Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,025)

Search Parameters:
Keywords = future land use simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1931 KB  
Article
Quantification of Urticating Setae of Oak Processionary Moth (Thaumetopoea processionea) and Exposure Hazards
by Paula Halbig, Horst Delb and Axel Schopf
Int. J. Environ. Res. Public Health 2025, 22(9), 1361; https://doi.org/10.3390/ijerph22091361 - 29 Aug 2025
Abstract
Potential climatic and land-use changes may favor an increase in the population densities and range expansion of oak processionary moth (OPM) in Central and Western Europe in the future. This could lead to more significant threats to human and animal health, caused by [...] Read more.
Potential climatic and land-use changes may favor an increase in the population densities and range expansion of oak processionary moth (OPM) in Central and Western Europe in the future. This could lead to more significant threats to human and animal health, caused by the urticating setae released by OPM larvae, and more severe oak defoliation by the larvae. To cope with the public health issue, a basis for OPM hazard assessment and management was created by quantifying the setae formation potential of OPM. While a single larva forms ca. 857,000 setae during its lifespan, a single infested oak tree may be contaminated with up to 10–24 billion (109) setae during an OPM outbreak. Moreover, the possible setae contamination threat to humans through airborne setae dispersion was studied in worst-case exposure simulations in the field. The highest airborne setae concentration was straight downwind, but turbulences up to 150° from the air flow were observed. The findings of this study will improve biohazard quantification as a basis for decision-making on preventive or mechanical control measures and enable an effective protection of human health. This study provides applicable information to derive warnings and recommendations for the public, as well as land managers and authorities. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Exposure and Toxicology)
23 pages, 3991 KB  
Article
Spatiotemporal Analysis, Driving Force, and Simulation of Urban Expansion Along the Ethio–Djibouti Trade Corridor: The Cases of Dire Dawa City, Eastern Ethiopia
by Abduselam Mohamed Ebrahim, Abenezer Wakuma Kitila, Tegegn Sishaw Emiru and Solomon Asfaw Beza
Sustainability 2025, 17(17), 7760; https://doi.org/10.3390/su17177760 - 28 Aug 2025
Viewed by 198
Abstract
Urbanization has emerged as one of the most significant global challenges and opportunities of the 21st century, driven by a complex interplay of dynamic processes. In Ethiopia, cities have undergone rapid expansion in recent decades, largely due to state-led economic reforms and infrastructure [...] Read more.
Urbanization has emerged as one of the most significant global challenges and opportunities of the 21st century, driven by a complex interplay of dynamic processes. In Ethiopia, cities have undergone rapid expansion in recent decades, largely due to state-led economic reforms and infrastructure development. This study aims to investigate the spatiotemporal dynamics, driving forces, and future projections of urban expansion along the Ethio–Djibouti trade corridor, with a focus on Dire Dawa City in eastern Ethiopia. Landsat imagery from 1993, 2003, 2013, and 2023 was utilized to detect land use and land cover (LULC) changes and analyze urban growth patterns. Additionally, maps illustrating the city’s demographic, economic, and topographic characteristics were developed to identify the key driving factors behind land conversion and urban expansion. The spatial matrix and landscape expansion index were employed to examine the spatial patterns of urban growth. Furthermore, the study applied the Multi-Layer Perceptron–Markov Chain (MLP–MC) model to simulate future LULC changes and urban expansion. The results indicate that the built-up area in Dire Dawa has increased significantly over the past three decades, growing from 6.21 km2 in 1993 to 21.54 km2 in 2023. This urban growth is predominantly characterized by edge expansion, reflecting a pattern of unidirectional, unsustainable development that has consumed large areas of agricultural land. The analysis shows that socioeconomic development and population growth have had a greater influence on LULC conversion and urban expansion than physical factors. Based on these identified drivers, the study projected land conversion and simulated urban expansion for the years 2043 and 2064. The findings underscore the urgent need for context-sensitive urban growth strategies that harmonize local realities with national development policies and the Sustainable Development Goals. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

