAE/g DM. To achieve the highest AA, SWE parameters should be set at 165 °C and 20 bar for 51 min with 332 mg TROLOX/g DM. For the extraction of proteins, it is necessary to work at 105 °C and 20 bar for 10 min (78 mg BSA/g DM) to preserve protein functionality. In comparison, conventional solvent extraction was unable to outperform SWE with values under the SWE results. Given the high content of polyphenols found in the extracts, an HPLC analysis was conducted. The following compounds were detected and quantified: protocatechuic acid (7.75 mg/g extract), gallic acid (6.63 mg/g extract), delphinidin chloride (1.44 mg/g extract), catechin (0.36 mg/g extract), gentisic acid (0.197 mg/g extract), and some epicatechin (0.07 mg/g extract). Additionally, Maillard reaction products (MRPs) were detected at high temperatures, with 5-hydroxymethylfurfural (5-HMF) appearing in extracts processed at 165 °C and above. The presence of MRPs, known for their antioxidant and bioactive properties, may have contributed to the increased AA observed in these extracts. These findings are significant because a solvent-free extraction process like SWE offers a sustainable approach to repurposing winemaking by-products, with potential applications in the wine and food industries. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

20 pages, 2030 KiB  
Article
Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development
by Gonzalo Hernández-López, Laura Leticia Barrera-Necha, Silvia Bautista-Baños, Mónica Hernández-López, Odilia Pérez-Camacho, José Jesús Benítez-Jiménez, José Luis Acosta-Rodríguez and Zormy Nacary Correa-Pacheco
Foods 2025, 14(11), 1991; https://doi.org/10.3390/foods14111991 - 5 Jun 2025
Abstract
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. [...] Read more.
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. Extracted green coffee bean oil (CO) was used as a plasticizer, and CP was used as a filler with and without functionalization. A solution of chitosan nanoparticles (ChNp) as a coating was applied to the ribbons. For the raw material, proximal analysis of the CP showed cellulose and lignin contents of 53.09 ± 3.42% and 23.60 ± 1.74%, respectively. The morphology of the blends was observed via scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) showed an increase in the ribbons’ thermal stability with the functionalization. The results of differential scanning calorimetry (DSC) revealed better miscibility for the functionalized samples. The mechanical properties showed that with CP incorporation into the blends and with the ChNp coating, the Young’s modulus and the tensile strength decreased with no significant changes in the elongation at break. This work highlights the potential of reusing different by-products from the coffee industry, such as coffee oil from green beans and coffee parchment as a filler, and incorporating them into PLA PBAT biodegradable polymer blend ribbons with a nanostructured antimicrobial coating based on chitosan for future applications in food packaging. Full article
Show Figures

Figure 1

24 pages, 2492 KiB  
Review
Antioxidant Peptides Derived from Woody Oil Resources: Mechanisms of Redox Protection and Emerging Therapeutic Opportunities
by Jia Tu, Jie Peng, Li Wen, Changzhu Li, Zhihong Xiao, Ying Wu, Zhou Xu, Yuxi Hu, Yan Zhong, Yongjun Miao, Jingjing Xiao and Sisi Liu
Pharmaceuticals 2025, 18(6), 842; https://doi.org/10.3390/ph18060842 - 4 Jun 2025
Abstract
Antioxidant peptides derived from woody oil resource by-products exhibit strong free radical scavenging abilities and offer potential applications in functional foods, nutraceuticals, and cosmetics. This review summarizes the latest advances in preparation technologies, including enzymatic hydrolysis, microbial fermentation, chemical synthesis, recombinant expression, and [...] Read more.
Antioxidant peptides derived from woody oil resource by-products exhibit strong free radical scavenging abilities and offer potential applications in functional foods, nutraceuticals, and cosmetics. This review summarizes the latest advances in preparation technologies, including enzymatic hydrolysis, microbial fermentation, chemical synthesis, recombinant expression, and molecular imprinting, each with distinct advantages in yield, selectivity, and scalability. The structure–activity relationships of antioxidant peptides are explored with respect to amino acid composition, molecular weight, and 3D conformation, which collectively determine their bioactivity and stability. Additionally, emerging delivery systems—such as nanoliposomes, microencapsulation, and cell-penetrating peptides—are discussed for their role in enhancing peptide stability, absorption, and targeted release. Mechanistic studies reveal that antioxidant peptides from woody oil resources act through network pharmacology, engaging core signaling pathways, including Nrf2/ARE, PI3K/Akt, AMPK, and JAK/STAT, to regulate oxidative stress, mitochondrial health, and inflammation. Preliminary safety data from in vitro, animal, and early clinical studies suggest low toxicity and favorable tolerability. The integration of omics technologies, molecular docking, and bioinformatics is accelerating the mechanism-driven design and functional validation of peptides. In conclusion, antioxidant peptides derived from woody oil resources represent a sustainable, multifunctional, and scalable solution for improving human health and promoting a circular bioeconomy. Future research should focus on structural optimization, delivery enhancement, and clinical validation to facilitate their industrial translation. Full article
Show Figures

