Innovations, Challenges, and Regulatory Pathways in Cultured Meat for a Sustainable Future
Abstract
1. Introduction
2. The Concept of Cultured Meat and How It Transforms Food
3. Selection of Appropriate Cell Type for Producing Cultured Meat
3.1. Pluripotent Stem Cells (PSCs)
PSC Genetic Modification
3.2. ASCs
3.2.1. Muscle Stem Cells and Satellite Cells
3.2.2. MSCs
3.2.3. Adipogenic Precursors and Adipogenic Stem Cells
3.3. Differentiated Mature Cells
3.4. Stem-Cell Genetic Modification
3.5. Critical Comparison of Cell Sources
4. Factors Affecting the Selection and Performance of Cell Types in Cultured Meat Production
4.1. Species
4.2. Cultivation Medium
4.3. Characteristics of the Process and Product
5. Overcoming Key Industrial Challenges in Cultured Meat Production
5.1. Scale-Up, Automation, and Bioreactors
Role of Bioreactors
5.2. Role of Biomaterials
5.2.1. Options for Scaffold
5.2.2. Evaluation and Methodological Factors
5.2.3. Further Factors to Consider
6. Regulation and Safety Aspects of Cultured Meat
7. Acceptance by Consumers
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADSCs | Adipose-derived stem cells |
ASCs | Adult stem cells |
C/EBP | CCAAT/enhancer-binding protein |
CD | Cluster of differentiation |
CMC | Carboxymethyl cellulose |
ECM | Extracellular matrix |
EFSA | European Food Safety Authority |
ESCs | Embryonic stem cells |
FABP | Fatty acid-binding protein |
FACS | Fluorescence-activated cell sorting |
FAPs | Fibro-adipogenic progenitor cells |
FAS | Fatty acid synthase |
FBS | Fetal bovine serum |
FDA | Food and Drug Administration |
FSIS | Food Safety and Inspection Service |
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase |
GFs | Growth factors |
HESCs | Human embryonic stem cells |
HSCs | Hematopoietic stem cells |
HPMC | Hydroxypropyl methylcellulose |
IGF1 | Insulin-like growth factor 1 |
iPSCs | Induced pluripotent stem cells |
MSCs | Mesenchymal stem cells |
MuSCs | Muscle satellite cells |
MYF5 | Myogenic factor 5 |
MYOD | Myogenic differentiation 1 |
MYOG | Myogenin |
OPTi-OX | Optimized transcription and expression system (proprietary technology by Meatable) |
PAX7 | Paired box 7 |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
PSCs | Pluripotent stem cells |
PUFAs | Polyunsaturated fatty acids |
SFA | Saturated fatty acids |
TERT | Telomerase reverse transcriptase |
Tn | Troponin |
Tm | Tropomyosin |
WHO | World Health Organization |
Zfp423 | Zinc finger protein 423 |
References
- Ben-Arye, T.; Levenberg, S. Tissue engineering for clean meat production. Front. Sustain. Food Syst. 2019, 3, 46. [Google Scholar] [CrossRef]
- Mattick, C.S. Cellular agriculture: The coming revolution in food production. Bull. At. Sci. 2018, 74, 32–35. [Google Scholar] [CrossRef]
- Hubalek, S.; Post, M.J.; Moutsatsou, P. Towards resource-efficient and cost-efficient cultured meat. Curr. Opin. Food Sci. 2022, 47, 100885. [Google Scholar] [CrossRef]
- Reddi, A. Symbiosis of biotechnology and biomaterials: Applications in tissue engineering of bone and cartilage. J. Cell. Biochem. 1994, 56, 192–195. [Google Scholar] [CrossRef]
- Edelman, P.; McFarland, D.; Mironov, V.; Matheny, J. Commentary: In vitro-cultured meat production. Tissue Eng. 2005, 11, 659–662. [Google Scholar] [CrossRef]
- Post, M.J. Cultured beef: Medical technology to produce food. J. Sci. Food Agric. 2014, 94, 1039–1041. [Google Scholar] [CrossRef]
- Sharma, S.; Thind, S.S.; Kaur, A. In vitro meat production system: Why and how? J. Food Sci. Technol. 2015, 52, 7599–7607. [Google Scholar] [CrossRef]
- Macdiarmid, J.I.; Douglas, F.; Campbell, J. Eating like there’s no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 2016, 96, 487–493. [Google Scholar] [CrossRef]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Bugeon, J. How muscle structure and composition determine meat quality. Sci. World J. 2015, 2015, 3182746. [Google Scholar] [CrossRef]
- Boldrin, L.; Malerba, A.; Vitiello, L.; Cimetta, E.; Piccoli, M.; Messina, C.; Gamba, P.G.; Elvassore, N.; De Coppi, P. Efficient delivery of human single fiber-derived muscle precursor cells via biocompatible scaffold. Cell Transplant. 2008, 17, 577–584. [Google Scholar] [CrossRef]
- Yao, R.; Zhang, R.; Lin, F.; Luan, J. Biomimetic injectable HUVEC-adipocytes/collagen/alginate microsphere co-cultures for adipose tissue engineering. Biotechnol. Bioeng. 2013, 110, 1430–1443. [Google Scholar] [CrossRef]
- Nam, K.-H.; Smith, A.S.; Lone, S.; Kwon, S.; Kim, D.-H. Biomimetic 3D tissue models for advanced high-throughput drug screening. J. Lab. Autom. 2015, 20, 201–215. [Google Scholar] [CrossRef]
- Weston, A.; Rogers, R.; Althen, T. The role of collagen in meat tenderness. Prof. Anim. Sci. 2002, 18, 107–111. [Google Scholar] [CrossRef]
- Stout, A.J.; Mirliani, A.B.; Rittenberg, M.L.; Shub, M.; White, E.C.; Yuen, J.S., Jr.; Kaplan, D.L. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 2022, 5, 466. [Google Scholar] [CrossRef]