32 pages, 15059 KB  
Article
Impact of Land Use Patterns on Flood Risk in the Chang-Zhu-Tan Urban Agglomeration, China
by Ting Zhang, Kai Wu, Xiulian Wang, Xinai Li, Long Li and Longqian Chen
Remote Sens. 2025, 17(16), 2889; https://doi.org/10.3390/rs17162889 - 19 Aug 2025
Viewed by 601
Abstract
Flood risk assessment is an effective tool for disaster prevention and mitigation. As land use is a key factor influencing flood disasters, studying the impact of different land use patterns on flood risk is crucial. This study evaluates flood risk in the Chang-Zhu-Tan [...] Read more.
Flood risk assessment is an effective tool for disaster prevention and mitigation. As land use is a key factor influencing flood disasters, studying the impact of different land use patterns on flood risk is crucial. This study evaluates flood risk in the Chang-Zhu-Tan (CZT) urban agglomeration by selecting 17 socioeconomic and natural environmental factors within a risk assessment framework encompassing hazard, exposure, vulnerability, and resilience. Additionally, the Patch-Generating Land Use Simulation (PLUS) and multilayer perceptron (MLP)/Bayesian network (BN) models were coupled to predict flood risks under three future land use scenarios: natural development, urban construction, and ecological protection. This integrated modeling framework combines MLP’s high-precision nonlinear fitting with BN’s probabilistic inference, effectively mitigating prediction uncertainty in traditional single-model approaches while preserving predictive accuracy and enhancing causal interpretability. The results indicate that high-risk flood zones are predominantly concentrated along the Xiang River, while medium-high- and medium-risk areas are mainly distributed on the periphery of high-risk zones, exhibiting a gradient decline. Low-risk areas are scattered in mountainous regions far from socioeconomic activities. Simulating future land use using the PLUS model with a Kappa coefficient of 0.78 and an overall accuracy of 0.87. Under all future scenarios, cropland decreases while construction land increases. Forestland decreases in all scenarios except for ecological protection, where it expands. In future risk predictions, the MLP model achieved a high accuracy of 97.83%, while the BN model reached 87.14%. Both models consistently indicated that the flood risk was minimized under the ecological protection scenario and maximized under the urban construction scenario. Therefore, adopting ecological protection measures can effectively mitigate flood risks, offering valuable guidance for future disaster prevention and mitigation strategies. Full article
Show Figures

Figure 1

21 pages, 8812 KB  
Review
Bibliometric Views on Lake Changes in the Qinghai-Tibet Plateau Under the Background of Climate Change
by Xingshuai Mei, Guangyu Yang, Mengqing Su, Tongde Chen, Haizhen Yang, Lingling Wang, Yubo Rong and Chunjing Zhao
Water 2025, 17(16), 2429; https://doi.org/10.3390/w17162429 - 17 Aug 2025
Viewed by 387
Abstract
The Qinghai-Tibet Plateau is a sensitive area of global climate change and an “Asian water tower” and lakes in Qinghai-Tibet Plateau changes are of great significance to the regional hydrological cycle and ecological balance. However, the existing research mostly focuses on a single [...] Read more.
The Qinghai-Tibet Plateau is a sensitive area of global climate change and an “Asian water tower” and lakes in Qinghai-Tibet Plateau changes are of great significance to the regional hydrological cycle and ecological balance. However, the existing research mostly focuses on a single lake or short-term monitoring, and lacks a systematic review of the evolution of knowledge structure and interdisciplinary dynamics. Based on 354 literatures from CNKI (China National Knowledge Infrastructure) and Web of Science, this study used CiteSpace 6.3.R1 software to construct a scientific knowledge map of lake changes in the Qinghai-Tibet Plateau under the background of climate change for the first time. By analyzing the number of publications, research hotspots, institutional cooperation networks and keyword emergence rules, the core triangle structure of ”climate change–Qinghai-Tibet Plateau–lake” was revealed, and the three stages of sedimentary reconstruction (2002–2008), glacier–lake coupling (2005–2014) and human–land system comprehensive research (2015–2025) were divided. The study found that the scientific literature written in Chinese and the scientific literature written in English focused on empirical cases and model simulations, respectively, The research frontiers focused on hot karst lakes (burst intensity 3.71), lake water level (2.97) and carbon cycle (2.13). The research force is centered on the Chinese Academy of Sciences, forming a cluster of institutions in the northwest region, but international cooperation only accounts for 12.3%. Future research needs to deepen multi-source data fusion, strengthen cross-regional comparison, and build an international cooperation network to cope with the complex challenges of plateau lake systems under climate change. This study provides a scientific basis for the paradigm shift and future direction of plateau lake research. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