Figure 1

30 pages, 1714 KiB  
Review
A Comprehensive Review on Characterization of Pepper Seeds: Unveiling Potential Value and Sustainable Agrifood Applications
by Alicia Dobón-Suárez, Pedro Javier Zapata and María Emma García-Pastor
Foods 2025, 14(11), 1969; https://doi.org/10.3390/foods14111969 - 1 Jun 2025
Viewed by 291
Abstract
Pepper (Capsicum annuum L.) processing generates significant byproducts, with seeds emerging as a promising resource due to their rich content of oils, proteins, phenolic compounds and minerals. This comprehensive review critically evaluates the existing literature on the characterization of pepper seeds, highlighting [...] Read more.
Pepper (Capsicum annuum L.) processing generates significant byproducts, with seeds emerging as a promising resource due to their rich content of oils, proteins, phenolic compounds and minerals. This comprehensive review critically evaluates the existing literature on the characterization of pepper seeds, highlighting their significant nutritional value and diverse bioactive constituents. The substantial oil content, characterized by a high proportion of unsaturated fatty acids, such as linoleic and oleic acids, positions pepper seeds as a valuable source for edible oil and potential biofuel production. In addition, the presence of significant amounts of proteins, carbohydrates, dietary fibre and essential amino acids underlines their potential for the development of functional foods and dietary supplements. The current review also summarizes the findings on the phenolic profile and antioxidant activities of pepper seeds, indicating their relevance for nutraceutical and cosmetic applications. Finally, the potential utilization of pepper seeds in various agri-food industrial applications, such as food condiments, biostimulants, and biomass for energy, is discussed, promoting sustainability and a circular bioeconomy approach to valorise this underutilized resource. This systematic review summarizes current knowledge, identifies knowledge gaps, and highlights the potential of pepper seeds as a sustainable and economically viable alternative in multiple sectors. Full article
Show Figures