- Guo, S.; Debbi, L.; Zohar, B.; Samuel, R.; Arzi, R.S.; Fried, A.I.; Carmon, T.; Shevach, D.; Redenski, I.; Schlachet, I. Stimulating extracellular vesicles production from engineered tissues by mechanical forces. Nano Lett. 2021, 21, 2497–2504. [Google Scholar] [CrossRef]
- Young, P. The Victorians caused the meat eating crisis the world faces today–but they might help us solve it. Conversation 2019, 21, 1. [Google Scholar]
- Bogliotti, Y.S.; Wu, J.; Vilarino, M.; Okamura, D.; Soto, D.A.; Zhong, C.; Sakurai, M.; Sampaio, R.V.; Suzuki, K.; Izpisua Belmonte, J.C. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl. Acad. Sci. USA 2018, 115, 2090–2095. [Google Scholar] [CrossRef]
- Biferali, B.; Proietti, D.; Mozzetta, C.; Madaro, L. Fibro–adipogenic progenitors cross-talk in skeletal muscle: The social network. Front. Physiol. 2019, 10, 1074. [Google Scholar] [CrossRef]
- Ding, S.; Swennen, G.M.; Messmer, T.; Gagliardi, M.; Molin, D.G.; Li, C.; Zhou, G.; Post, M.J. Maintaining bovine satellite cells stemness through p38 pathway. Sci. Rep. 2018, 8, 10808. [Google Scholar] [CrossRef]
- Musina, R.; Bekchanova, E.; Belyavskii, A.; Sukhikh, G.T. Differentiation potential of mesenchymal stem cells of different origin. Bull. Exp. Biol. Med. 2006, 141, 147–151. [Google Scholar] [CrossRef]
- Bodiou, V.; Moutsatsou, P.; Post, M.J. Microcarriers for upscaling cultured meat production. Front. Nutr. 2020, 7, 10. [Google Scholar] [CrossRef]
- David, S.; Tsukerman, A.; Safina, D.; Maor-Shoshani, A.; Lavon, N.; Levenberg, S. Co-Culture Approaches for Cultivated Meat Production. Nat. Rev. Bioeng. 2023, 1, 817–831. [Google Scholar] [CrossRef]
- Kwok, C.K.; Ueda, Y.; Kadari, A.; Günther, K.; Ergün, S.; Heron, A.; Schnitzler, A.C.; Rook, M.; Edenhofer, F. Scalable stirred suspension culture for the generation of billions of human induced pluripotent stem cells using single-use bioreactors. J. Tissue Eng. Regen. Med. 2018, 12, e1076–e1087. [Google Scholar] [CrossRef]
- Assou, S.; Girault, N.; Plinet, M.; Bouckenheimer, J.; Sansac, C.; Combe, M.; Mianné, J.; Bourguignon, C.; Fieldes, M.; Ahmed, E. Recurrent genetic abnormalities in human pluripotent stem cells: Definition and routine detection in culture supernatant by targeted droplet digital PCR. Stem Cell Rep. 2020, 14, 1–8. [Google Scholar] [CrossRef]
- Valamehr, B.; Robinson, M.; Abujarour, R.; Rezner, B.; Vranceanu, F.; Le, T.; Medcalf, A.; Lee, T.T.; Fitch, M.; Robbins, D. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Rep. 2014, 2, 366–381. [Google Scholar] [CrossRef]
- Lavon, N. New technologies for cultivated meat production. Trends Biotechnol. 2022, 40, 632–633. [Google Scholar] [CrossRef]
- Tanaka, A.; Woltjen, K.; Miyake, K.; Hotta, A.; Ikeya, M.; Yamamoto, T.; Nishino, T.; Shoji, E.; Sehara-Fujisawa, A.; Manabe, Y. Efficient and reproducible myogenic differentiation from human iPS cells: Prospects for modeling Miyoshi Myopathy in vitro. PLoS ONE 2013, 8, e61540. [Google Scholar] [CrossRef]
- Shelton, M.; Metz, J.; Liu, J.; Carpenedo, R.L.; Demers, S.-P.; Stanford, W.L.; Skerjanc, I.S. Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Rep. 2014, 3, 516–529. [Google Scholar] [CrossRef]
- Rao, L.; Qian, Y.; Khodabukus, A.; Ribar, T.; Bursac, N. Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat. Commun. 2018, 9, 126. [Google Scholar] [CrossRef]
- Al-Siddiqi, H. Programming human pluripotent stem cells into white and brown adipocytes. QScience Proc. 2012, 2012, 57. [Google Scholar] [CrossRef][Green Version]
- Genovese, N.J.; Domeier, T.L.; Telugu, B.P.V.; Roberts, R.M. Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Sci. Rep. 2017, 7, 41833. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Ezashi, T.; Telugu, B.P.V.; Alexenko, A.P.; Sachdev, S.; Sinha, S.; Roberts, R.M. Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl. Acad. Sci. USA 2009, 106, 10993–10998. [Google Scholar] [CrossRef]
- Fuet, A.; Pain, B. Chicken induced pluripotent stem cells: Establishment and characterization. Avian Reptil. Dev. Biol. Methods Protoc. 2017, 211, 211–228. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, Y.; Xu, W.; Jiang, M.; Li, H.; Long, M.; Liu, W.; Liu, J.; Zhao, X.; Xiao, Y. Generation of stable induced pluripotent stem-like cells from adult zebra fish fibroblasts. Int. J. Biol. Sci. 2019, 15, 2340. [Google Scholar] [CrossRef]
- Su, Y.; Wang, L.; Fan, Z.; Liu, Y.; Zhu, J.; Kaback, D.; Oudiz, J.; Patrick, T.; Yee, S.P.; Tian, X. Establishment of bovine-induced pluripotent stem cells. Int. J. Mol. Sci. 2021, 22, 10489. [Google Scholar] [CrossRef]
- Pawlowski, M.; Ortmann, D.; Bertero, A.; Tavares, J.M.; Pedersen, R.A.; Vallier, L.; Kotter, M.R. Inducible and deterministic forward programming of human pluripotent stem cells into neurons, skeletal myocytes, and oligodendrocytes. Stem Cell Rep. 2017, 8, 803–812. [Google Scholar] [CrossRef]
- Pillai, V.V.; Kei, T.G.; Reddy, S.E.; Das, M.; Abratte, C.; Cheong, S.H.; Selvaraj, V. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance. Anim. Sci. J. 2019, 90, 1149–1160. [Google Scholar] [CrossRef]
- Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965, 37, 614–636. [Google Scholar] [CrossRef]
- Lee, S.; Joo, S.; Ryu, Y. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 2010, 86, 166–170. [Google Scholar] [CrossRef]
- Roy, B.C.; Bruce, H.L. Contribution of Intramuscular Connective Tissue and Its Structural Components on Meat TendernessRevisited: A Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 9280–9310. [Google Scholar] [CrossRef]
- Fraeye, I.; Kratka, M.; Vandenburgh, H.; Thorrez, L. Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: Much to be inferred. Front. Nutr. 2020, 7, 35. [Google Scholar] [CrossRef]
- Suárez-Calvet, X.; Fernández-Simón, E.; Piñol-Jurado, P.; Alonso-Pérez, J.; Carrasco-Rozas, A.; Lleixà, C.; López-Fernández, S.; Pons, G.; Soria, L.; Bigot, A. Isolation of human fibroadipogenic progenitors and satellite cells from frozen muscle biopsies. FASEB J. 2021, 35, e21519. [Google Scholar] [CrossRef]
- Melzener, L.; Ding, S.; Hueber, R.; Messmer, T.; Zhou, G.; Post, M.J.; Flack, J.E. Comparative analysis of cattle breeds as satellite cells donors for cultured beef. bioRxiv 2022. bioRxiv:2014.476358. [Google Scholar] [CrossRef]
- Ding, S.; Wang, F.; Liu, Y.; Li, S.; Zhou, G.; Hu, P. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discov. 2017, 3, 17003. [Google Scholar] [CrossRef]
- Campion, D.R.; Richardson, R.L.; Reagan, J.O.; Kraeling, R.R. Changes in the satellite cell population during postnatal growth of pig skeletal muscle. J. Anim. Sci. 1981, 52, 1014–1018. [Google Scholar] [CrossRef]
- Mulvaney, D.; Marple, D.; Merkel, R. Proliferation of skeletal muscle satellite cells after castration and administration of testosterone propionate. Proc. Soc. Exp. Biol. Med. 1988, 188, 40–45. [Google Scholar] [CrossRef]
- Testa, S.; Riera, C.S.; Fornetti, E.; Riccio, F.; Fuoco, C.; Bernardini, S.; Baldi, J.; Costantini, M.; Foddai, M.L.; Cannata, S. Skeletal muscle-derived human mesenchymal stem cells: Influence of different culture conditions on proliferative and myogenic capabilities. Front. Physiol. 2020, 11, 553198. [Google Scholar] [CrossRef]
- Okamura, L.H.; Cordero, P.; Palomino, J.; Parraguez, V.H.; Torres, C.G.; Peralta, O.A. Myogenic differentiation potential of mesenchymal stem cells derived from fetal bovine bone marrow. Anim. Biotechnol. 2018, 29, 1276926. [Google Scholar] [CrossRef]
- Fish, K.D.; Rubio, N.R.; Stout, A.J.; Yuen, J.S.; Kaplan, D.L. Prospects and challenges for cell-cultured fat as a novel food ingredient. Trends Food Sci. Technol. 2020, 98, 53–67. [Google Scholar] [CrossRef]
- Wood, J.; Richardson, R.; Nute, G.; Fisher, A.; Campo, M.; Kasapidou, E.; Sheard, P.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Spadaro, V.; Allen, D.H.; Keeton, J.T.; Moreira, R.; Boleman, R.M. Biomechanical properties of meat and their correlation to tenderness. J. Texture Stud. 2002, 33, 59–87. [Google Scholar] [CrossRef]
- Le Grand, F.; Rudnicki, M.A. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 2007, 19, 628–633. [Google Scholar] [CrossRef]
- Cawthorn, W.P.; Scheller, E.L.; MacDougald, O.A. Adipose tissue stem cells meet preadipocyte commitment: Going back to the future. J. Lipid Res. 2012, 53, 227–246. [Google Scholar] [CrossRef]
- Gupta, R.K.; Arany, Z.; Seale, P.; Mepani, R.J.; Ye, L.; Conroe, H.M.; Roby, Y.A.; Kulaga, H.; Reed, R.R.; Spiegelman, B.M. Transcriptional control of preadipocyte determination by Zfp423. Nature 2010, 464, 619–623. [Google Scholar] [CrossRef]
- Huang, Y.; Das, A.K.; Yang, Q.-Y.; Zhu, M.-J.; Du, M. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. J. Anim. Sci. Biotechnol. 2012, 3, 4. [Google Scholar] [CrossRef]
- Rosen, E.D.; Sarraf, P.; Troy, A.E.; Bradwin, G.; Moore, K.; Milstone, D.S.; Spiegelman, B.M.; Mortensen, R.M. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 1999, 4, 611–617. [Google Scholar] [CrossRef]
- Yamada, T.; Kawakami, S.-I.; Nakanishi, N. Expression of adipogenic transcription factors in adipose tissue of fattening Wagyu and Holstein steers. Meat Sci. 2009, 81, 86–92. [Google Scholar] [CrossRef]
- Kraus, N.A.; Ehebauer, F.; Zapp, B.; Rudolphi, B.; Kraus, B.J.; Kraus, D. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte 2016, 5, 351–358. [Google Scholar] [CrossRef]
- Maqsood, M.I.; Matin, M.M.; Bahrami, A.R.; Ghasroldasht, M.M. Immortality of cell lines: Challenges and advantages of establishment. Cell Biol. Int. 2013, 37, 1038–1045. [Google Scholar] [CrossRef]
- Soice, E.; Johnston, J. Immortalizing cells for human consumption. Int. J. Mol. Sci. 2021, 22, 11660. [Google Scholar] [CrossRef]
- Pasitka, L.; Cohen, M.; Ehrlich, A.; Gildor, B.; Reuveni, E.; Ayyash, M.; Wissotsky, G.; Herscovici, A.; Kaminker, R.; Niv, A. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. Nat. Food 2023, 4, 35–50. [Google Scholar] [CrossRef]
- Ide, T. Cell Culture and Its Application: Proliferative Life Span and Immortalization of Cultured Human Cells. Gan To Kagaku Ryoho. Cancer Chemother. 1992, 19, 1091–1098. Available online: https://pubmed.ncbi.nlm.nih.gov/1626946 (accessed on 8 September 2025).