27 pages, 6916 KB  
Article
Analysis of Carbon Storage Changes in the Chengdu–Chongqing Region Based on the PLUS-InVEST-MGWR Model
by Kuiyuan Xu, Ruhan Li, Mengnan Liu, Yajie Cao, Jinwen Yang and Yali Wei
Land 2025, 14(8), 1651; https://doi.org/10.3390/land14081651 - 15 Aug 2025
Viewed by 397
Abstract
Urbanization-induced ecological problems have affected China’s urban agglomerations since the beginning of rapid economic growth. The InVEST model can be used to study how land use changes affect carbon storage, while land simulation models help project future land use trends and assess the [...] Read more.
Urbanization-induced ecological problems have affected China’s urban agglomerations since the beginning of rapid economic growth. The InVEST model can be used to study how land use changes affect carbon storage, while land simulation models help project future land use trends and assess the impact of policies on land use, thereby predicting future carbon storage. This study constructs a PLUS-InVEST-MGWR model, corrects carbon storage values in ArcGIS, and thereby analyzes its heterogeneity by MGWR. The economic value of carbon storage is calculated as well. The main findings are as follows: (1) The downward trend of carbon storage in the Chengdu–Chongqing region will continue but slow down to some extent, and only the ecological security scenario can prevent it. (2) In 2015, China’s social cost of carbon (SCC) was CNY 60.83 per ton, with a discount rate of 6.468%, while the economic value of carbon storage (EVCS) in the Chengdu–Chongqing region was CNY 289.516 × 109. (3) Spatial correction of carbon storage is crucial for enhancing the goodness-of-fit and result accuracy of the MGWR model, as the absence of such correction would significantly degrade its performance. The revised InVEST model enables rapid quantification of carbon storage’s spatial heterogeneity. Full article
Show Figures