Graphical abstract

18 pages, 322 KiB  
Article
Fatty Acid Profile and Some Useful Biological Aspects of Borage, Calophyllum, and Prickly Pear Seed Oils: Implications for Health and Dietary Use
by Florinda Fratianni, Francesca Coppola, Siria Tavaniello, Maria Neve Ombra, Beatrice De Giulio, Nunzio D’Agostino, Gokhan Zengin, Raffaele Coppola and Filomena Nazzaro
Antioxidants 2025, 14(6), 661; https://doi.org/10.3390/antiox14060661 - 30 May 2025
Viewed by 261
Abstract
Seed oils from Borago officinalis (borage), Opuntia ficus-indica (prickly pear), and Calophyllum inophyllum (calophyllum or tamanu) are rich in bioactive fatty acids and have been traditionally used in cosmetic and industrial sectors. This study explored their fatty acid composition and investigated their in [...] Read more.
Seed oils from Borago officinalis (borage), Opuntia ficus-indica (prickly pear), and Calophyllum inophyllum (calophyllum or tamanu) are rich in bioactive fatty acids and have been traditionally used in cosmetic and industrial sectors. This study explored their fatty acid composition and investigated their in vitro antioxidant, anti-arthritic, neuroprotective, and antibiofilm activities. Fatty acid profiles were determined via gas chromatography. Antioxidant activity was assessed using DPPH and ABTS radical scavenging assays. Anti-arthritic potential was measured via bovine serum albumin denaturation. Neuroprotective properties were evaluated through acetylcholinesterase, butirylcholinesterase, and tyrosinase inhibition. Antibiofilm activity against five pathogenic strains was analyzed using crystal violet and MTT assays. Correlation analysis was used to associate fatty acid composition with bioactivity. Prickly pear oil exhibited the highest PUFA content (65.1%), mainly linoleic acid. Calophyllum oil was richer in saturated and monounsaturated fatty acids. All oils showed significant radical scavenging ability, with calophyllum oil showing the lowest DPPH IC50 and borage oil, the highest ABTS activity. Borage and prickly pear oils demonstrated strong anti-arthritic potential. Calophyllum oil showed the most potent AChE inhibition. All oils showed tyrosinase inhibition; however, calophyllum did not show BChE inhibitory activity. Antibiofilm activity was species- and dose-dependent, with Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii being most affected. Thus, the tested oils exhibited multiple biological activities, influenced by their fatty acid composition. The in vitro antioxidant, anti-arthritic, neuroprotective, and antimicrobial properties support their potential use as functional food ingredients or nutraceuticals, especially for aging-related health concerns. Further in vivo and clinical studies are needed to confirm their efficacy. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
24 pages, 9135 KiB  
Review
Technological Innovations and Circular Economy in the Valorization of Agri-Food By-Products: Advances, Challenges and Perspectives
by Carlos A. Ligarda-Samanez, Mary L. Huamán-Carrión, Wilber Cesar Calsina-Ponce, Germán De la Cruz, Dante Fermín Calderón Huamaní, Domingo J. Cabel-Moscoso, Antonina J. Garcia-Espinoza, Reynaldo Sucari-León, Yolanda Aroquipa-Durán, Jenny C. Muñoz-Saenz, Mauricio Muñoz-Melgarejo and Enoc E. Jilaja-Carita
Foods 2025, 14(11), 1950; https://doi.org/10.3390/foods14111950 - 30 May 2025
Viewed by 417
Abstract
The valorization of agri-food by-products is a critical pathway toward building sustainable food systems, reducing waste, and advancing the circular economy. This review aims to identify recent advances, key challenges, and future perspectives in this field. We conducted a critical and systematic synthesis [...] Read more.
The valorization of agri-food by-products is a critical pathway toward building sustainable food systems, reducing waste, and advancing the circular economy. This review aims to identify recent advances, key challenges, and future perspectives in this field. We conducted a critical and systematic synthesis of 159 peer-reviewed studies (2019–2025) selected based on quality and thematic relevance from leading international databases. The analysis focuses on emerging technologies such as ultrasound-assisted extraction, microencapsulation, spray drying, lyophilization, deep eutectic solvents, and colloidal systems, emphasizing their efficiency in recovering bioactive compounds from agro-industrial by-products. Significant challenges include industrial scalability, economic feasibility, regulatory compliance, and consumer acceptance. This paper also discusses current applications in functional foods and nutraceuticals, outlining promising directions for the sector. Although challenges remain, the findings offer valuable insights for researchers, industry, and policymakers aiming to foster sustainable innovation and implement strategies aligned with circular economy principles. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Graphical abstract