- Will, K.; Schering, L.; Albrecht, E.; Kalbe, C.; Maak, S. Differentiation of bovine satellite cell-derived myoblasts under different culture conditions. In Vitro Cell. Dev. Biol. Anim. 2015, 51, 885–889. [Google Scholar] [CrossRef]
- Trott, D.A.; Cuthbert, A.P.; Overell, R.W.; Russo, I.; Newbold, R.F. Mechanisms involved in the immortalization of mammalian cells by ionizing radiation and chemical carcinogens. Carcinogenesis 1995, 16, 193–204. [Google Scholar] [CrossRef]
- Gardell, A.M.; Qin, Q.; Rice, R.H.; Li, J.; Kültz, D. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus) cell lines. PLoS ONE 2014, 9, e95919. [Google Scholar] [CrossRef] [PubMed]
- Keller, C.; Guttridge, D.C. Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS J. 2013, 280, 4323–4334. [Google Scholar] [CrossRef]
- Sulak, M.; Fong, L.; Mika, K.; Chigurupati, S.; Yon, L.; Mongan, N.P.; Emes, R.D.; Lynch, V.J. Correction: TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 2016, 5, e24307. [Google Scholar] [CrossRef]
- Saad, M.K.; Yuen Jr, J.S.; Joyce, C.M.; Li, X.; Lim, T.; Wolfson, T.L.; Wu, J.; Laird, J.; Vissapragada, S.; Calkins, O.P. Continuous fish muscle cell line with capacity for myogenic and adipogenic-like phenotypes. Sci. Rep. 2023, 13, 5098. [Google Scholar] [CrossRef]
- Kuo, H.-H.; Gao, X.; DeKeyser, J.-M.; Fetterman, K.A.; Pinheiro, E.A.; Weddle, C.J.; Fonoudi, H.; Orman, M.V.; Romero-Tejeda, M.; Jouni, M. Negligible-cost and weekend-free chemically defined human iPSC culture. Stem Cell Rep. 2020, 14, 256–270. [Google Scholar] [CrossRef]
- Kolkmann, A.; Post, M.; Rutjens, M.; Van Essen, A.; Moutsatsou, P. Serum-free media for the growth of primary bovine myoblasts. Cytotechnology 2020, 72, 111–120. [Google Scholar] [CrossRef]
- Dai, X.; Guan, Y.; Zhang, Z.; Xiong, Y.; Liu, C.; Li, H.; Liu, B. Comparison of the differentiation abilities of bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells toward nucleus pulposus-like cells in three-dimensional culture. Exp. Ther. Med. 2021, 22, 10450. [Google Scholar] [CrossRef]
- Messmer, T.; Dohmen, R.G.; Schaeken, L.; Melzener, L.; Hueber, R.; Godec, M.; Didoss, C.; Post, M.J.; Flack, J.E. Single-cell analysis of bovine muscle-derived cell types for cultured meat production. Front. Nutr. 2023, 10, 1212196. [Google Scholar] [CrossRef]
- Messmer, T.; Klevernic, I.; Furquim, C.; Ovchinnikova, E.; Dogan, A.; Cruz, H.; Post, M.J.; Flack, J.E. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation. Nat. Food 2022, 3, 74–85. [Google Scholar] [CrossRef]
- Stout, A.J.; Arnett, M.J.; Chai, K.; Guo, T.; Liao, L.; Mirliani, A.B.; Rittenberg, M.L.; Shub, M.; White, E.C.; Yuen, J.S., Jr. Immortalized bovine satellite cells for cultured meat applications. ACS Synth. Biol. 2023, 12, 1567–1573. [Google Scholar] [CrossRef]
- Stout, A.J.; Zhang, X.; Letcher, S.M.; Rittenberg, M.L.; Shub, M.; Chai, K.M.; Kaul, M.; Kaplan, D.L. Engineered autocrine signaling eliminates muscle cell FGF2 requirements for cultured meat production. Cell Rep. Sustain. 2024, 1, 100009. [Google Scholar] [CrossRef]
- Zagury, Y.; Ianovici, I.; Landau, S.; Lavon, N.; Levenberg, S. Engineered marble-like bovine fat tissue for cultured meat. Commun. Biol. 2022, 5, 927. [Google Scholar] [CrossRef]
- Ren, Y.; Wu, H.; Ma, Y.; Yuan, J.; Liang, H.; Liu, D. Potential of adipose-derived mesenchymal stem cells and skeletal muscle-derived satellite cells for somatic cell nuclear transfer mediated transgenesis in Arbas Cashmere goats. PLoS ONE 2014, 9, e93583. [Google Scholar] [CrossRef]
- Bektas, C.; Lee, K.; Jackson, A.; Bhatia, M.; Mao, Y. Bovine placentome-derived extracellular matrix: A sustainable 3D scaffold for cultivated meat. Bioengineering 2024, 11, 854. [Google Scholar] [CrossRef]
- Choi, K.-H.; Kim, M.; Yoon, J.W.; Jeong, J.; Ryu, M.; Jo, C.; Lee, C.-K. Purification of pig muscle stem cells using magnetic-activated cell sorting (MACS) based on the expression of cluster of differentiation 29 (CD29). Food Sci. Anim. Resour. 2020, 40, 852. [Google Scholar] [CrossRef]
- Kim, G.Y.; Choi, G.T.; Park, J.; Lee, J.; Do, J.T. Comparative analysis of porcine adipose- and Wharton’s jelly-derived mesenchymal stem cells. Animals 2023, 13, 2947. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Han, S.G.; Kwon, H.C.; Jung, H.S.; Han, J.H.; Keum, D.H.; Park, J.; Do, J.T.; Han, S.G.; Kim, D.H. Myogenesis of porcine muscle satellite cells by extracellular matrix from fibrotic adipose tissue-derived mesenchymal stem cells. Meat Muscle Biol. 2024, 8, 17658. [Google Scholar] [CrossRef]
- Reiss, J.; Robertson, S.; Suzuki, M. Cell sources for cultivated meat: Applications and considerations throughout the production workflow. Int. J. Mol. Sci. 2021, 22, 7513. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.-H.; Yoon, J.W.; Kim, M.; Lee, H.J.; Jeong, J.; Ryu, M.; Jo, C.; Lee, C.-K. Muscle stem cell isolation and in vitro culture for meat production: A methodological review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 429–457. [Google Scholar] [CrossRef]
- Heng, B.C.; Bezerra, P.P.; Preiser, P.R.; Law, S.A.; Xia, Y.; Boey, F.; Venkatraman, S.S. Effect of cell-seeding density on the proliferation and gene expression profile of human umbilical vein endothelial cells within ex vivo culture. Cytotherapy 2011, 13, 606–617. [Google Scholar] [CrossRef]
