Cellular Automata–Artificial Neural Network Approach to Dynamically Model Past and Future Surface Temperature Changes: A Case of a Rapidly Urbanizing Island Area, Indonesia
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Processing
2.3. Parameter Mapping
2.3.1. Land Surface Temperature (LST) Extraction
2.3.2. Normalized Difference Vegetation Index (NDVI)
2.3.3. Temperature Vegetation Dryness Index (TVDI)
2.3.4. Rainfall (Thiessen Polygon)
2.4. Modeling Temperature and Validation (Kappa Coefficient Accuracy Test)
3. Results
3.1. Land Surface Temperature Extraction
3.2. Vegetation Density
3.3. Dryness Index
3.4. Rainfall (Precipitation)
3.5. Temperature Prediction Using Cellular Automata–Artificial Neural Network (CA−ANN)
4. Discussion
4.1. Spatial Condition of Related Parameters
4.2. Land Surface Temperature Forecasting Pattern
4.3. Implementation of Sustainable Development Goal
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CA−ANN | Cellular Automata–Artificial Neural Network |
NDVI | Normalized Difference Vegetation Index |
TVDI | Temperature Vegetation Dryness Index |
LST | Land surface temperature |
NIR | Near-Infrared |
References
- Johnson, J.E.; Welch, D.J.; van Hooidonk, R.; Tracey, D.; Chandrasa, G.; Molinari, B.; Triani, D.; Tania, C.; Susanto, H. Climate change implications for the Arafura and Timor Seas region: Assessing vulnerability of marine systems to inform management and conservation. Clim. Change 2023, 176, 88. [Google Scholar] [CrossRef]
- Tresnawati, R.; Wirasatriya, A.; Wibowo, A.; Susanto, R.D.; Widiaratih, R.; Setiawan, J.D.; Maro, J.F.; Dollu, E.A.; Fitria, S.; Kurang, R.Y. Long term of sea surface temperature prediction for Indonesia seas using multi time-series satellite data for upwelling dynamics projection. Remote Sens. Appl. 2024, 33, 101117. [Google Scholar] [CrossRef]
- Feng, M.; Zhang, N.; Liu, Q.; Wijffels, S. The Indonesian throughflow, its variability and centennial change. Geosci. Lett. 2018, 5, 3. [Google Scholar] [CrossRef]
- Zhu, S.; Ge, F.; Fan, Y.; Zhang, L.; Sielmann, F.; Fraedrich, K.; Zhi, X. Conspicuous temperature extremes over Southeast Asia: Seasonal variations under 1.5 C and 2 C global warming. Clim. Change 2020, 160, 343–360. [Google Scholar] [CrossRef]
- Jimenez, J.C.; Barichivich, J.; Mattar, C.; Takahashi, K.; Santamaría-Artigas, A.; Sobrino, J.A.; Malhi, Y. Spatio-temporal patterns of thermal anomalies and drought over tropical forests driven by recent extreme climatic anomalies. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170300. [Google Scholar] [CrossRef] [PubMed]
- Lam, V.W.Y.; Allison, E.H.; Bell, J.D.; Blythe, J.; Cheung, W.W.L.; Frölicher, T.L.; Gasalla, M.A.; Sumaila, U.R. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 2020, 1, 440–454. [Google Scholar] [CrossRef]
- Naylor, R.L.; Battisti, D.S.; Vimont, D.J.; Falcon, W.P.; Burke, M.B. Assessing Risks of Climate Variability and Climate Change for Indonesian Rice Agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 7752–7757. [Google Scholar] [CrossRef]
- Supari; Tangang, F.; Salimun, E.; Aldrian, E.; Sopaheluwakan, A.; Juneng, L. ENSO Modulation of Seasonal Rainfall and Extremes in Indonesia. Clim. Dyn. 2018, 51, 2559–2580. [Google Scholar] [CrossRef]
- Supari; Tangang, F.; Juneng, L.; Aldrian, E. Observed Changes in Extreme Temperature and Precipitation over Indonesia. Int. J. Climatol. 2017, 37, 1979–1997. [Google Scholar] [CrossRef]
- Thirukanthan, C.S.; Azra, M.N.; Lananan, F.; Sara’, G.; Grinfelde, I.; Rudovica, V.; Vincevica-Gaile, Z.; Burlakovs, J. The evolution of coral reef under changing climate: A scientometric review. Animals 2023, 13, 949. [Google Scholar] [CrossRef]