25 pages, 6616 KiB  
Article
Optimization and Characterization of Crosslinked Chitosan-Based Oleogels Based on Mechanical Properties of Conventional Solid Fats
by Gabriela Baptista Brito, Jorge da Silva Pinho-Jr, André da Silva Guimarães, Carlos Adam Conte-Júnior, Marcio Nele, Daniel Perrone and Vanessa Naciuk Castelo-Branco
Polymers 2025, 17(11), 1526; https://doi.org/10.3390/polym17111526 - 29 May 2025
Viewed by 242
Abstract
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological [...] Read more.
Industrial trans and saturated fatty acids, which are key components of solid fats used in food products, should be replaced with unsaturated fatty acids from vegetable oils to reduce cardiovascular risk. However, unsaturated oils lack the structured networks required to replicate the technological properties of solid fats. Oleogelation, especially using polymer-based networks, offers a promising solution. This study optimized chitosan-based oleogels crosslinked with vanillin to mimic the texture of butter, partially hydrogenated fat, margarine, and palm fat while minimizing oil loss. Oleogels were prepared via the emulsion-template method and optimized through a central composite design combined with a desirability function, evaluating the effects of chitosan, vanillin, Tween® 60 concentrations, oil type (canola or soybean), and storage temperature (4 °C or 25 °C). Optimized oleogels were characterized for their rheological and microstructural properties. Chitosan concentration primarily governed oil loss, hardness, and adhesiveness of oleogels, independent of the oil phase and storage temperature. However, storage at 4 °C reduced oil loss but increased the hardness and adhesiveness compared to storage at 25 °C. The highest desirability scores (0.72 to 0.94) were achieved in soybean oil oleogels with 0.99% chitosan, 0.24–0.32% vanillin, and 0.17–0.18% Tween® 60, closely mimicking the texture of butter and margarine. These oleogels demonstrated stronger networks, enhanced gel strength, and elasticity, positioning them as viable alternatives to conventional solid fats. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

38 pages, 2898 KiB  
Review
Moringa oleifera Lam.: A Nutritional Powerhouse with Multifaceted Pharmacological and Functional Applications
by Natalina Panova, Anelia Gerasimova, Galia Gentscheva, Stoyanka Nikolova, Lubomir Makedonski, Margarita Velikova, Abdessamad Beraich, Abdelmonaem Talhaoui, Nadezhda Petkova, Daniela Batovska and Krastena Nikolova
Life 2025, 15(6), 881; https://doi.org/10.3390/life15060881 - 29 May 2025
Viewed by 332
Abstract
Moringa oleifera, often referred to as the “miracle tree”, has gained widespread recognition for its exceptional nutritional profile and broad pharmacological potential. This review provides a comprehensive synthesis of the plant’s botanical characteristics, taxonomy, cultivation practices, and biochemical composition. Special emphasis is [...] Read more.
Moringa oleifera, often referred to as the “miracle tree”, has gained widespread recognition for its exceptional nutritional profile and broad pharmacological potential. This review provides a comprehensive synthesis of the plant’s botanical characteristics, taxonomy, cultivation practices, and biochemical composition. Special emphasis is placed on its rich content of bioactive secondary metabolites-such as flavonoids, alkaloids, phenolic acids, saponins, isothiocyanates, and glucosinolates-which underlie its diverse therapeutic effects. The paper compiles and analyzes evidence from over 200 peer-reviewed studies, documenting antioxidant, anti-inflammatory, antimicrobial, antidiabetic, anticancer, hepatoprotective, neuroprotective, and anti-obesity effects, among others. For instance, leaf extracts have demonstrated potent antioxidant and antidiabetic effects in both animal models and clinical trials, while seed-derived isothiocyanates have shown significant antibacterial and anticancer activity. In addition, clinical and in vivo data support M. oleifera’s role in fertility regulation, cardiovascular protection, and neurodegenerative disease mitigation. Beyond its medicinal applications, the review highlights its growing use in functional foods, dietary supplements, and cosmeceutical products, reflecting its commercial and industrial relevance. By consolidating findings across disciplines, this review underscores the multifaceted value of M. oleifera as a nutraceutical and therapeutic resource. Full article
(This article belongs to the Special Issue Bioactive Natural Compounds: Therapeutic Insights and Applications)
Show Figures