Figure 1

20 pages, 6159 KB  
Article
Cellular Automata–Artificial Neural Network Approach to Dynamically Model Past and Future Surface Temperature Changes: A Case of a Rapidly Urbanizing Island Area, Indonesia
by Wenang Anurogo, Agave Putra Avedo Tarigan, Debby Seftyarizki, Wikan Jaya Prihantarto, Junhee Woo, Leon dos Santos Catarino, Amarpreet Singh Arora, Emilien Gohaud, Birte Meller and Thorsten Schuetze
Land 2025, 14(8), 1656; https://doi.org/10.3390/land14081656 - 15 Aug 2025
Viewed by 426
Abstract
In 2024, significant increases in surface temperature were recorded in Batam City and Bintan Regency, marking the highest levels observed in regional climate monitoring. The rapid conversion of vegetated land into residential and industrial areas has been identified as a major contributor to [...] Read more.
In 2024, significant increases in surface temperature were recorded in Batam City and Bintan Regency, marking the highest levels observed in regional climate monitoring. The rapid conversion of vegetated land into residential and industrial areas has been identified as a major contributor to the acceleration of local climate warming. Climatological analysis also revealed extreme temperature fluctuations, underscoring the urgent need to understand spatial patterns of temperature distribution in response to climate change and weather variability. This research uses a Cellular Automata–Artificial Neural Network (CA−ANN) approach to model spatial and temporal changes in land surface temperature across the Riau Islands. To overcome the limitations of single-model predictions in a geographically diverse and unevenly developed region, Landsat satellite imagery from 2014, 2019, and 2024 was analyzed. Surface temperature data were extracted using the Brightness Temperature Transformation method. The CA−ANN model, implemented via the MOLUSCE platform in QGIS, incorporated additional environmental variables, such as rainfall distribution, vegetation density, and drought indices, to simulate future climate scenarios. Model validation yielded a Kappa accuracy coefficient of 0.72 for the 2029 projection, demonstrating reliable performance in capturing complex climate–environment interactions. The projection results indicate a continued upward trend in surface temperatures, emphasizing the urgent need for effective mitigation strategies. The findings highlight the essential role of remote sensing and spatial modeling in climate monitoring and policy formulation, especially for small island regions susceptible to microclimatic changes. Despite the strengths of the CA−ANN modeling framework, several inherent limitations constrain its application, particularly in the complex and heterogeneous context of tropical island environments. Notably, the accuracy of model predictions can be limited by the spatial resolution of satellite imagery and the quality of auxiliary environmental data, which may not fully capture fine-scale microclimatic variations. Full article
Show Figures

Figure 1

21 pages, 9714 KB  
Article
Simulation of Sediment Dynamics in a Large Floodplain of the Danube River
by Dara Muhammad Hawez, Vivien Füstös, Flóra Pomázi, Enikő Anna Tamás and Sándor Baranya
Water 2025, 17(16), 2399; https://doi.org/10.3390/w17162399 - 14 Aug 2025
Viewed by 420
Abstract
This study presents a two-dimensional (2D) hydro-morphodynamic simulation of sediment dynamics in the Gemenc floodplain, a critical ecological zone along Hungary’s Danube River. The 60 km study area has a mean discharge of approximately 2300 m3/s, with peak floods exceeding 8000 [...] Read more.
This study presents a two-dimensional (2D) hydro-morphodynamic simulation of sediment dynamics in the Gemenc floodplain, a critical ecological zone along Hungary’s Danube River. The 60 km study area has a mean discharge of approximately 2300 m3/s, with peak floods exceeding 8000 m3/s. The objective was to analyze sediment transport, deposition, and flood hydrodynamics to support future floodplain restoration. The HEC-RAS 2D model was calibrated using water levels (Baja station), 2024 flood discharges, suspended sediment measurements, and visual stratigraphy surveys conducted after the event. A roughness sensitivity analysis was conducted to optimize Manning’s n values for various land covers. The hydrodynamic model showed strong agreement with observed hydrographs and discharge distributions across multiple cross-sections, capturing complex bidirectional flow between the main River and side branches. Sediment dynamics during the September 2024 Danube flood were effectively simulated, with SSC calibration showing a decreasing concentration trend, highlighting the floodplain’s function as a sediment trap. Predicted deposition patterns aligned with field-based visual stratigraphy, confirming high sediment accumulation near riverbanks and reduced deposition in distal zones. The model reproduced deposition thickness with acceptable variation, demonstrating spatial reliability and predictive strength. This study underscores the value of 2D modeling for integrating hydrodynamics and sediment transport to inform sustainable floodplain rehabilitation. Full article
(This article belongs to the Special Issue Advances in River Restoration and Sediment Transport Management)
Show Figures