- Nurdjaman, S.; Nasution, M.I.; Johan, O.; Napitupulu, G.; Saleh, E. Impact of climate change on coral reefs degradation at West Lombok, Indonesia. J. Kelaut. Trop. 2023, 26, 451–463. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Pasaribu, B.; Kusworo, T.D.; Wibisono, Y.; Goh, H.H.; Zhang, D.; Ali, I.; Aziz, F.; Anouzla, A.; Sarangi, P.K.; et al. Building disaster resilience in thousand islands (Indonesia): Unlocking climate adaptation strategies to navigate sea level rise in coastal regions while safeguarding crop productivity and local biodiversity. ACS ES&T Water 2024, 4, 3213–3224. [Google Scholar] [CrossRef]
- Goltenboth, F.; Timotius, K.H.; Milan, P.; Margraf, J. Ecology of Insular Southeast Asia: The Indonesian Archipelago; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Henri, H.; Retnaningdyah, C.; Rahardi, B.; Hakim, L. Exploring environmental vulnerabilities of small islands through a bibliometric analysis: Threats and adaptation strategies. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2024; p. 012018. [Google Scholar]
- Fu, Y.; Zhu, Z.; Liu, L.; Zhan, W.; He, T.; Shen, H.; Zhao, J.; Liu, Y.; Zhang, H.; Liu, Z.; et al. Remote sensing time series analysis: A review of data and applications. J. Remote Sens. 2024, 4, 285. [Google Scholar] [CrossRef]
- Mao, Q.; Peng, J.; Wang, Y. Resolution enhancement of remotely sensed land surface temperature: Current status and perspectives. Remote Sens. 2021, 13, 1306. [Google Scholar] [CrossRef]
- Hutchinson, F.E.; Negara, S.D. Situating the Riau Island. In The Riau Islands Setting Sail; Iseas-Yusof Ishak Institute: Singapore, 2021; p. 6. [Google Scholar]
- Liana, M.; Rahmi, A.A.; Azmi, R.D.; Sarkity, D. Climate Change: Riau Archipelago Pre-service Teachers’ Perspective. BIO Web Conf. 2023, 70, 3012. [Google Scholar] [CrossRef]
- Hutasoit, I. Population growth in Batam Municipality as the frontier and outermost region at the border between Indonesia-Singapore-Malaysia. J. Biom. Dan. Kependud. 2023, 12, 165–176. [Google Scholar] [CrossRef]
- Ayuningtyas, D.; Hapsari, D.; Rachmalina, R.; Amir, V.; Rachmawati, R.; Kusuma, D. Geographic and Socioeconomic Disparity in Child Undernutrition across 514 Districts in Indonesia. Nutrients 2022, 14, 843. [Google Scholar] [CrossRef]
- Wibowo, A.; Satria, A. Fisher’s Adaptation Strategiesinsmall islandsto the Impactsof Climate Change (A case study in Pulau Panjang Village, Subi District, Natuna Regency, Riau Island). Sodality 2015, 3, 107–124. [Google Scholar]
- Tarumingkeng, R.C. Pengaruh Perubahan Iklim; RUDYCT e-PRESS: Bogor, Indonesia, 2024. [Google Scholar]
- Setiani, P. Bumi Aksara. Sains Perubahan Iklim; Bumi Aksara: Jakarta, Indonesia, 2020. [Google Scholar]
- Matheus, R. Skenario Pengelolaan Sumber Daya Lahan Kering: Menuju Pertanian Berkelanjutan; Deepublish: Java, Indonesia, 2020. [Google Scholar]
- Niraula, D. Impact-based risk forecasting and hydro-meteorological disasters. In Handbook on Climate Change and Disasters; Edward Elgar Publishing: Cheltenham, UK, 2022; pp. 525–536. [Google Scholar]
- Maulana, J.; Bioresita, F. Monitoring of Land Surface Temperature in Surabaya, Indonesia from 2013–2021 Using Landsat-8 Imagery and Google Earth Engine. In IOP Conference Series: Earth and Environmental Science; Institute of Physics: London, UK, 2023; Volume 1127. [Google Scholar]
- Jiang, Y.; Lin, W. A comparative analysis of retrieval algorithms of land surface temperature from Landsat-8 data: A case study of Shanghai, China. Int. J. Environ. Res. Public Health 2021, 18, 5659. [Google Scholar] [CrossRef]
- Choi, S.; Li, K.-S.; Seo, M.; Seong, N.-H.; Jin, D.; Jung, D.; Sim, S.; Jung, I.G.; Han, K.-S. Comparison of Land Surface temperature algorithm using Landsat-8 data for South Korea. Korean J. Remote Sens. 2021, 37, 153–160. [Google Scholar]
