Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (767)

Search Parameters:
Keywords = future meat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 760 KB  
Review
Black Cumin (Nigella sativa) as a Healthy Feed Additive for Broiler Production: A Focused Review
by Sanjida Akter, Giovana M. Longhini, Md Saidul Haque, Yuhua Z. Farnell and Yuxiang Sun
Poultry 2025, 4(4), 49; https://doi.org/10.3390/poultry4040049 - 10 Oct 2025
Abstract
Following restrictions on antibiotic growth promoters in poultry production, there is growing interest in natural feed additives that support health and productivity. Among these, black cumin (Nigella sativa) has emerged as a promising candidate due to its antioxidant, antimicrobial, and immunomodulatory [...] Read more.
Following restrictions on antibiotic growth promoters in poultry production, there is growing interest in natural feed additives that support health and productivity. Among these, black cumin (Nigella sativa) has emerged as a promising candidate due to its antioxidant, antimicrobial, and immunomodulatory properties. Most studies report that black cumin, in the form of whole seeds, seed meal, or seed oil, improves body weight gain and feed conversion ratio, enhances antioxidant and immune status, and provides additional benefits on lipid profiles, liver enzymes, and cecal microbial balance. This review provides a focused synthesis of recent studies (2014–2025) on black cumin supplementation in broiler chickens, considering its various forms (whole seeds, seed meal, seed oil, and nano-formulations) and production contexts (healthy, heat-stressed, and disease-challenged birds). Specifically, this review compares responses across different forms and doses, evaluates effects on growth performance, immune function, gut health, antioxidant status, liver metabolism, and meat and carcass quality, and highlights inconsistencies among studies. Additionally, it identifies key research gaps to guide future investigations, including optimal dosing, long-term safety, and practical applications in commercial production. Overall, black cumin shows potential as a natural alternative to antibiotics, but further standardized, large-scale studies are needed to confirm its efficacy and feasibility in sustainable poultry farming. Full article
Show Figures

Figure 1

17 pages, 763 KB  
Article
Ultrasound Thawing Optimization as a Novel Strategy to Improve Quality of Slowly Frozen Chicken Breast
by Suelen Priscila Santos, Silvino Sasso Robalo, Monica Voss, Bianca Campos Casarin, Bibiana Alves dos Santos, Renius de Oliveira Mello, Juliano Smanioto Barin, Cristiano Ragagnin de Menezes, Paulo Cezar Bastianello Campagnol and Alexandre José Cichoski
Foods 2025, 14(19), 3446; https://doi.org/10.3390/foods14193446 - 8 Oct 2025
Viewed by 177
Abstract
Chicken meat is highly consumed worldwide due to its nutritional value, but its high water content and abundance of polyunsaturated fatty acids make it particularly vulnerable to structural and oxidative damage during freezing and thawing. Slow freezing, in particular, generates large ice crystals [...] Read more.
Chicken meat is highly consumed worldwide due to its nutritional value, but its high water content and abundance of polyunsaturated fatty acids make it particularly vulnerable to structural and oxidative damage during freezing and thawing. Slow freezing, in particular, generates large ice crystals that severely impair water-holding capacity (WHC), increase drip loss, promote color deterioration, and intensify protein and lipid oxidation. Innovative thawing strategies are therefore required to mitigate these quality losses. Ultrasound (US) has been successfully applied to accelerate thawing of fast-frozen meat; however, its potential for slowly frozen chicken breast remains poorly understood. This study aimed to evaluate the effects of US-assisted thawing at two frequencies (25 and 130 kHz), two amplitudes (100% and 60%), and three operating modes (normal, sweep, and degas) on the quality of slowly frozen chicken breast. Conventional thawing required 50 min, yielding WHC of 9.87%, drip loss of 4.65%, free sulfhydryls of 16.38 µmol/g, and ∆E of 3.91. In contrast, the optimized US condition (25 kHz, 100% amplitude, sweep mode) thawed samples in only 18 min, with markedly improved WHC (23.14%), reduced drip loss (3.25%), higher preservation of free sulfhydryls (24.69 µmol/g), and minimal color change (∆E = 3.72). Conversely, less effective parameters (e.g., 130 kHz, 60% amplitude, normal mode) prolonged thawing and compromised quality, with WHC dropping to 9.96% and drip loss increasing to 9.05%. Overall, US reduced thawing time under all conditions, but quality responses depended strongly on the applied parameters. The present findings demonstrate the novelty of optimizing US frequency, amplitude, and mode for thawing slowly frozen chicken breast, highlighting sweep mode at 25 kHz and 100% amplitude as the most effective strategy. Future research should explore its scalability and industrial applicability for poultry processing. Full article
Show Figures