Figure 1

16 pages, 2624 KB  
Article
Influence Mechanism, Simulation, and Prediction of Urban Expansion in Shaanxi Province, China
by Chenxi Li, Huimin Chen and Yingying Fang
Land 2025, 14(8), 1637; https://doi.org/10.3390/land14081637 - 13 Aug 2025
Viewed by 384
Abstract
The purpose of this study is to analyze the temporal and spatial characteristics of urban expansion and its influencing factors in Shaanxi Province, China, as well as simulate future land use and predict the situation and development stage of urban expansion. An understanding [...] Read more.
The purpose of this study is to analyze the temporal and spatial characteristics of urban expansion and its influencing factors in Shaanxi Province, China, as well as simulate future land use and predict the situation and development stage of urban expansion. An understanding of these factors is conducive to the coordinated development of the population, resources, and the economy; the optimization of the urban spatial layout; and the high-quality development of Shaanxi Province. Research methods: With IDRISI Selva17 and the expansion intensity index, the CA–Markov model was adopted to simulate and predict the land use type based on the land use data of Shaanxi Province from 2000 to 2020. The urban built-up areas in Shaanxi Province have been continuously expanding in the past 30 years, especially since 2010, when expansion slightly accelerated, and the expansion intensity changed, first rising and then falling. The Kappa index is as high as 0.70, which further confirms the accuracy of the land use spatial evolution prediction by the CA–Markov model. By combining the urban expansion index with the simulation model, this paper provides an in-depth analysis of the internal relationship between the historical evolution of and future trends in construction land expansion because of the high-quality coordinated development of Shaanxi Province and extends the research perspective with creative ideas. Full article
(This article belongs to the Special Issue Spatial-Temporal Evolution Analysis of Land Use)
Show Figures

Figure 1

26 pages, 10493 KB  
Article
Assessing the Climate and Land Use Impacts on Water Yield in the Upper Yellow River Basin: A Forest-Urbanizing Ecological Hotspot
by Li Gong and Kang Liang
Forests 2025, 16(8), 1304; https://doi.org/10.3390/f16081304 - 11 Aug 2025
Viewed by 398
Abstract
Understanding the drivers of water yield (WY) changes in ecologically sensitive, data-scarce watersheds is crucial for sustainable management, particularly in the context of accelerating forest expansion and urbanization. This study focuses on the upper Yellow River Basin (UYRB), a critical headwater region that [...] Read more.
Understanding the drivers of water yield (WY) changes in ecologically sensitive, data-scarce watersheds is crucial for sustainable management, particularly in the context of accelerating forest expansion and urbanization. This study focuses on the upper Yellow River Basin (UYRB), a critical headwater region that supplies 60% of the Yellow River’s flow and is undergoing rapid land use transitions from 1990 to 2100. Using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and the Future Land-Use Simulation (FLUS) model, we quantify historical (1990–2020) and projected (2025–2100) WY dynamics under three SSP scenarios (SSP126, SSP370, and SSP585). InVEST, a spatially explicit ecohydrological model based on the Budyko framework, estimates WY by balancing precipitation and evapotranspiration. The FLUS model combines cellular automata (CA) with an artificial neural network (ANN)-based suitability evaluation and Markov chain-derived transition probabilities to simulate land-use change under multiple scenarios. Results show that WY increased significantly during the historical period (1990–2020), primarily driven by increased precipitation, with climate change accounting for 94% and land-use change for 6% of the total variation in WY. Under future scenarios (SSP126, SSP370, and SSP585), WY is projected to increase to 217 mm, 206 mm, and 201 mm, respectively. Meanwhile, the influence of land-use change is expected to diminish, with its contribution decreasing to 9.1%, 5.7%, and 3.1% under SSP126, SSP370, and SSP585, respectively. This decrease reflects the increasing strength of climate signals (especially extreme precipitation and evaporative demand), which masks the hydrological impacts of land-use transitions. These findings highlight the dominant role of climate change, the scenario-dependent effects of land-use change, and the urgent need for integrated climate–land management strategies in forest-urbanizing watersheds. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