- Pontoh, R.S.; Yang, V.V.; Laura, G.Y.; Riantika, R.A.; Arisanti, R.; Winarni, S.; Gumelar, F. Assessing Sustainable Development in Community Welfare and Economic Resilience to Extreme Weather in Indonesia. Sustainability 2024, 16, 6693. [Google Scholar] [CrossRef]
- Sari, R.; Anurogo, W.; Lubis, M.Z. Pemetaan Sebaran Suhu Penggunaan Lahan Menggunakan Citra Landsat 8 Di Pulau Batam. J. Integr. 2018, 10, 32–39. [Google Scholar]
- Ali, S.A.; Parvin, F.; Ahmad, A. Retrieval of Land Surface Temperature from Landsat 8 OLI and TIRS: A Comparative Analysis between Radiative Transfer Equation-Based Method and Split-Window Algorithm. Remote Sens. Earth Syst. Sci. 2023, 6, 1–21. [Google Scholar] [CrossRef]
- Rhziel, F.Z.; Lahraoua, M.; Raissouni, N. Split-Window Algorithm for Land Surface Temperature Retrieval from Joint Polar-Orbiting Satellite System JPSS-2/NOAA-21. Environ. Sci. Proc. 2023, 29, 23. [Google Scholar]
- Sekertekin, A.; Bonafoni, S. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef]
- Balsamo, G.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Beljaars, A.; Bidlot, J.; Blyth, E.; Bousserez, N.; Boussetta, S.; Brown, A.; et al. Satellite and in situ observations for advancing global Earth surface modelling: A review. Remote Sens. 2018, 10, 2038. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Thanh, K.N.; Dur, F. A Novel Urban Heat Vulnerability Analysis: Integrating Machine Learning and Remote Sensing for Enhanced Insights. Remote Sens. 2024, 16, 3032. [Google Scholar] [CrossRef]
- Baig, M.F.; Mustafa, M.R.U.; Baig, I.; Takaijudin, H.B.; Zeshan, M.T. Assessment of land use land cover changes and future predictions using CA-ANN simulation for Selangor, Malaysia. Water 2022, 14, 402. [Google Scholar] [CrossRef]
- Khan, D.; Khan, N. Modelling Urban Future: Integrating CA-ANN Model for Comprehensive Understanding of Land Use, Land Cover Changes, and Temperature Dynamics in Lucknow City, India. Geol. Ecol. Landsc. 2025, 1–26. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, M.; Kafy, A.-A.; Tong, B.; Hao, D.; Feng, Y. Predicting the Impacts of Urban Land Change on LST and Carbon Storage Using InVEST, CA-ANN and WOA-LSTM Models in Guangzhou, China. Earth Sci. Inform. 2023, 16, 437–454. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Zhengfeng, S.; Yaseen, A.; Khalid, M.N.; Javed, A. The Simulation and Prediction of Land Surface Temperature Based on SCP and CA-ANN Models Using Remote Sensing Data: A Case Study of Lahore. Photogramm. Eng. Remote Sens. 2022, 88, 783–790. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Sinha, S.; Kumari, M.; Mishra, V.N.; Ben Hasher, F.F.; Szostak, M.; Zhran, M. Spatio-Temporal Influences of Urban Land Cover Changes on Thermal-Based Environmental Criticality and Its Prediction Using CA-ANN Model over Kolkata (India). Remote Sens. 2025, 17, 1082. [Google Scholar] [CrossRef]
- Pramitha, A.F.; Andri, A.N.A.; Bahar, S. Analisis hubungan perubahan penggunaan lahan (land use) terhadap perubahan land surface temperature (LST) di Kota Tangerang Selatan tahun 2011–2021. Bul. Meteorol. Klimatol. Dan. Geofis. 2023, 3, 10–21. [Google Scholar]
- Cung, R.; Rosetia, A. Identifying Thermal Comfort of Tropical Architectural Concept Building: A Case Study of Expandable House. J. Archit. Res. Educ. 2023, 5, 61–72. [Google Scholar] [CrossRef]
- Marhan, S.P. Cendikia Mulia Mandiri. In Ilmu Lingkungan Dan Konservasi; Cendikia Mulia Mandiri: Batam, Indonesia, 2025. [Google Scholar]
- Rijal, S.; Saleh, M.B.; Jaya, I.N.S.; Tiryana, T. Deforestation Profile of Regency Level in Sumatra. Int. J. Sci. 2016, 25, 385–402. [Google Scholar]