Figure 1

52 pages, 1718 KB  
Review
Plant-Based Scaffolds for Tissue Engineering: A Review
by Maria Isabela Vargas-Ovalle, Christian Demitri and Marta Madaghiele
Polymers 2025, 17(19), 2705; https://doi.org/10.3390/polym17192705 - 8 Oct 2025
Viewed by 265
Abstract
The global need for tissue and organ transplantation paved the way for plant-based scaffolds as cheap, ethical, and valuable alternatives to synthetic and animal-derived matrices for tissue regeneration. Over the years, the field has outgrown its initial scope, including the development of tissue [...] Read more.
The global need for tissue and organ transplantation paved the way for plant-based scaffolds as cheap, ethical, and valuable alternatives to synthetic and animal-derived matrices for tissue regeneration. Over the years, the field has outgrown its initial scope, including the development of tissue models, platforms for drug testing and delivery, biosensors, and laboratory-grown meat. In this scoping review, we aimed to shed light on the frequency of the use of different plant matrices, the main techniques for decellularization, the functionalization methods for stimulating mammalian cell attachment, and the main results. To that purpose, we searched the keywords “decellularized” AND “scaffold” AND (“plant” OR “vegetable”) in online-available databases (Science Direct, Scopus, PubMed, and Sage Journals). From the selection and study of 71 articles, we observed a multitude of plant sources and tissues, along with a large and inhomogeneous body of protocols used for decellularization, functionalization and recellularization of plant matrices, which all led to variable results, with different extents of success (mostly in vitro). Since the field of plant-based scaffolds shows high potential for growth in the next few years, driven by emerging biotechnological applications, we conclude that future research should focus on plant sources with low economic and environmental impacts while also pursuing the standardization of the methods involved and a much deeper characterization of the scaffold performance in vivo. Full article
(This article belongs to the Special Issue Polymer Scaffolds for Tissue Engineering, 3rd Edition)
Show Figures

Figure 1

47 pages, 3217 KB  
Review
Edible Insects as Future Proteins: Nutritional Value, Functional Properties, Bioactivities, and Safety Perspectives
by Xinyan Xu, Mengmeng Feng, Tongwei Wei, Fei Pan, Liang Zhao and Lei Zhao
Nutrients 2025, 17(19), 3165; https://doi.org/10.3390/nu17193165 - 7 Oct 2025
Viewed by 183
Abstract
The growing demand for sustainable and nutritionally balanced protein sources has intensified global interest in edible insects as an emerging alternative to conventional animal- and plant-based proteins. This review synthesizes current knowledge on insect proteins with a clear focus on four dimensions: nutritional [...] Read more.
The growing demand for sustainable and nutritionally balanced protein sources has intensified global interest in edible insects as an emerging alternative to conventional animal- and plant-based proteins. This review synthesizes current knowledge on insect proteins with a clear focus on four dimensions: nutritional value, functional properties, bioactivities, and safety considerations. Edible insects such as Bombyx mori, Acheta domesticus (A. domesticus), Tenebrio molitor, and Hermetia illucens provide high-quality proteins rich in essential amino acids, with favorable digestibility and bioavailability. Their unique functional characteristics—including solubility, emulsification, foaming, and gelation—support versatile applications in food formulations ranging from meat analogs to protein-fortified products. Insect-derived peptides further exhibit diverse bioactivities, such as antioxidant, anti-hypertensive, antidiabetic, and antimicrobial effects, highlighting their potential as functional food ingredients. Nevertheless, allergenicity and consumer acceptance remain critical challenges that must be addressed through improved processing technologies and regulatory frameworks. By systematically integrating these perspectives, this review underscores the promise of insect proteins as future food and health resources while outlining key barriers and research priorities for their safe and sustainable utilization. Full article
(This article belongs to the Special Issue Animal-Originated Food and Food Compounds in Health and Disease)
Show Figures