Figure 1

34 pages, 4080 KiB  
Article
Comprehensive Assessment of Potentially Toxic Element (PTE) Contamination in Honey from a Historically Polluted Agro-Industrial Landscape: Implications for Agricultural Sustainability and Food Safety
by Ioana Andra Vlad, Szilárd Bartha, Győző Goji, Ioan Tăut, Florin Alexandru Rebrean, Laviniu Ioan Nuțu Burescu, Călin Gheorghe Pășcuț, Petrică Tudor Moțiu, Adrian Tunduc, Claudiu Ion Bunea and Florin-Dumitru Bora
Agriculture 2025, 15(11), 1176; https://doi.org/10.3390/agriculture15111176 - 29 May 2025
Viewed by 265
Abstract
Honey is increasingly recognized not only as a functional food but also as a potential bioindicator of environmental pollution. This study assessed the concentrations of four potentially toxic elements (PTEs)—lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn)—in 48 multifloral honey samples collected [...] Read more.
Honey is increasingly recognized not only as a functional food but also as a potential bioindicator of environmental pollution. This study assessed the concentrations of four potentially toxic elements (PTEs)—lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn)—in 48 multifloral honey samples collected in 2023 from seven locations across a historically polluted agro-industrial region in Romania. Samples were analyzed using Flame Atomic Absorption Spectrometry (FAAS) and Graphite Furnace AAS (GFAAS), with quality control ensured through certified reference materials. Results revealed that Pb (0.72–1.69 mg/kg) and Cd (0.02–0.37 mg/kg) levels consistently exceeded international safety thresholds, while Cu (0.62–2.22 mg/kg) and Zn (0.91–1.93 mg/kg), although essential nutrients, were found in elevated concentrations. Spatial analysis indicated a general trend of higher contamination in sites located closer to former industrial facilities, influenced by factors such as altitude and atmospheric transport. These findings confirm the persistent environmental burden in post-industrial landscapes and support the use of honey as a cost-effective tool for pollution monitoring. The study underscores the need for targeted environmental policies, sustainable apicultural practices, and continued surveillance to protect ecosystem health and food safety. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

25 pages, 4878 KiB  
Article
Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films
by Achilleas Kechagias, Areti A. Leontiou, Yelyzaveta K. Oliinychenko, Alexandros Ch. Stratakos, Konstatninos Zaharioudakis, Charalampos Proestos, Emmanuel P. Giannelis, Nikolaos Chalmpes, Constantinos E. Salmas and Aris E. Giannakas
Polymers 2025, 17(11), 1518; https://doi.org/10.3390/polym17111518 - 29 May 2025
Viewed by 782
Abstract
In the context of the circular economy, the valorization of bio-derived waste has become a priority across various production sectors, including food processing and packaging. Gelatin (Gel), a protein which can be recovered from meat industry byproducts, offers a sustainable solution in this [...] Read more.
In the context of the circular economy, the valorization of bio-derived waste has become a priority across various production sectors, including food processing and packaging. Gelatin (Gel), a protein which can be recovered from meat industry byproducts, offers a sustainable solution in this regard. In this study, pork-derived gelatin was used to develop novel edible active packaging films, designed for meat products. Glycerol (Gl) was used as a plasticizer. Two types of montmorillonite-based nanohybrids were employed as both reinforcing agents and carriers of antioxidant/antibacterial compounds: eugenol-functionalized montmorillonite (EG@Mt) and citral-functionalized montmorillonite (CT@Mt). The active films were formulated as Gel/Gl/xEG@Mt and Gel/Gl/xCT@Mt, where x = 5, 10, or 15 wt.%. Controlled-release kinetics showed that EG@Mt released up to 95% of its adsorbed eugenol, whereas CT@Mt released up to 55% of its adsorbed citral. The films were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and tested for antibacterial activity against Escherichia coli and Listeria monocytogenes. Results demonstrated that the Gel/Gl/xEG@Mt films exhibited superior antioxidant and antibacterial performance compared to the Gel/Gl/xCT@Mt films. All formulations were impermeable to oxygen. Although the incorporation of EG and CT slightly reduced cell viability, values remained above 80%, indicating non-toxicity. In conclusion, the film containing 15 wt.% EG@Mt achieved an oxygen transmission rate of zero, an effective concentration (EC60) of 9.9 mg/L to reach 60% antioxidant activity, and reduced E. coli and L. monocytogenes populations by at least 5.8 log CFU/mL (p < 0.05), bringing them below the detection limit. Moreover, it successfully extended the shelf life of fresh minced pork by two days. Full article
(This article belongs to the Special Issue Nano-Enhanced Biodegradable Polymers for Sustainable Food Packaging)
Show Figures