- Hussain, K.; Mehmood, K.; Yujun, S.; Badshah, T.; Anees, S.A.; Shahzad, F.; Nooruddin; Ali, J.; Bilal, M. Analysing LULC transformations using remote sensing data: Insights from a multilayer perceptron neural network approach. Ann. GIS 2024, 1–28. [Google Scholar] [CrossRef]
- Lousada, S.; Gómez, J.M.N.; Jankauskienė, D.; Pukite, V. Land-Use Changes in an Island Urban Setting: A Retrospective Study of Funchal, Madeira (1990–2018). J. Sustain. Res. 2025, 7, e250029. [Google Scholar]
- Doan, Q.-V.; Kusaka, H.; Ho, Q.-B. Impact of Future Urbanization on Temperature and Thermal Comfort Index in a Developing Tropical City: Ho Chi Minh City. Urban Clim. 2016, 17, 20–31. [Google Scholar] [CrossRef]
- Manalo, J.A.; Matsumoto, J.; Takahashi, H.G.; Villafuerte, M.Q.; Olaguera, L.M.P.; Ren, G.; Cinco, T.A. The effect of urbanization on temperature indices in the Philippines. Int. J. Climatol. 2022, 42, 850–867. [Google Scholar] [CrossRef]
- Pimonsree, S.; Limsakul, A.; Kammuang, A.; Kachenchart, B.; Kamlangkla, C. Urbanization-Induced Changes in Extreme Climate Indices in Thailand during 1970–2019. Atmos. Res. 2022, 265, 105882. [Google Scholar] [CrossRef]
- Sayed, E.T.; Wilberforce, T.; Elsaid, K.; Rabaia, M.K.H.; Abdelkareem, M.A.; Chae, K.-J.; Olabi, A. A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal. Sci. Total Environ. 2021, 766, 144505. [Google Scholar] [CrossRef]
- Lim, C.H.; Jung, S.H.; Kim, A.R.; Kim, N.S.; Lee, C.S. Monitoring for Changes in Spring Phenology at Both Temporal and Spatial Scales Based on MODIS LST Data in South Korea. Remote Sens. 2020, 12, 3282. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Li, M.; Qian, C.; Li, T.; Wu, Y.; Ren, F. Prediction of land surface temperature considering future land use change effects under climate change scenarios in Nanjing City, China. Remote Sens. 2023, 15, 2914. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Chong, K. Spatiotemporal Influence Analysis Through Traffic Speed Pattern Analysis Using Spatial Classification. Appl. Sci. 2024, 15, 196. [Google Scholar] [CrossRef]
- Amrulloh, I.; Fikriyah, V.N. Time series analysis of landsat data for urban heat island monitoring in Semarang City. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2024; p. 12086. [Google Scholar]
- Lee, Y.; Lee, K.; Park, S. Analysis of Hotspot Changes in Daegu Metropolitan City in Summer Using Landsat 8 Satellite Images. Korean J. Remote Sens. 2024, 40, 1379–1389. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Nkwae, B.; Odirile, P.; Moalafhi, D.B.; Anderson, G.; Parida, B.; Qi, J. Land-use change prediction in dam catchment using logistic regression-CA, ANN-CA and random forest regression and implications for sustainable land–water nexus. Sustainability 2024, 16, 1699. [Google Scholar] [CrossRef]
- de Moraes, O.L.L. An Impact-Based Forecast System Developed for Hydrometeorological Hazards. Int. J. Disaster Risk Reduct. 2023, 93, 103803. [Google Scholar] [CrossRef]
- Pande, C.B.; Egbueri, J.C.; Costache, R.; Sidek, L.M.; Wang, Q.; Alshehri, F.; Din, N.M.; Gautam, V.K.; Pal, S.C. Predictive modeling of land surface temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable development. J. Clean. Prod. 2024, 444, 141035. [Google Scholar] [CrossRef]
- Anurogo, W.; Sidabutar, R.T.C.; Lubis, M.Z.; Panuntun, H.; Nugroho, C.B.; Sufwandika, M. Estimation of land surface temperature-assessment with remote sensing data for urban heat island in Batam Municipality. GeoEco 2022, 9, 1–11. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Chen, X.; Wang, H.; Yao, N.; Liu, F. Monitoring Monthly Soil Moisture Conditions in China with Temperature Vegetation Dryness Indexes Based on an Enhanced Vegetation Index and Normalized Difference Vegetation Index. Theor. Appl. Climatol. 2021, 143, 159–176. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Wang, F.; Feng, K.; Li, H.; Han, Y.; Chen, S. Temporal and Spatial Characteristics of Agricultural Drought Based on the TVDI in Henan Province, China. Water 2024, 16, 1010. [Google Scholar] [CrossRef]