Graphical abstract

20 pages, 7147 KB  
Article
Application Potential of Lion’s Mane Mushroom in Soy-Based Meat Analogues by High Moisture Extrusion: Physicochemical, Structural and Flavor Characteristics
by Yang Gao, Song Yan, Kaixin Chen, Qing Chen, Bo Li and Jialei Li
Foods 2025, 14(19), 3402; https://doi.org/10.3390/foods14193402 - 1 Oct 2025
Viewed by 381
Abstract
The aim of this work was to systematically evaluate the effects of Lion’s Mane Mushroom powder (LMM, 0–40%) on the physicochemical properties, structural characteristics, and flavor profile of soy protein isolate-based high-moisture meat analogues (HMMAs). Optimal incorporation of 20% LMM significantly enhanced product [...] Read more.
The aim of this work was to systematically evaluate the effects of Lion’s Mane Mushroom powder (LMM, 0–40%) on the physicochemical properties, structural characteristics, and flavor profile of soy protein isolate-based high-moisture meat analogues (HMMAs). Optimal incorporation of 20% LMM significantly enhanced product quality by acting as a secondary phase that inhibited lateral protein aggregation while promoting longitudinal alignment, achieving a peak fibrous degree of 1.54 with dense, ordered fibers confirmed by scanning electron microscopy. Rheological analysis showed that LMM improved viscoelasticity (G′ > G″) through β-glucan; however, excessive addition (≥30%) compromised structural integrity due to insoluble dietary fiber disrupting protein network continuity, concurrently reducing thermal stability as denaturation enthalpy (ΔH) decreased from 1176.6 to 776.3 J/g. Flavor analysis identified 285 volatile compounds in HMMAs with 20% LMM, including 98 novel compounds, and 101 flavor metabolites were upregulated. The mushroom-characteristic compound 1-octen-3-ol exhibited a marked increase in its Relative Odor Activity Value of 18.04, intensifying mushroom notes. Furthermore, LMM polysaccharides promoted the Maillard reaction, increasing the browning index from 48.77 to 82.07, while β-glucan induced a transition in protein secondary structure from random coil to β-sheet configurations via intramolecular hydrogen bonding. In conclusion, 20% LMM incorporation synergistically improved texture, fibrous structure, and flavor complexity—particularly enhancing mushroom aroma. This research offers valuable insights and a foundation for future research for developing high-quality fungal protein-based meat analogues Full article
Show Figures