Figure 1

21 pages, 449 KiB  
Review
Research Advances in the Synthesis, Metabolism, and Function of Chlorogenic Acid
by Yuxin He, Shengming Mao, Yingying Zhao and Jing Yang
Foods 2025, 14(11), 1914; https://doi.org/10.3390/foods14111914 - 28 May 2025
Viewed by 81
Abstract
Chlorogenic acids (CGAs) are a group of important plant secondary metabolites produced in the phenylpropanoid metabolic pathway; they are formed via the conjugation of caffeic and quinic acids and are widely distributed across different plant species. Renowned for their multifunctional activities—including antioxidant, anti-inflammatory, [...] Read more.
Chlorogenic acids (CGAs) are a group of important plant secondary metabolites produced in the phenylpropanoid metabolic pathway; they are formed via the conjugation of caffeic and quinic acids and are widely distributed across different plant species. Renowned for their multifunctional activities—including antioxidant, anti-inflammatory, antimicrobial, anticancer, antidiabetic, and anti-obesity properties—CGAs are versatile natural food additives with diverse industrial applications. This review summarizes five distinct CGA biosynthetic pathways, the structural and regulatory genes involved, and their key biological functions. The insights aim to facilitate a deeper understanding of CGA metabolism and streamline its exploitation in agriculture and human health. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

19 pages, 3236 KiB  
Article
Revisiting the Conventional Extraction of Protein Isolates from Faba Beans: Recovering Lost Protein from Sustainable Side Streams
by Abraham Badjona, Robert Bradshaw, Caroline Millman, Martin Howarth and Bipro Dubey
Foods 2025, 14(11), 1906; https://doi.org/10.3390/foods14111906 - 28 May 2025
Viewed by 91
Abstract
As the global demand for sustainable protein sources grows, valorizing side streams in plant protein processing has become crucial. This study revisits the conventional alkaline–isoelectric extraction of faba bean protein isolates, introducing an enhanced mass balance-driven approach to recover underutilized protein fractions from [...] Read more.
As the global demand for sustainable protein sources grows, valorizing side streams in plant protein processing has become crucial. This study revisits the conventional alkaline–isoelectric extraction of faba bean protein isolates, introducing an enhanced mass balance-driven approach to recover underutilized protein fractions from typically discarded side streams. Through strategic pH manipulation and centrifugation, four distinct protein fractions were recovered with purities ranging from 34.6% to 89.6%, collectively recapturing a significant portion of the 16% protein loss in standard processing. SDS-PAGE and FTIR analyses confirmed the structural diversity among the recovered fractions, with albumin-rich and globulin-rich profiles exhibiting unique spectral and electrophoretic signatures. Functionally, fractions B and D exhibited superior water- and oil-holding capacities, indicating their potential utility in food formulations requiring enhanced moisture and lipid retention. In contrast, fraction C, characterized by low water-holding capacity and high solubility, may be better suited to applications prioritizing emulsification performance, such as in dairy or meat analogs. This study not only highlights the feasibility of reclaiming high-quality protein from industrial byproducts but also underscores the potential of these recovered proteins in diverse food and non-food sectors, including pharmaceuticals and cosmetics. These findings contribute to circular economy strategies by transforming waste into value-added ingredients with functional and commercial significance. Full article
Show Figures