41 pages, 4334 KB  
Article
Land Use–Future Climate Coupling Mechanism Analysis of Regional Agricultural Drought Spatiotemporal Patterns
by Jing Wang, Zhenjiang Si, Tao Liu, Yan Liu and Longfei Wang
Sustainability 2025, 17(15), 7119; https://doi.org/10.3390/su17157119 - 6 Aug 2025
Viewed by 533
Abstract
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation [...] Read more.
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation model. Key methods included the Standardized Soil Moisture Index (SSMI), travel time theory for drought event identification and duration analysis, Mann–Kendall trend test, and the Pettitt change-point test to examine soil moisture dynamics from 2027 to 2100. The results indicate that the CMIP6 ensemble performs excellently in temperature simulations, with a correlation coefficient of R2 = 0.89 and a root mean square error of RMSE = 1.2 °C, compared to the observational data. The MMM-Best model also performs well in precipitation simulations, with R2 = 0.82 and RMSE = 15.3 mm, compared to observational data. Land use changes between 2000 and 2020 showed a decrease in forestland (−3.2%), grassland (−2.8%), and construction land (−1.5%), with an increase in water (4.8%) and unused land (2.7%). Under all emission scenarios, the SSMI values fluctuate with standard deviations of 0.85 (SSP1-2.6), 1.12 (SSP2-4.5), and 1.34 (SSP5-8.5), with the strongest drought intensity observed under SSP5-8.5 (minimum SSMI = −2.8). Drought events exhibited spatial and temporal heterogeneity across scenarios, with drought-affected areas ranging from 25% (SSP1-2.6) to 45% (SSP5-8.5) of the basin. Notably, abrupt changes in soil moisture under SSP5-8.5 occurred earlier (2045–2050) due to intensified land use change, indicating strong human influence on hydrological cycles. This study integrated the CMIP6 climate projections with high-resolution human activity data to advance drought risk assessment methods. It established a framework for assessing agricultural drought risk at the regional scale that comprehensively considers climate and human influences, providing targeted guidance for the formulation of adaptive water resource and land management strategies. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

27 pages, 6094 KB  
Article
National Multi-Scenario Simulation of Low-Carbon Land Use to Achieve the Carbon-Neutrality Target in China
by Junjun Zhi, Chenxu Han, Qiuchen Yan, Wangbing Liu, Likang Zhang, Zuyuan Wang, Xinwu Fu and Haoshan Zhao
Earth 2025, 6(3), 85; https://doi.org/10.3390/earth6030085 - 1 Aug 2025
Viewed by 312
Abstract
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and [...] Read more.
Refining the land use structure can boost land utilization efficiency and curtail regional carbon emissions. Nevertheless, prior research has predominantly concentrated on static linear planning analysis. It has failed to account for how future dynamic alterations in driving factors (such as GDP and population) affect simulation outcomes and how the land use spatial configuration impacts the attainment of the carbon-neutrality goal. In this research, 1 km spatial resolution LULC products were employed to meticulously simulate multiple land use scenarios across China at the national level from 2030 to 2060. This was performed by taking into account the dynamic changes in driving factors. Subsequently, an analysis was carried out on the low-carbon land use spatial structure required to reach the carbon-neutrality target. The findings are as follows: (1) When employing the PLUS (Patch—based Land Use Simulation) model to conduct simulations of various land use scenarios in China by taking into account the dynamic alterations in driving factors, a high degree of precision was attained across diverse scenarios. The sustainable development scenario demonstrated the best performance, with kappa, OA, and FoM values of 0.9101, 93.15%, and 0.3895, respectively. This implies that the simulation approach based on dynamic factors is highly suitable for national-scale applications. (2) The simulation accuracy of the PLUS and GeoSOS-FLUS (Systems for Geographical Modeling and Optimization, Simulation of Future Land Utilization) models was validated for six scenarios by extrapolating the trends of influencing factors. Moreover, a set of scenarios was added to each model as a control group without extrapolation. The present research demonstrated that projecting the trends of factors having an impact notably improved the simulation precision of both the PLUS and GeoSOS-FLUS models. When contrasted with the GeoSOS-FLUS model, the PLUS model attained superior simulation accuracy across all six scenarios. The highest precision indicators were observed in the sustainable development scenario, with kappa, OA, and FoM values reaching 0.9101, 93.15%, and 0.3895, respectively. The precise simulation method of the PLUS model, which considers the dynamic changes in influencing factors, is highly applicable at the national scale. (3) Under the sustainable development scenario, it is anticipated that China’s land use carbon emissions will reach their peak in 2030 and achieve the carbon-neutrality target by 2060. Net carbon emissions are expected to decline by 14.36% compared to the 2020 levels. From the perspective of dynamic changes in influencing factors, the PLUS model was used to accurately simulate China’s future land use. Based on these simulations, multi-scenario predictions of future carbon emissions were made, and the results uncover the spatiotemporal evolution characteristics of China’s carbon emissions. This study aims to offer a solid scientific basis for policy-making related to China’s low-carbon economy and high-quality development. It also intends to present Chinese solutions and key paths for achieving carbon peak and carbon neutrality. Full article
Show Figures

Figure 1

23 pages, 4161 KB  
Article
Scenario-Based Assessment of Urbanization-Induced Land-Use Changes and Regional Habitat Quality Dynamics in Chengdu (1990–2030): Insights from FLUS-InVEST Modeling
by Zhenyu Li, Yuanting Luo, Yuqi Yang, Yuxuan Qing, Yuxin Sun and Cunjian Yang
Land 2025, 14(8), 1568; https://doi.org/10.3390/land14081568 - 31 Jul 2025
Viewed by 442
Abstract
Against the backdrop of rapid urbanization in western China, which has triggered remarkable land-use changes and habitat degradation, Chengdu, as a developed city in China, plays a demonstrative and leading role in the economic and social development of China during the transition period. [...] Read more.
Against the backdrop of rapid urbanization in western China, which has triggered remarkable land-use changes and habitat degradation, Chengdu, as a developed city in China, plays a demonstrative and leading role in the economic and social development of China during the transition period. Therefore, integrated modeling approaches are required to balance development and conservation. This study responds to this need by conducting a scenario-based assessment of urbanization-induced land-use changes and regional habitat quality dynamics in Chengdu (1990–2030), using the FLUS-InVEST model. By integrating remote sensing-derived land-use data from 1990, 1995, 2000, 2005, 2010, 2015, and 2020, we simulate future regional habitat quality under three policy scenarios: natural development, ecological priority, and cropland protection. Key findings include the following: (1) From 1990 to 2020, cropland decreased by 1917.78 km2, while forestland and built-up areas increased by 509.91 km2 and 1436.52 km2, respectively. Under the 2030 natural development scenario, built-up expansion and cropland reduction are projected. Ecological priority policies would enhance forestland (+4.2%) but slightly reduce cropland. (2) Regional habitat quality declined overall (1990–2020), with the sharpest drop (ΔHQ = −0.063) occurring between 2000 and 2010 due to accelerated urbanization. (3) Scenario analysis reveals that the ecological priority strategy yields the highest regional habitat quality (HQmean = 0.499), while natural development results in the lowest (HQmean = 0.444). This study demonstrates how the FLUS-InVEST model can quantify the trade-offs between urbanization and regional habitat quality, offering a scientific framework for balancing development and ecological conservation in rapidly urbanizing regions. The findings highlight the effectiveness of ecological priority policies in mitigating habitat degradation, with implications for similar cities seeking sustainable land-use strategies that integrate farmland protection and forest restoration. Full article
Show Figures

Figure 1

20 pages, 9605 KB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 - 28 Jul 2025
Viewed by 684
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