Figure 1

17 pages, 452 KB  
Article
Consumer Acceptance of Cultured Meat in Romania Highlighting Sustainable Perspectives for Both Human and Pet Consumption
by Silvia-Ioana Petrescu, Mădălina Matei, Cristina-Gabriela Radu-Rusu, Andrei Ciobanu, Dragoș Mihai Lăpușneanu and Ioan Mircea Pop
Animals 2025, 15(19), 2867; https://doi.org/10.3390/ani15192867 - 30 Sep 2025
Viewed by 184
Abstract
Cultured meat is an emerging innovation with the potential to contribute to sustainable animal production by reducing the environmental and ethical challenges associated with conventional animal farming. In Romania, this new source of protein is viewed with both interest and scepticism, reflecting broader [...] Read more.
Cultured meat is an emerging innovation with the potential to contribute to sustainable animal production by reducing the environmental and ethical challenges associated with conventional animal farming. In Romania, this new source of protein is viewed with both interest and scepticism, reflecting broader consumer uncertainties about food innovations. Market data indicates that Romania faces a significant deficit in animal protein supply (exceeding 65% for pork, as well as notable deficits in fish and beef), while also recording one of the largest overall trade deficits in pet food. In this context, the present study explored the openness of respondents in northeastern Romania to the consumption of cultivated meat, taking into account both personal diet and pet nutrition. The results showed that 33.2% of participants were fully willing to feed their pets cultured meat products, and 70% supported its introduction to the market, provided that regulatory frameworks ensure product safety and quality. Although Romania does not currently have the legal and technological infrastructure necessary to integrate cultured meat into the food system, these findings highlight the potential role of consumer acceptance in shaping future nutritional strategies aimed at sustainable, high-quality protein alternatives for humans and pets alike. Full article
Show Figures

Figure 1

20 pages, 4672 KB  
Article
Challenges in Nanofiber Formation from NADES-Based Anthocyanin Extracts: A Physicochemical Perspective
by Paulina Wróbel, Katarzyna Latacz, Jacek Chęcmanowski and Anna Witek-Krowiak
Materials 2025, 18(19), 4502; https://doi.org/10.3390/ma18194502 - 27 Sep 2025
Viewed by 291
Abstract
This study explores the challenge of using anthocyanin-rich natural deep eutectic solvent (NADES) extracts to produce electrospun nanofibers for biodegradable freshness indicators. Red cabbage was extracted with two choline chloride-based NADESs (with citric or lactic acid), modified with 10–50% ethanol to lower viscosity, [...] Read more.
This study explores the challenge of using anthocyanin-rich natural deep eutectic solvent (NADES) extracts to produce electrospun nanofibers for biodegradable freshness indicators. Red cabbage was extracted with two choline chloride-based NADESs (with citric or lactic acid), modified with 10–50% ethanol to lower viscosity, and compared with a standard 50% ethanol-water solvent. The citric acid NADES with 30% ethanol gave the highest anthocyanin yield (approx. 0.312 mg/mL, more than 20 times higher than the ethanol extract at approx. 0.014 mg/mL). For fiber fabrication, a polymer carrier blend of poly(ethylene oxide) (PEO) and sodium alginate (Alg) was employed, known to form hydrogen-bonded networks that promote chain entanglement and facilitate electrospinning. Despite this, the NADES extracts could not be electrospun into nanofibers, while the ethanol extract produced continuous, smooth fibers with diameters of approximately 100 nm. This highlights a clear trade-off; NADESs improve anthocyanin recovery, but their high viscosity and low volatility prevent fiber formation under standard electrospinning conditions. To leverage the benefits of NADES extracts, future work could focus on hybrid systems, such as multilayer films, core-shell fibers, or microcapsules, where the extracts are stabilized without relying solely on direct electrospinning. In storage tests, ethanol-extract nanofibers acted as effective pH-responsive indicators, showing visible color change from day 4 of meat storage. At the same time, alginate films with NADES extract remained unchanged after 12 days. These results highlight the importance of striking a balance between chemical stability and sensing sensitivity when designing anthocyanin-based smart packaging. Full article
Show Figures