Figure 1

20 pages, 1490 KiB  
Review
Liposome-Based Drug Delivery Systems: From Laboratory Research to Industrial Production—Instruments and Challenges
by Suman Basak and Tushar Kanti Das
ChemEngineering 2025, 9(3), 56; https://doi.org/10.3390/chemengineering9030056 - 27 May 2025
Viewed by 155
Abstract
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid [...] Read more.
Liposome-based drug delivery systems have revolutionized modern pharmaceutics, offering unparalleled versatility and precision in therapeutic delivery. These lipid vesicles, capable of encapsulating hydrophilic, hydrophobic, and amphiphilic drugs, have demonstrated significant potential in addressing pharmacokinetic challenges such as poor solubility, systemic toxicity, and rapid clearance. This review provides a comprehensive exploration of the evolution of liposomes from laboratory models to clinically approved therapeutics, highlighting their structural adaptability, functional tunability, and transformative impact on modern medicine. We discuss pivotal laboratory-scale preparation techniques, including thin-film hydration, ethanol injection, and reverse-phase evaporation, along with their inherent advantages and limitations. The challenges of transitioning to industrial-scale production are examined, with emphasis on achieving batch-to-batch consistency, scalability, regulatory compliance, and cost-effectiveness. Innovative strategies, such as the incorporation of microfluidic systems and advanced process optimization, are explored to address these hurdles. The clinical success of Food and Drug Administration (FDA)-approved liposomal formulations such as Doxil® and AmBisome® underscores their efficacy in treating conditions ranging from cancer to fungal infections. Furthermore, this review delves into emerging trends, including stimuli-responsive and hybrid liposomes, as well as their integration with nanotechnology for enhanced therapeutic precision. As liposomes continue to expand their role in gene therapy, theranostics, and personalized medicine, this review highlights their potential to redefine pharmaceutical applications. Despite existing challenges, ongoing advancements in formulation techniques and scalability underscore the bright future of liposome-based therapeutics in addressing unmet medical needs. Full article
Show Figures

Figure 1

21 pages, 7434 KiB  
Article
Effects of Different Dual-Modified Jujube Juicing Residue Dietary Fibers on the Properties of Egg Protein Gels Induced by Alkalinity and Heat
by Xinyu Zheng, Ling Dang, Yichan Zhang, Xinyu Liu, Hui Wang, Yajun Zheng, Xinling Song, Zhihui Wei, Jiayao Zhang and Xiaoyang Guo
Gels 2025, 11(6), 399; https://doi.org/10.3390/gels11060399 - 27 May 2025
Viewed by 160
Abstract
Egg protein gels have relatively poor water-holding capacity, hardness, and freeze–thaw properties. Jujube juicing residue dietary fiber (JJRDF) is available, but it is rarely used in the food industry because of its poor hydration properties. Versions of JJRDF modified via cellulase and xylanase [...] Read more.
Egg protein gels have relatively poor water-holding capacity, hardness, and freeze–thaw properties. Jujube juicing residue dietary fiber (JJRDF) is available, but it is rarely used in the food industry because of its poor hydration properties. Versions of JJRDF modified via cellulase and xylanase hydrolysis separately coupled with carboxymethylation (JJRDF-CXHC), phosphate crosslinking (JJRDF-CXHPC), and acetylation (JJRDF-CXHA) were prepared, and their effects on heat-induced and alkaline-induced egg protein gels (HA-EPGs) were studied. Smaller particle sizes and higher solubility, viscosity, expansion volume, and ability to retain water were observed in JJRDF-CXHC, JJRDF-CXHPC, and JJRDF-CXHA compared to JJRDF (p < 0.05). JJRDF-CXHC showed the highest viscosity (18.46 cP) and expansion volume (10.40 mL/g). Higher random coil and β-sheet contents resulted in an increase in pH, adhesiveness, hardness, and chewiness, and a decrease in the water-losing rate in freeze–thaw cycles, and gastric digestion was observed in the HA-EPGs as a consequence of adding JJRDF, JJRDF-CXHC, JJRDF-CXHPC, and JJRDF-CXHA at 3–5 g/100 g. Moreover, JJRDF-CXHC and JJRDF-CXHPC were better at improving the textural quality of the unmodified HA-EPG compared to JJRDF-CXHA and JJRDF (p < 0.05). Therefore, to improve egg protein gel quality, JJRDF modified with cellulase and xylanase hydrolysis separately coupled with carboxymethylation and crosslinking is a good choice. However, the functionalities of these modified JJRDFs should be studied. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

Back to TopTop