- Simaria, A.S.; Hassan, S.; Varadaraju, H.; Rowley, J.; Warren, K.; Vanek, P.; Farid, S.S. Allogeneic cell therapy bioprocess economics and optimization: Single-use cell expansion technologies. Biotechnol. Bioeng. 2014, 111, 69–83. [Google Scholar] [CrossRef]
- Specht, E.A.; Welch, D.R.; Clayton, E.M.R.; Lagally, C.D. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochem. Eng. J. 2018, 132, 161–168. [Google Scholar] [CrossRef]
- Moritz, M.S.; Verbruggen, S.E.; Post, M.J. Alternatives for large-scale production of cultured beef: A review. J. Integr. Agric. 2015, 14, 208–216. [Google Scholar] [CrossRef]
- Chen, V.C.; Couture, S.M.; Ye, J.; Lin, Z.; Hua, G.; Huang, H.-I.P.; Wu, J.; Hsu, D.; Carpenter, M.K.; Couture, L.A. Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res. 2012, 8, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.C.; Liu, Y.; Yuan, X.; Chella, R.; Ma, T. Aggregation kinetics of human mesenchymal stem cells under wave motion. Biotechnol. J. 2017, 12, 1600448. [Google Scholar] [CrossRef] [PubMed]
- Aguanno, S.; Petrelli, C.; Di Siena, S.; De Angelis, L.; Pellegrini, M.; Naro, F. A three-dimensional culture model of reversibly quiescent myogenic cells. Stem Cells Int. 2019, 2019, 7548160. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, A.C.; Verma, A.; Kehoe, D.E.; Jing, D.; Murrell, J.R.; Der, K.A.; Aysola, M.; Rapiejko, P.J.; Punreddy, S.; Rook, M.S. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochem. Eng. J. 2016, 108, 3–13. [Google Scholar] [CrossRef]
- Meyer, H.P.; Minas, W.; Schmidhalter, D. Industrial-scale fermentation. In Industrial Biotechnology: Products and Processes; Springer: Cham, Switzerland, 2017; pp. 1–53. [Google Scholar] [CrossRef]
- Al-Rubeai, M.; Chaudhuri, J. Bioreactors for Tissue Engineering: Principles, Design and Operation; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Moutsatsou, P.; Ochs, J.; Schmitt, R.; Hewitt, C.; Hanga, M.P. Automation in cell and gene therapy manufacturing: From past to future. Biotechnol. Lett. 2019, 41, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Negulescu, P.G.; Risner, D.; Spang, E.S.; Sumner, D.; Block, D.; Nandi, S.; McDonald, K.A. Techno-Economic Modeling and Assessment of Cultivated Meat: Impact of Production Bioreactor Scale. Biotechnol. Bioeng. 2023, 120, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Humbird, D. Scale-Up Economics for Cultured Meat. Biotechnol. Bioeng. 2021, 118, 3239–3250. [Google Scholar] [CrossRef]
- Hanga, M.P.; de la Raga, F.A.; Moutsatsou, P.; Hewitt, C.J.; Nienow, A.W.; Wall, I. Scale-Up of an Intensified Bioprocess for the Expansion of Bovine Adipose-Derived Stem Cells (bASCs) in Stirred Tank Bioreactors. Biotechnol. Bioeng. 2021, 118, 3175–3186. [Google Scholar] [CrossRef]
- Pajčin, I.; Knežić, T.; Savić Azoulay, I.; Vlajkov, V.; Djisalov, M.; Janjušević, L.; Grahovac, J.; Gadjanski, I. Bioengineering Outlook on Cultivated Meat Production. Micromachines 2022, 13, 402. [Google Scholar] [CrossRef]
- Nie, M.; Shima, A.; Takeuchi, S. Centimeter-Scale Perfusable Cultured Meat with Densely Packed, Highly Aligned Muscle Fibers via Hollow Fiber Bioreactor. bioRxiv 2023. [Google Scholar] [CrossRef]
- Gome, G.; Chak, B.; Tawil, S.; Shpatz, D.; Giron, J.; Brajzblat, I.; Weizman, C.; Grishko, A.; Schlesinger, S.; Shoseyov, O. Cultivation of Bovine Mesenchymal Stem Cells on Plant-Based Scaffolds in a Macrofluidic Single-Use Bioreactor for Cultured Meat. Foods 2024, 13, 1361. [Google Scholar] [CrossRef]
- Aamodt, J.M.; Grainger, D.W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 2016, 86, 68–82. [Google Scholar] [CrossRef]
- Ben-Arye, T.; Shandalov, Y.; Ben-Shaul, S.; Landau, S.; Zagury, Y.; Ianovici, I.; Lavon, N.; Levenberg, S. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat. Food 2020, 1, 210–220. [Google Scholar] [CrossRef]
- Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V.A. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. e-Polymers 2014, 14, 1–38. [Google Scholar] [CrossRef]
- Modulevsky, D.J.; Lefebvre, C.; Haase, K.; Al-Rekabi, Z.; Pelling, A.E. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS ONE 2014, 9, e97835. [Google Scholar] [CrossRef]
- Woodard, L.N.; Grunlan, M.A. Hydrolytic degradation and erosion of polyester biomaterials. ACS Macro Lett. 2018, 7, 976–982. [Google Scholar] [CrossRef] [PubMed]
- de Boer, A.; Bast, A. Demanding safe foods–Safety testing under the novel food regulation (2015/2283). Trends Food Sci. Technol. 2018, 72, 125–133. [Google Scholar] [CrossRef]
- Post, M.J.; Levenberg, S.; Kaplan, D.L.; Genovese, N.; Fu, J.; Bryant, C.J.; Moutsatsou, P. Scientific, Sustainability and Regulatory Challenges of Cultured Meat. Nat. Food 2020, 1, 403–415. [Google Scholar] [CrossRef]
- Lähteenmäki-Uutela, A.; Lonkila, A.; Marimuthu, S.B.S. Alternative protein products and the legal rules on novel foods: A global comparison. In The Changing Food Law Landscape; Routledge: London, UK, 2025; pp. 84–97. [Google Scholar]
- U.S. Food and Drug Administration (FDA). FDA Completes First Pre-Market Consultation for Human Food Made Using Animal Cell Culture Technology. 2023. Available online: https://www.fda.gov (accessed on 28 June 2025).
- Schulze, E. Premarket Notice for Integral Tissue Cultured Poultry Meat. Submitted on Behalf of Upside Foods. U.S. Food and Drug Administration. 2021. Available online: https://www.fda.gov/files/food/published/CellCultureConsultation-000002-Submission-03222023.pdf (accessed on 8 September 2025).