Figure 1

22 pages, 966 KB  
Article
Education and Meat Consumption and Reduction: The Mediating Role of Climate Literacy
by Andrej Kirbiš and Stefani Branilović
Foods 2025, 14(19), 3333; https://doi.org/10.3390/foods14193333 - 25 Sep 2025
Viewed by 215
Abstract
Meat consumption, a key factor in both environmental sustainability and public health, is strongly influenced by educational characteristics, with higher levels of education often associated with more sustainable dietary patterns. However, research examining the mechanisms through which education influences meat-related behaviours remains limited. [...] Read more.
Meat consumption, a key factor in both environmental sustainability and public health, is strongly influenced by educational characteristics, with higher levels of education often associated with more sustainable dietary patterns. However, research examining the mechanisms through which education influences meat-related behaviours remains limited. This study investigates the mediating role of climate literacy in the relationship between educational characteristics and meat consumption patterns among adults and school-enrolled youth in Slovenia. We used survey data from a sample of 2990 individuals (aged 14–88) to examine how educational stage, track, and level impact meat consumption and reduction. Our focus was on climate literacy as a multidimensional construct, comprising climate knowledge, attitudes, and pro-environmental behaviour. The findings indicate that young people in the tertiary educational track tend to eat less meat, have already reduced their meat consumption in the past, and intend to further reduce it in the future, compared to secondary track students, with climate attitudes playing a mediating role in all three cases. For adults, a tertiary educational level, relative to a secondary level, was linked to lower meat consumption, an association largely explained by more positive climate attitudes. By contrast, adults with only primary education consume meat more often and are less inclined to cut back in the future. Among secondary school students, both vocational and general school groups reported greater past and intended meat reductions than their peers in professional schools. The findings underscore the importance of integrating climate literacy, especially fostering pro-climate attitudes, into educational programmes to promote sustainable dietary choices. Full article
(This article belongs to the Special Issue Meat and Its Replacers: Green Processing and Quality Innovation)
Show Figures

Figure 1

13 pages, 272 KB  
Article
Exploring Italian Consumers’ Perceptions of Cultivated Meat: Barriers, Drivers, and Future Prospects
by Marcello Stanco, Anna Uliano and Concetta Nazzaro
Nutrients 2025, 17(19), 3061; https://doi.org/10.3390/nu17193061 - 25 Sep 2025
Viewed by 294
Abstract
Background/Objectives: The increasing global population and rising demand for protein-rich foods present significant challenges for the agri-food system. Cultivated meat, produced through cellular agriculture, is emerging as a promising alternative to traditional livestock farming, offering potential environmental and ethical benefits. However, its adoption [...] Read more.
Background/Objectives: The increasing global population and rising demand for protein-rich foods present significant challenges for the agri-food system. Cultivated meat, produced through cellular agriculture, is emerging as a promising alternative to traditional livestock farming, offering potential environmental and ethical benefits. However, its adoption remains controversial due to concerns about sustainability, safety, and cultural acceptance. This study investigates Italian consumers’ perceptions, knowledge, and willingness to purchase cultivated meat, considering psychological, demographic, and social factors. Methods: A structured online survey was conducted involving 437 Italian meat consumers, integrating established psychometric scales to assess key attitudes. Logistic regression analysis was applied to identify determinants of consumer acceptance. Results: Findings reveal that while awareness of cultivated meat is relatively high (81.92%), willingness to purchase it is low, at just 35.47%. The main motivations for interest are environmental sustainability (54.61%) and innovation appeal (25.00%), while the primary barriers are health concerns (31.58%) and doubts about production processes (34.59%). The results also show that food neophobia, environmental awareness, and inclination toward food innovation significantly influence purchasing decisions. Additionally, demographic factors, such as age, gender, income, and household size, play a crucial role. Conclusions: This study provides insights into consumer behavior toward food innovations, informing policymakers and industry stakeholders on strategies to enhance acceptance and promote sustainable food alternatives. Full article
(This article belongs to the Section Nutrition and Public Health)
13 pages, 886 KB  
Article
The Acute Immune Response in Sheep Following Immunization with Toxoplasma gondii Tachyzoites or Parasite-Derived Glycoconjugates
by Patrícia Oliveira Meira-Santos, Gabriela Cruz Piedade, Maria Tereza Guedes, Dan Loureiro, José Tadeu Raynal, Roberto Meyer, Letícia Vicentini, Luiz Soares, Blima Fux and Ricardo Wagner Portela
Vet. Sci. 2025, 12(10), 928; https://doi.org/10.3390/vetsci12100928 - 24 Sep 2025
Viewed by 323
Abstract
Toxoplasmosis is a relevant parasitic infection in sheep, with ovine meat an important source of human exposure. Accurate detection of the early immune response to Toxoplasma gondii is essential for preventing reproductive losses and improving diagnostic strategies. This study evaluated the kinetics of [...] Read more.
Toxoplasmosis is a relevant parasitic infection in sheep, with ovine meat an important source of human exposure. Accurate detection of the early immune response to Toxoplasma gondii is essential for preventing reproductive losses and improving diagnostic strategies. This study evaluated the kinetics of the acute immune response in eighteen sheep experimentally exposed to live tachyzoites or immunized with parasite-derived glycoconjugates (GlyC). Animals were divided into three groups and injected with saline solution, tachyzoites, or glycoconjugates combined with an adjuvant. Infected sheep developed specific IgM antibodies against both lysate and glycoconjugate antigens from day 4, and IgG against glycoconjugates from day 12 post-infection. Glycoconjugate-immunized sheep produced IgM against lysate antigens from day 4, and IgG against both antigens from day 12. Flow cytometry revealed a significant increase in circulating CD8+ T cells and a reduction in MHC class II+ cells on day 60 in the infected group. These findings demonstrate the early humoral and cellular immune response profiles following infection or GlyC immunization. This supports their future application in diagnostic tests or as vaccine candidates against toxoplasmosis in sheep. Full article
(This article belongs to the Special Issue Detection of Parasitic Diseases in Livestock)
Show Figures