- Hamidi, M.R.; Mukhaiyar, U.; Rezeki, E.S.; Dianti, N.R.; Rohat, A.M. The Linear Combination of ARIMA Models in Constructing the Areal Rainfall Using Thiessen Polygon Weighted Method. In Proceedings of the ITM Web of Conferences, Nanjing, China, 29–30 June 2025; Volume 75, p. 4004. [Google Scholar]
- Wang, R.; Gentine, P.; Yin, J.; Chen, L.; Chen, J.; Li, L. Long-Term Relative Decline in Evapotranspiration with Increasing Runoff on Fractional Land Surfaces. Hydrol. Earth Syst. Sci. 2021, 25, 3805–3818. [Google Scholar] [CrossRef]
- Arora, N.K.; Mishra, I. Sustainable Development Goal 13: Recent Progress and Challenges to Climate Action. Environ. Sustain. 2023, 6, 297–301. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, Z.; Wang, L.; Zhang, W.; Zhang, Y.; Hu, Y. The Heterogeneous Effects of Microscale-Built Environments on Land Surface Temperature Based on Machine Learning and Street View Images. Atmosphere 2024, 15, 549. [Google Scholar] [CrossRef]
- Cutler, J.; Li, B.; Alhnaity, B.; Partridge, T.; Thompson, M.; Meng, Q. AI for sustainable land management and greenhouse gas emission forecasting: Advancing climate action. In Proceedings of the 2025 4th Asia Conference on Algorithms, Computing and Machine Learning (CACML), Guangzhou, China, 28–30 March 2025. [Google Scholar]
- Tariku, F.; Gharib Mombeni, A. ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration. Energies 2023, 16, 5335. [Google Scholar] [CrossRef]
- Pan, T.; He, S.; Liu, Z.; Jiang, L.; Zhao, Q.; Hamdi, R. Analyzing Changes in Urban Green Spaces and Their Effect on Land Temperature from the Perspective of Surface Radiation Energy Balance in Rizhao City, the Central Coast of China. Remote Sens. 2023, 15, 4785. [Google Scholar] [CrossRef]
Kappa Coefficient | Kappa Score Description |
---|---|
<0.20 | Poor |
0.21–0.40 | Fair |
0.41–0.60 | Moderate |
0.61–0.80 | Good |
>0.80 | Very Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anurogo, W.; Tarigan, A.P.A.; Seftyarizki, D.; Prihantarto, W.J.; Woo, J.; dos Santos Catarino, L.; Arora, A.S.; Gohaud, E.; Meller, B.; Schuetze, T. Cellular Automata–Artificial Neural Network Approach to Dynamically Model Past and Future Surface Temperature Changes: A Case of a Rapidly Urbanizing Island Area, Indonesia. Land 2025, 14, 1656. https://doi.org/10.3390/land14081656
Anurogo W, Tarigan APA, Seftyarizki D, Prihantarto WJ, Woo J, dos Santos Catarino L, Arora AS, Gohaud E, Meller B, Schuetze T. Cellular Automata–Artificial Neural Network Approach to Dynamically Model Past and Future Surface Temperature Changes: A Case of a Rapidly Urbanizing Island Area, Indonesia. Land. 2025; 14(8):1656. https://doi.org/10.3390/land14081656
Chicago/Turabian StyleAnurogo, Wenang, Agave Putra Avedo Tarigan, Debby Seftyarizki, Wikan Jaya Prihantarto, Junhee Woo, Leon dos Santos Catarino, Amarpreet Singh Arora, Emilien Gohaud, Birte Meller, and Thorsten Schuetze. 2025. "Cellular Automata–Artificial Neural Network Approach to Dynamically Model Past and Future Surface Temperature Changes: A Case of a Rapidly Urbanizing Island Area, Indonesia" Land 14, no. 8: 1656. https://doi.org/10.3390/land14081656
APA StyleAnurogo, W., Tarigan, A. P. A., Seftyarizki, D., Prihantarto, W. J., Woo, J., dos Santos Catarino, L., Arora, A. S., Gohaud, E., Meller, B., & Schuetze, T. (2025). Cellular Automata–Artificial Neural Network Approach to Dynamically Model Past and Future Surface Temperature Changes: A Case of a Rapidly Urbanizing Island Area, Indonesia. Land, 14(8), 1656. https://doi.org/10.3390/land14081656