- Holt, S.E.; Wright, W.E.; Shay, J.W. Regulation of telomerase activity in immortal cell lines. Mol. Cell. Biol. 1996, 16, 2932–2939. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; De Figueiredo Silva, F.; Trott, J.F.; Zilberman, D. Genetic engineering of livestock: The opportunity cost of regulatory delay. Annu. Rev. Anim. Biosci. 2021, 9, 453–478. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA). USDA and FDA Announce a Formal Agreement to Regulate Cell-Cultured Food Products from Cell Lines of Livestock and Poultry. 2019. Available online: https://www.usda.gov/about-usda/news/press-releases/2019/03/07/usda-and-fda-announce-formal-agreement-regulate-cell-cultured-food-products-cell-lines-livestock-and (accessed on 28 June 2025).
- Failla, M.; Hopfer, H.; Wee, J. Evaluation of Public Submissions to the USDA for Labeling of Cell-Cultured Meat in the United States. Front. Nutr. 2023, 10, 1197111. [Google Scholar] [CrossRef]
- FSIS USDA. Human Food Made with Cultured Animal Cells. 2023. Available online: http://www.fsis.usda.gov/inspection/compliance-guidance/labeling/labeling-policies/human-food-made-cultured-animal-cells (accessed on 3 January 2025).
- Zandonadi, R.P.; Gasparin, F.; Nakano, E.Y.; Botelho, R.B.A. Global Insights into Cultured Meat: Uncovering Production Processes, Potential Hazards, Regulatory Frameworks, and Key Challenges-A Scoping Review. Foods 2025, 14, 129. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Lee, G.; Jeong, D.-W. A Study on Safety Evaluation System of Cultured Foods among Alternative Proteins. Food Sci. Biotechnol. 2025, 34, 365–371. [Google Scholar] [CrossRef]
- Bakhsh, A.; Kim, B.; Ishamri, I.; Choi, S.; Li, X.; Li, Q.; Hur, S.J.; Park, S. Cell-Based Meat Safety and Regulatory Approaches: A Comprehensive Review. Food Sci. Anim. Resour. 2025, 45, 145. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.J.; Li, D.; Smith, B.; Chen, W.N. Cultivated meat microbiological safety considerations and practices. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70077. [Google Scholar] [CrossRef]
- Rubino, V.; Pozzo, F. The regulatory framework for the authorisation to produce and market cultured meat in the EU. Eur. Food Feed Law Rev. 2024, 19, 199–203. [Google Scholar]
- Grosglik, R.; Raz, A.; Shahar, D.R.; Avieli, N. Considering the alternatives: Lessons from Israel’s meat substitutes initiatives. Front. Sustain. Food Syst. 2024, 7, 1342774. [Google Scholar] [CrossRef]
- Kim, W.J.; Kim, Y.; Ovissipour, R.; Nitin, N. Plant-Based Biomaterials as Scaffolds for Cellular Agriculture. Future Foods 2024, 10, 100468. [Google Scholar] [CrossRef]
- Stephens, N.; Di Silvio, L.; Dunsford, I.; Ellis, M.; Glencross, A.; Sexton, A. Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 2018, 78, 155–166. [Google Scholar] [CrossRef]
- Bryant, C.; Dillard, C. The impact of framing on acceptance of cultured meat. Front. Nutr. 2019, 6, 103. [Google Scholar] [CrossRef]
- Smith, A. U.S. Views of Technology and the Future; Pew Research Center: Washington, DC, USA, 17 April 2014; Available online: http://pewrsr.ch/P0LBlm (accessed on 8 September 2025).
- Bryant, C.; Barnett, J. Consumer acceptance of cultured meat: A systematic review. Meat Sci. 2018, 143, 8–17. [Google Scholar] [CrossRef]
- Slade, P. If you build it, will they eat it? Consumer preferences for plant-based and cultured meat burgers. Appetite 2018, 125, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.; Szejda, K.; Parekh, N.; Deshpande, V.; Tse, B. A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Front. Sustain. Food Syst. 2019, 3, 432863. [Google Scholar] [CrossRef]
- Tucker, C.A. The significance of sensory appeal for reduced meat consumption. Appetite 2014, 81, 168–179. [Google Scholar] [CrossRef]
- Bekker, G.A.; Fischer, A.R.; Tobi, H.; van Trijp, H.C. Explicit and implicit attitude toward an emerging food technology: The case of cultured meat. Appetite 2017, 108, 245–254. [Google Scholar] [CrossRef]
- Wilks, M.; Phillips, C.J. Attitudes to in vitro meat: A survey of potential consumers in the United States. PLoS ONE 2017, 12, e0171904. [Google Scholar] [CrossRef]
- Tatum, M. Meat the future… and how to market it. Grocer 2017, 6, 1. [Google Scholar]
- Lea, E.; Worsley, A. Benefits and barriers to the consumption of a vegetarian diet in Australia. Public Health Nutr. 2003, 6, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Marcu, A.; Gaspar, R.; Rutsaert, P.; Seibt, B.; Fletcher, D.; Verbeke, W.; Barnett, J. Analogies, metaphors, and wondering about the future: Lay sense-making around synthetic meat. Public Underst. Sci. 2015, 24, 547–562. [Google Scholar] [CrossRef]
- Tomasevic, I.; Hambardzumyan, G.; Marmaryan, G.; Nikolic, A.; Mujcinovic, A.; Sun, W.; Djekic, I. Eurasian consumers’ food safety beliefs and trust issues in the age of COVID-19: Evidence from an online survey in 15 countries. J. Sci. Food Agric. 2023, 103, 7362–7373. [Google Scholar] [CrossRef] [PubMed]
- Slee, B.; Tong, C.; Anurugsa, B.; Haas, R.; Canavari, M. (Eds.) Looking East Looking West: Organic and Quality Food Marketing in Asia and Europe; BRILL: Leiden, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Heidmeier, A.K.; Teuber, R. Acceptance of in vitro meat and the role of food technology neophobia, dietary patterns and information—Empirical evidence for Germany. Br. Food J. 2023, 125, 2540–2557. [Google Scholar] [CrossRef]
Category of Cell | Position | Differentiation | Proliferation | Advantages | Disadvantages | |
---|---|---|---|---|---|---|
Pluripotent stem cells (PSCs) | Embryonic stem cells (ESCs) | Cell cluster inside a blastocyst | All three germ-layers | Unlimited | Consistency and reproducibility; formation of cell banks to avoid several biopsies | Genetic stability must be verified; derivation is difficult; intricate differentiation protocols |
Induced PSCs | Somatic cells reprogrammed | All three germ-layers | Unlimited | Compared to embryonic stem cells easier derivation | Intricate differentiation protocols; genetic modification necessary; potential phenotypic changes; epigenetic memory | |
Adult stem cells (ASCs) | Mesenchymal stem cells (MSCs) | Adipose tissue or bone marrow | Primarily focused on collagen producing cells (fibroblasts), skeletal muscle, and adipocytes | Finite | Easy differentiation into adipocytes | Requires several genetic modifications or biopsies; restricted proliferation |