Graphical abstract

29 pages, 2477 KB  
Article
Assessing the Effects of Species, Origin, and Processing on Frog Leg Meat Composition with Predictive Modeling Tools
by Marianthi Hatziioannou, Efkarpia Kougiagka and Dimitris Klaoudatos
Fishes 2025, 10(9), 466; https://doi.org/10.3390/fishes10090466 - 19 Sep 2025
Viewed by 415
Abstract
This study investigates the effects of species, geographical origin, and processing on the proximate composition of frog leg meat, with a focus on developing predictive models for processing status. Data were systematically compiled from 18 published studies, yielding 32 entries across 10 edible [...] Read more.
This study investigates the effects of species, geographical origin, and processing on the proximate composition of frog leg meat, with a focus on developing predictive models for processing status. Data were systematically compiled from 18 published studies, yielding 32 entries across 10 edible frog species and multiple processing methods. Proximate composition parameters (moisture, protein, fat, ash) were compared between processed and unprocessed samples, and classification models were trained using moisture content as the primary predictor. Logistic regression and several machine learning algorithms, including Stochastic Gradient Descent, Support Vector Machine, Random Forest, and Decision Tree, were benchmarked under a Leave-One-Study-Out (LOSO) cross-validation framework. Results demonstrated that moisture content alone was sufficient to accurately distinguish processing status, with a critical threshold of ~73% separating processed from unprocessed frog legs. Logistic regression achieved perfect specificity and precision (100%) with an overall accuracy of 96.8%, while other classifiers also performed strongly (>90% accuracy). These findings confirm moisture as a species- and origin-independent marker of processing, offering a simple, rapid, and cost-effective tool for authenticity verification and quality control in frog meat and potentially other niche protein products. Future work should expand sample coverage, validate thresholds across processing types, and integrate biochemical and sensory quality assessments. Full article
(This article belongs to the Section Processing and Comprehensive Utilization of Fishery Products)
Show Figures