27 pages, 63490 KB  
Article
Spatio-Temporal Evolution and Driving Mechanisms of Ecological Resilience in the Upper Yangtze River from 2010 to 2030
by Hongxiang Wang, Lintong Huang, Shuai Han, Jiaqi Lan, Zhijie Yu and Wenxian Guo
Land 2025, 14(8), 1518; https://doi.org/10.3390/land14081518 - 23 Jul 2025
Viewed by 384
Abstract
Watershed ecosystem resilience (RES) plays a vital role in supporting ecosystem sustainability. However, comprehensive assessments and investigations into the complex mechanisms driving RES remain limited, particularly in ecologically sensitive basins. To address this gap, this study proposes a multidimensional RES evaluation framework tailored [...] Read more.
Watershed ecosystem resilience (RES) plays a vital role in supporting ecosystem sustainability. However, comprehensive assessments and investigations into the complex mechanisms driving RES remain limited, particularly in ecologically sensitive basins. To address this gap, this study proposes a multidimensional RES evaluation framework tailored to watershed-specific natural characteristics. The framework integrates five core dimensions: ecosystem resistance, ecosystem recovery capacity, ecosystem adaptability, ecosystem services, and ecosystem vitality. RES patterns under 2030 different future scenarios were simulated using the PLUS model combined with CMIP6 climate projections. Spatial and temporal dynamics of RES from 2010 to 2020 were quantified using Geodetector and Partial Least Squares Path Modeling, offering insights into the interactions among natural and anthropogenic drivers. The results reveal that RES in the Upper Yangtze River Basin exhibits a spatial gradient of “high in the east and west, low in the middle” with an overall 2.80% decline during the study period. Vegetation coverage and temperature emerged as dominant natural drivers, while land use change exerted significant indirect effects by altering ecological processes. This study emphasizes the importance of integrated land-climate strategies and offers valuable guidance for enhancing RES and supporting sustainable watershed management in the context of global environmental change. Full article
Show Figures

Figure 1

34 pages, 26037 KB  
Article
Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region
by Jingyuan Ni and Fang Xu
Remote Sens. 2025, 17(15), 2546; https://doi.org/10.3390/rs17152546 - 22 Jul 2025
Viewed by 593
Abstract
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim [...] Read more.
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim of quantitatively evaluating the coupled effects of climate change and land use change on future ecosystem resilience. In the first stage of the study, the SD-PLUS coupled modeling framework was employed to simulate land use patterns for the years 2030 and 2060 under three representative combinations of Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). Building upon these simulations, ecosystem resilience was comprehensively evaluated and predicted on the basis of three key attributes: resistance, adaptability, and recovery. This enabled a quantitative investigation of the spatio-temporal dynamics of ecosystem resilience under each scenario. The results reveal the following: (1) Temporally, ecosystem resilience exhibited a staged pattern of change. From 2020 to 2030, an increasing trend was observed only under the SSP1-2.6 scenario, whereas, from 2030 to 2060, resilience generally increased in all scenarios. (2) In terms of scenario comparison, ecosystem resilience typically followed a gradient pattern of SSP1-2.6 > SSP2-4.5 > SSP5-8.5. However, in 2060, a notable reversal occurred, with the highest resilience recorded under the SSP5-8.5 scenario. (3) Spatially, areas with high ecosystem resilience were primarily distributed in mountainous regions, while the southeastern plains and coastal zones consistently exhibited lower resilience levels. The results indicate that climate and land use changes jointly influence ecosystem resilience. Rainfall and temperature, as key climate drivers, not only affect land use dynamics but also play a crucial role in regulating ecosystem services and ecological processes. Under extreme scenarios such as SSP5-8.5, these factors may trigger nonlinear responses in ecosystem resilience. Meanwhile, land use restructuring further shapes resilience patterns by altering landscape configurations and recovery mechanisms. Our findings highlight the role of climate and land use in reshaping ecological structure, function, and services. This study offers scientific support for assessing and managing regional ecosystem resilience and informs adaptive urban governance in the face of future climate and land use uncertainty, promotes the sustainable development of ecosystems, and expands the applicability of remote sensing in dynamic ecological monitoring and predictive analysis. Full article
Show Figures

Graphical abstract

Back to TopTop