Fibro-adipogenic precursor cells | Muscle tissue | Osteogenic cells myofibroblasts, chondrocytes, adipocytes | Finite | Easy differentiation into fibroblasts and adipocytes | ||
Muscle satellite cells | Muscle tissue | Myoblasts (which eventually develop into myocytes, myotubes, and myofibers) | Finite | The simple differentiation into the primary component of cultured meat, muscle cells | ||
Mature cells | Adipocytes | Fat tissue | Already distinguished | Finite or none, until immortalized | No specific requirements for differentiation; just basic cultivation | Immortalization or genetic modification may be necessary; concerns regarding regulation and consumer acceptance; immortalization could alter cell properties and decrease differentiation potential |
Myocytes | Muscle tissue | Myofibers, myotubes | Finite or none, until immortalized | No specific requirements for differentiation; just basic cultivation | ||
Fibroblasts | Skin, any connective tissue | Fibrocytes, myofibroblasts, adipocytes, chondrocytes, and osteocytes | Finite | |||
Endothelial cells | Muscle, skin, or any other blood tissue | Self-assemble into vascular tissues; already differentiated | Finite | |||
Smooth muscle cells | Artery tissue | Support blood vessel self-assembly; already differentiated | Finite |
Species | Preferred Cell Sources | Culture Medium Requirements | Epigenetic Considerations | Industrial Feasibility | References |
---|---|---|---|---|---|
Bovine | Muscle satellite cells (SCs), adipose-derived mesenchymal stem cells (MSCs), immortalized bovine satellite cells (iBSCs). | Serum-free, chemically defined media; ligands for IGF1R, TFRC, LPAR1; engineered iBSCs with TERT/CDK4 for extended proliferation. | Transcriptomic heterogeneity (quiescent, active, committed states); limited locus-specific data. | High feasibility: iBSCs > 120 doublings; serum-free differentiation supports 3D constructs; engineered muscle–fat tissues demonstrate improved structure and cost-saving strategies. | [73,74,75,76,77,78,79] |
Porcine | Muscle stem cells (SCs) enriched via cluster of differentiation 29/56 (CD29/CD56) sorting; adipose-derived mesenchymal stem cells (ADSCs); Wharton’s jelly mesenchymal stem cells (WJ-MSCs). | Skeletal muscle growth medium-2 (SkGM-2) supplemented with epidermal growth factor (EGF), dexamethasone, and p38 mitogen-activated protein kinase inhibitor (SB203580); extracellular matrix (ECM) modulation with connective tissue growth factor (CTGF) promotes myogenesis. | Adipose-derived stem cells (ADSCs) show higher proliferation and adipogenesis; Wharton’s jelly mesenchymal stem cells (WJ-MSCs) exhibit greater osteogenic potential; limited epigenetic mapping available. | Magnetic-activated cell sorting (MACS) enrichment raises CD56+/CD29+ muscle stem cells (SCs) to ~91%; adipose-derived stem cells (ADSCs) expand efficiently and support scale-up; extracellular matrix/connective tissue growth factor (ECM/CTGF) methods are promising but require large-scale validation. | [80,81,82] |
Chicken | Muscle satellite cells (SCs), mesenchymal stem/progenitor cells (MSCs); induced pluripotent stem cells (iPSCs) as alternatives. | Serum-free, species-adapted media with optimized growth factors and supplements needed; no validated chicken-specific formulations yet. | No chicken-specific DNA methylation or histone modification data; only general stem/progenitor control discussed. | Similar challenges to mammals: limited SC expansion, lack of stable cell lines, and costly media; no large-scale demonstrations available. | [83,84] |
Fish | Reviews highlight fish as potential cultured meat (CM) targets, but specific protocols and quantitative culture data are scarce. | No validated fish-specific serum-free formulations or standardized medium recipes reported. | No fish-specific DNA methylation or histone modification studies available. | Similar challenges to mammals: limited expansion of adult stem cells (ASCs), absence of reliable cell lines, and costly media; no large-scale demonstrations of fish muscle or fat production exist. | [83,84] |
Bioreactor Type | Typical Working Scales | Key Advantages | Major Limitations | Quantitative Examples | References |
---|---|---|---|---|---|
Stirred tank reactor (STR) | Laboratory to industrial; single-use and stainless steel up to tens–hundreds of thousands L in conceptual designs | Well-established industrial platform; good process control, oxygen transfer and mixing; compatible with microcarriers and perfusion | Shear sensitivity for adherent cells, oxygen transfer limits at high cell density, high facility CAPEX for sterile food-grade operations | Facility scenarios modeled with ~42,000 L and ~211,000 L STRs; COGS scenarios show ~35/kg and 35/kg and 25/kg, respectively, in technoeconomic models | [96] |
Perfusion (cell retention in stirred systems) | Lab to pilot; limited high-density perfusion volumes industrially | Sustains high viable cell concentrations by continuous nutrient supply and waste removal | Complex cell retention hardware, scale limits from perfusion rates and mass transfer, increased media consumption | Perfusion operation and cell density tradeoffs are central scale-up constraints noted in technoeconomic and scale-up analyses | [96,97] |
Microcarrier-based cultures | Lab to pilot; scalable in STRs (single use vessels ~1–10,000 L) | Converts adherent cells to high-surface-area 3D growth in agitated vessels; enables bead-to-bead transfer for intensification | Microcarrier cost, downstream separation, shear and bead collisions, harvesting efficiency | Intensified microcarrier process achieved ~114× fold expansion at liter scale using bead-to-bead and stepped additions | [98] |
Fixed-bed/packed-bed | Lab to small pilot | High surface area per unit volume for adherent cells and scaffold integration; low shear | Channeling, poor mixing, difficult uniform oxygenation at larger scales, limited sampling | Application discussed conceptually for scaffolded tissues; quantitative scale/density not reported in corpus (insufficient evidence) | [99] |
Fluidized bed | Lab to small pilot | Improved mass transfer around particles/carriers, potentially uniform exposure | Particle abrasion, carrier retention hardware, shear on cells, scale-up complexity | Mentioned as candidate in reviews but no quantitative CM data available in supplied corpus (insufficient evidence) | [99] |
Hollow fiber bioreactor (HFB) | Lab to prototype; small pilot for tissue constructs | Very high local mass transfer via semi-permeable fibers; enables perfusable, aligned tissues and centimeter-scale constructs | Complex geometry, limited homogeneous large-volume manufacture, fiber fouling, difficult scale-out | Centimeter-scale perfusable muscle constructs produced with HFB and active perfusion, improving maturation and texture in lab studies | [100] |
Airlift reactor | Conceptual pilot to large industrial in models | Low shear mixing, good gas handling, lower energy input; modelled as viable large-scale alternative | Lower power for mixing may limit mass transfer at very high cell densities; less industrial experience for adherent mammalian cells | A scenario with ~262,000 L airlift reactor gave projected COGS ~$17/kg in a technoeconomic model | [96] |
Macrofluidic single-use systems | Laboratory and R&D prototyping; potential scale-out | Cheap, rapidly prototyped, food-grade thermoplastic assemblies reduce equipment cost and contamination risk | Limited to small/medium volumes per unit; needs scale-out with many parallel units | Laser-welded polyethylene macrofluidic single-use bioreactors demonstrated scaffold cultivation and reduced prototyping cost | [101] |
Class of Biopolymers | Origin and Characteristics | Specific Category |
---|---|---|
Polysaccharides | Bacteria, plants | Derivatives of cellulose and cellulose (MC, HMPC, CMC) |
Plants | Amylopectin, amylose (starch) | |
Yeast, fungi, insects, crustaceans | Chitosan/chitin | |
Heterologous-expression | Methacrylate derivatives, hyaluronic acid | |
Plants | Agarose | |
Plants | Alginate | |
Proteins | Heterologous expression | Zein, collagen/gelatin, Methacrylate derivatives |
Heterologous expression | Keratin | |
Heterologous expression | Elastin | |
Heterologous expression | Laminin | |
Synthetics | Chemical synthesis | Polyglycol acids/polylactic |
Chemical synthesis | Polyethylene glycol | |
Chemical synthesis | Polycaprolactone | |
Chemical synthesis | Polyvinyl–alcohol | |
Polyesters | Heterologous expression | Polyhydroxyalkanoates, including homopolymers and copolymers |
Complex natural composites | Plant | Lignin |
Fungi | Mycelia | |
Plants | Soy hydrolysates | |
Plants | Decellularized tissues |
Country | Approval Status | Regulatory Pathway | Key Agencies | Major Regulatory Steps | Labeling Requirements | GMO Classification | Approval Timeline | Critical Challenges | References |
---|---|---|---|---|---|---|---|---|---|
Singapore | Market Access Granted | Novel Food Assessment | Singapore Food Agency (SFA) | 1. Pre-market consultation; 2. Safety dossier submission; 3. Technical review; 4. Risk assessment; 5. Market authorization. | “Cell-cultured” or “cultured” labeling required | Case-by-case assessment for GMO components | 12–18 months (estimated) | Limited precedent, evolving guidelines | [117,118,119] |
United States | Limited Approvals | Dual Agency Model (FDA/USDA) | FDA (cell culture safety); USDA-FSIS (inspection) | 1. FDA pre-market consultation; 2. Generally Recognized as Safe (GRAS) determination; 3. USDA facility inspection; 4. Hazard Analysis Critical Control Points (HACCP) plan; 5. Label approval. | “Cell-cultured” required in product name | Follows existing GMO labeling rules (voluntary disclosure) | 18–36 months | Agency coordination, unclear jurisdiction boundaries | [118] |
European Union | No Approvals | Novel Food Regulation | EFSA (scientific assessment); European Commission Member States | 1. Novel food application; 2. EFSA scientific opinion; 3. Risk management decision; 4. Member state consultation; 5. Commission authorization. | Must comply with novel food labeling; clear indication of production method | Subject to GMO regulations if applicable; mandatory labeling if GMO components | 24–48 months | Complex multi-stakeholder process, precautionary approach | [119,120,121] |
Israel | Regulatory Progress | National Food Safety Framework | Ministry of Health; Israeli Food Service | 1. Pre-market notification; 2. Safety assessment; 3. Production facility approval; 4. Product authorization. | Hebrew labeling requirements; clear production method indication | Follows national GMO framework | 12–24 months (estimated) | Limited regulatory precedent | [122] |
Japan | Under Development | Food Safety Framework (evolving) | Ministry of Health, Labour and Welfare (MHLW); Food Safety Commission | 1. Safety assessment consultation; 2. Technical review; 3. Risk evaluation; 4. Authorization process. | Japanese labeling standards; production method disclosure | Subject to existing GMO regulations | TBD | Regulatory framework still developing | [123] |
China | Policy Development | National Food Safety Standards | National Health Commission; China Food and Drug Administration | 1. New food ingredient application; 2. Safety evaluation; 3. Technical review; 4. Administrative approval. | Chinese labeling requirements; production method indication | Strict GMO labeling requirements | TBD | Regulatory framework in early stages | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.; Sun, J.; Liang, W.; Li, R.; Cheong, K.-L.; Qiu, Z.; Xia, Q. Innovations, Challenges, and Regulatory Pathways in Cultured Meat for a Sustainable Future. Foods 2025, 14, 3183. https://doi.org/10.3390/foods14183183
Khan I, Sun J, Liang W, Li R, Cheong K-L, Qiu Z, Xia Q. Innovations, Challenges, and Regulatory Pathways in Cultured Meat for a Sustainable Future. Foods. 2025; 14(18):3183. https://doi.org/10.3390/foods14183183
Chicago/Turabian StyleKhan, Imad, Jiage Sun, Wanmei Liang, Rui Li, Kit-Leong Cheong, Zehua Qiu, and Qiuyu Xia. 2025. "Innovations, Challenges, and Regulatory Pathways in Cultured Meat for a Sustainable Future" Foods 14, no. 18: 3183. https://doi.org/10.3390/foods14183183
APA StyleKhan, I., Sun, J., Liang, W., Li, R., Cheong, K.-L., Qiu, Z., & Xia, Q. (2025). Innovations, Challenges, and Regulatory Pathways in Cultured Meat for a Sustainable Future. Foods, 14(18), 3183. https://doi.org/10.3390/foods14183183