Graphical abstract

16 pages, 3557 KB  
Article
Mechanisms of Variation in Abdominal Adipose Color Among Male Kazakh Horses Through Non-Coding RNA Sequencing
by Yuhe Zhou, Xinkui Yao, Jun Meng, Jianwen Wang, Yaqi Zeng, Linling Li and Wanlu Ren
Biology 2025, 14(9), 1285; https://doi.org/10.3390/biology14091285 - 17 Sep 2025
Viewed by 344
Abstract
The Kazakh horse is a highly valuable indigenous Chinese breed known for its use in both milk and meat production. However, the mechanisms underlying color variation in the abdominal adipose tissue of this breed remain poorly understood. In this study, the sequencing of [...] Read more.
The Kazakh horse is a highly valuable indigenous Chinese breed known for its use in both milk and meat production. However, the mechanisms underlying color variation in the abdominal adipose tissue of this breed remain poorly understood. In this study, the sequencing of non-coding RNAs (ncRNAs) was conducted on abdominal adipose tissue of different colors from Kazakh horses, with the aim of investigating the molecular mechanisms responsible for this variation. A total of 205 differentially expressed long non-coding RNAs (DELncRNAs) including ENSECAG00000003836, ENSECAG00000017858, and ENSECAG00000035167; 52 differentially expressed microRNAs (DEmiRNAs) including miR-200-y and eca-miR-9a; and 559 differentially expressed circular RNAs (DEcircRNAs) including ZNF226 and ITPKC, were identified between Group W and Group Y. GO annotation and KEGG enrichment analyses of the DEGs revealed that these genes were primarily involved in biological processes such as chemical homeostasis (biological process, BP), intracellular components (cellular component, CC), and iron-sulfur cluster binding (molecular function, MF) as well as in metabolic pathways related to lipid biosynthesis and metabolism including vitamin B6 metabolism, tryptophan metabolism, and glycerolipid metabolism. The sequencing accuracy was further validated using reverse transcription quantitative PCR (RT-qPCR). This study identified key DEGs and signaling pathways associated with the color variation in adipose tissue of Kazakh horses and sheds light on the regulatory genes and biological processes involved. These findings provide a theoretical basis and research foundation for future studies on color variations in the adipose tissue of equine species. Full article
Show Figures

Figure 1

40 pages, 1751 KB  
Review
Lactic Acid Bacteria-Derived Exopolysaccharides: Dual Roles as Functional Ingredients and Fermentation Agents in Food Applications
by Ricardo H. Hernández-Figueroa, Aurelio López-Malo and Emma Mani-López
Fermentation 2025, 11(9), 538; https://doi.org/10.3390/fermentation11090538 - 17 Sep 2025
Viewed by 1079
Abstract
Exopolysaccharides (EPSs) produced by lactic acid bacteria (LAB) have received special attention as valuable products due to their potential applications as techno-functional and bioactive ingredients in foods. EPS production and consumption are an age-old practice in humans, as evidenced by fermented foods. Over [...] Read more.
Exopolysaccharides (EPSs) produced by lactic acid bacteria (LAB) have received special attention as valuable products due to their potential applications as techno-functional and bioactive ingredients in foods. EPS production and consumption are an age-old practice in humans, as evidenced by fermented foods. Over the last two decades, extensive research has examined, analyzed, and reported a wide variety of EPSs from several LAB strains, as well as their techno-functional properties in foods. Also, research efforts focused on EPS characterization and yield production have been carried out. In food applications, EPS quantification and characterization in situ (direct fermentation) took place in various matrices (dairy, bread, plant-based fermented, and meat products). EPS direct application (ex situ) has been less investigated despite its better structural–functional control and use in non-fermented foods. Fewer EPS investigations have been conducted related to health benefits in humans and their mechanisms of action. The composition and functionality of EPSs vary depending on the LAB strain and food matrix used to produce them; thus, various challenges should be addressed before industrial applications are performed. This review aims to compile and summarize the recent findings on EPSs produced by LAB, highlighting their yield, culture production, techno-functional role in foods, food applications, and health benefits in clinical trials. It examines their dual applications, whether as purified functional ingredients (ex situ) or as fermentation products (in situ), and critically assesses both technological and bioactive implications. Also, it explores production challenges, regulatory considerations, and future perspectives for sustainable and tailored applications of EPSs in food innovation. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

30 pages, 1548 KB  
Review
Innovations, Challenges, and Regulatory Pathways in Cultured Meat for a Sustainable Future
by Imad Khan, Jiage Sun, Wanmei Liang, Rui Li, Kit-Leong Cheong, Zehua Qiu and Qiuyu Xia
Foods 2025, 14(18), 3183; https://doi.org/10.3390/foods14183183 - 12 Sep 2025
Viewed by 994
Abstract
Cultured meat is produced through cellular agriculture and tissue engineering and has emerged as a promising alternative to conventional animal-based meat production. Cultured meat, produced through cellular agriculture and tissue engineering, offers a sustainable alternative to conventional meat production. This review outlines the [...] Read more.
Cultured meat is produced through cellular agriculture and tissue engineering and has emerged as a promising alternative to conventional animal-based meat production. Cultured meat, produced through cellular agriculture and tissue engineering, offers a sustainable alternative to conventional meat production. This review outlines the potential of diverse stem cell sources, including satellite cells, embryonic stem cells, and induced pluripotent stem cells, for producing muscle and adipose tissue. Advances in bioprocess development, biomaterials, and bioreactor design are discussed, with an emphasis on scalability, cost reduction, and regulatory considerations. Despite progress, key challenges remain: replicating the nutritional composition and sensory qualities of conventional meat, developing serum-free media, and ensuring consistent large-scale production. Recent studies report cost reductions of up to 90% in culture media and successful bioreactor expansions beyond 50 L, yet industrial translation is still limited. Consumer acceptance and clear regulatory frameworks are also critical for commercialization. Future work should focus on integrating cellular innovations with scalable technologies to overcome current bottlenecks and accelerate market readiness. Full article
Show Figures

Graphical abstract

25 pages, 9151 KB  
Article
Uncovering Genetic Diversity and Adaptive Candidate Genes in the Mugalzhar Horse Breed Using Whole-Genome Sequencing Data
by Shinara N. Kassymbekova, Zhanat Z. Bimenova, Kairat Z. Iskhan, Przemyslaw Sobiech, Jan P. Jastrzebski, Pawel Brym, Wiktor Babis, Assem S. Kalykova, Zhassulan M. Otebayev, Dinara I. Kabylbekova, Hasan Baneh and Michael N. Romanov
Animals 2025, 15(18), 2667; https://doi.org/10.3390/ani15182667 - 11 Sep 2025
Viewed by 423
Abstract
Mugalzhar horses are a relatively young native breed of Kazakhstan, prized for meat and milk production and adaptation. This study was conducted to investigate genetic diversity and pinpoint genomic regions associated with selection signatures in this breed using whole-genome sequence data. Variant calling [...] Read more.
Mugalzhar horses are a relatively young native breed of Kazakhstan, prized for meat and milk production and adaptation. This study was conducted to investigate genetic diversity and pinpoint genomic regions associated with selection signatures in this breed using whole-genome sequence data. Variant calling yielded a total of 21,722,393 high-quality variants, including 19,495,163 SNPs and 2,227,230 indels. Most variants were located in introns and intergenic regions, while only 1.94% were exonic. Estimates of genetic diversity were moderate, with expected and observed heterozygosity and nucleotide diversity of 0.2325, 0.2402, and 0.0021, respectively. We identified nine adaptive candidate genes (SCAPER, FHAD1, MMP15, ADGRE1, CMKLR1, MRPL15, ZNF667, CCDC66, and LOC100055310), harboring high-impact exonic variants in the homozygote state for an alternative allele. No deleterious segregating variants associated with Mendelian traits were found in this population, while seven variants linked to coat color and gaitedness were detected in a low frequency heterozygous state. Our findings suggest that there are certain genomic regions subjected to ancient selection footprints during the ancestor breed formation and adaptation. The outcome of this study serves as a foundation for future genomic-driven strategies, a broader utilization of this breed, and a reference for genomic studies on other horse breeds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop