Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,064)

Search Parameters:
Keywords = gamma radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1626 KB  
Article
Operation Under High Ionizing Dose Rates of Gamma or X-Ray Radiation of a 10 µm Radiation Tolerant Global Shutter Pixel
by Pedro Santos, Idham Hafizh, Paul Leroux and Guy Meynants
Sensors 2025, 25(22), 6979; https://doi.org/10.3390/s25226979 - 14 Nov 2025
Abstract
A 10 × 10 µm2 radiation-tolerant voltage-domain global shutter pixel with radiation-hardened by design (RHBD) device modification is developed to operate under high ionizing-dose rates and high total ionizing-dose (TID) levels. Therefore, a modified NMOS transistor layout is used in the pixel [...] Read more.
A 10 × 10 µm2 radiation-tolerant voltage-domain global shutter pixel with radiation-hardened by design (RHBD) device modification is developed to operate under high ionizing-dose rates and high total ionizing-dose (TID) levels. Therefore, a modified NMOS transistor layout is used in the pixel to achieve radiation hardness. The pixel design is demonstrated to operate up to 1 MGy or 100 Mrad (SiO2) TID with minimal degradation. The global shutter pixel also includes correlated double sampling (CDS) to reduce noise and the impact of the collected carriers generated by the flux of gamma or X-ray radiation. Combined with an external flash, global shutter operation allows short exposures, which limits the impact of radiation on dark current and dynamic range. The pixel is designed using 180 nm CMOS Image Sensor (CIS) technology. Full article
13 pages, 400 KB  
Article
Energy-Dependent Neutron Emission in Medical Cyclotrons: Differences Between 18F and 11C and Implications for Radiation Protection
by Teresa Jakubowska and Michał Biegała
Appl. Sci. 2025, 15(22), 11946; https://doi.org/10.3390/app152211946 - 10 Nov 2025
Viewed by 166
Abstract
This study investigates neutron radiation sources in medical cyclotrons used for PET isotope production, focusing on differences between 18F and 11C. Neutron and gamma dose rates were measured in the bunker and operator control room during routine production with an 11 [...] Read more.
This study investigates neutron radiation sources in medical cyclotrons used for PET isotope production, focusing on differences between 18F and 11C. Neutron and gamma dose rates were measured in the bunker and operator control room during routine production with an 11 MeV Eclipse cyclotron. 18F production generated approximately 2.5 times higher neutron levels in the bunker than 11C. Shielding performance also varied: the same wall reduced neutron fluxes by factors of kF = 14,000 for 18F and kC = 86,000 for 11C, while gamma shielding was similar for both isotopes (kγ ≈ 28,000). However, the neutron shielding factor calculated from the data for 18F should be taken as kF ≥ 1.4 × 104, because several neutron readings reached the upper limit of the detector range, which indicates a partial underestimation of the dose in the bunker. Consequently, neutron levels in the control room during 18F production were about 15-fold higher than during 11C production. These differences result from distinct neutron generation mechanisms. The 18O(p,n)18F reaction produces primary neutrons with a Maxwellian spectrum (~2.5 MeV), while 11C neutrons arise solely from secondary interactions in structural materials. The findings emphasize the need for composite shielding adapted to isotope-specific spectra. Annual dose estimates (260 18F and 52 11C productions) showed neutron exposure (3.78 mSv/year, 57%) exceeded gamma exposure (2.82 mSv/year, 43%). The total dose of 6.6 mSv/year is ~33% of regulatory limits, supporting compliance but underscoring the need for dedicated neutron dosimetry. Full article
(This article belongs to the Special Issue Advances in Environmental Monitoring and Radiation Protection)
Show Figures

Figure 1

37 pages, 40033 KB  
Article
Late-Time Radio Diagnostics of Magnetar Magnetic Burial and Reemergence in GRB Afterglows
by Nissim Fraija, C. G. Bernal, A. Galván, B. Betancourt Kamenetskaia and M. G. Dainotti
Galaxies 2025, 13(6), 127; https://doi.org/10.3390/galaxies13060127 - 4 Nov 2025
Viewed by 251
Abstract
Recent centimeter-to-millimeter monitoring of nearby gamma-ray bursts (GRBs) has revealed late-time (102104 days) radio rebrightenings and spectral turnovers not explained by standard forward-shock scenarios with steady microphysics. We attribute these features to a buried millisecond magnetar whose [...] Read more.
Recent centimeter-to-millimeter monitoring of nearby gamma-ray bursts (GRBs) has revealed late-time (102104 days) radio rebrightenings and spectral turnovers not explained by standard forward-shock scenarios with steady microphysics. We attribute these features to a buried millisecond magnetar whose surface dipole, initially submerged by early fallback (hours after birth), re-emerges via Hall–Ohmic diffusion on year–to–decade timescales, partially re-energizing the external shock. We combine a minimally parametric analytic framework with axisymmetric magnetohydrodynamic simulations of the hypercritical fallback phase to characterize burial depths and the initial conditions for reemergence. The growth of the external dipole is modeled as E˙(t)E˙0fG(t)σ and calibrated against physically plausible diffusion timescales τmyearsdecades. Spin-down power couples to the afterglow through the surrounding ejecta via a single effective coupling factor and a causal delay kernel, encapsulating mediation by supernova ejecta/pulsar-wind nebulae in collapsars and by merger ejecta/winds in compact-object mergers. Applied to a representative set of events with late-time radio detections and upper limits, our scheme reproduces the observed rebrightenings and turnovers with modest coupling efficiencies. Within this picture, late-time centimeter–millimeter afterglows provide a practical diagnostic of magnetic-burial depth and crustal conductivity in newborn magnetars powering GRB afterglows, and motivate systematic radio follow-up hundreds to thousands of days after the trigger. Full article
Show Figures

Figure 1

17 pages, 2720 KB  
Article
Studying Natural Radioactivity of Coals and Ash and Slag Waste as Potential Raw Materials for Quality Assessment and Extraction of Rare Earth Elements
by Yuriy Pak, Dmitriy Pak, Pyotr Kropachev, Vladimir Matonin, Diana Ibragimova, Anar Tebayeva, Pavel Timoshenko, Natalya Tsoy and Yelena Tseshkovskaya
Geosciences 2025, 15(11), 420; https://doi.org/10.3390/geosciences15110420 - 4 Nov 2025
Viewed by 311
Abstract
A significant portion of coal mined in Kazakhstan is mainly used for fuel energy and metallurgy. Approximately 60% of electricity is generated by coal-fired power engineering. About 19 million tons of ash and slag waste (ASW) are annually sent to dumps. After coal [...] Read more.
A significant portion of coal mined in Kazakhstan is mainly used for fuel energy and metallurgy. Approximately 60% of electricity is generated by coal-fired power engineering. About 19 million tons of ash and slag waste (ASW) are annually sent to dumps. After coal combustion, in ASW not only are natural radioactive nuclides NRN (U238, Th232, K40) concentrated, but also rare and rare earth elements (REE). In this regard, ASW that essentially turns into quasi-technogenic deposits of NRN and REE, requires systemic measures for their utilization. The possibilities of extracting REE from coal power-industry waste are estimated based on the analysis of the concentration of REE (Ce, La, Nd, Sm, etc.), NRN (U238, Th232 and their decay products, K40) and the established significant correlations between rare earth and radioactive elements. The purpose of this paper is to study the natural radioactivity of coals and ash and slag waste as potential raw materials for assessing the quality and extracting rare earth metals. The stated purpose involves solving the following problems: studying the features of the NRN and REE distribution in coals and ash and slag waste; assessing the possibility of using ash and slag waste as a promising source of REE extraction based on nuclear radiometric studies; and studying the spectrometry of natural gamma radiation for assessing the quality of coals. Full article
Show Figures

Figure 1

48 pages, 3047 KB  
Review
From Prescription to Pollution: Assessing the Ecological Impact and Treatment Technologies for Antidepressant Contaminants
by Jordana Georgin, Jivago Schumacher de Oliveira, Younes Dehmani, Noureddine El Messaoudi, Matheus de Albuquerque Carvalho, Lucas Meili, Claudete Gindri Ramos and Dison S. P. Franco
Sustainability 2025, 17(21), 9752; https://doi.org/10.3390/su17219752 - 1 Nov 2025
Viewed by 624
Abstract
Depression is becoming more common in the face of modern life’s obstacles. Antidepressants are a fast-expanding pharmaceutical category. Antidepressant residues in water must be closely monitored and kept at levels that do not endanger human health, just like those of other psychotropic medications. [...] Read more.
Depression is becoming more common in the face of modern life’s obstacles. Antidepressants are a fast-expanding pharmaceutical category. Antidepressant residues in water must be closely monitored and kept at levels that do not endanger human health, just like those of other psychotropic medications. Additionally, research has shown that these pollutants severely hinder aquatic life’s ability to migrate, reproduce, and interact with one another when they enter natural ecosystems. Antidepressants released into the natural environment can therefore be expected to have an impact on exposed fish and other aquatic species. There is a lot of information available about how exposure affects fish, but much of it is for exposure levels higher than those seen in their natural habitats. Antidepressants can bioaccumulate in fish tissues, and some behavioral effects have been documented for exposures that are relevant to the environment. As a result, antidepressant residue removal methods must be incorporated into contemporary wastewater treatment plant technology. In addition to covering a wide range of suggested treatment options and their ecotoxicological consequences on non-target organisms, this study discusses recent efforts to accomplish this goal. First, a thorough analysis of the harmful impacts on non-target people is provided. This work describes a variety of adsorptive methods that can make use of modern materials like molecularly imprinted polymers or ion-exchange resins or can rely on well-known and efficient adsorbents like silicates or activated carbon. Although extractive methods are also taken into consideration, they are now impractical due to the lack of reasonably priced and ecologically suitable solvents. Lastly, sophisticated oxidation methods are discussed, such as electrochemical alternatives, UV and gamma radiation, and ozone therapy. Notably, some of these techniques could totally mineralize antidepressant toxicants, either alone or in combination. Lastly, the topic of biological treatment with microorganisms is covered. This method can be very specific, but it usually prevents full mineralization. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

18 pages, 1512 KB  
Article
SPICE Model for SiC Bipolar Transistor and TTL Inverter Degradation Due to Gamma Radiation
by Alex Metreveli, Anders Hallén and Carl-Mikael Zetterling
Micromachines 2025, 16(11), 1246; https://doi.org/10.3390/mi16111246 - 31 Oct 2025
Viewed by 263
Abstract
Silicon carbide (SiC) is a key material for electronics operating in harsh environments due to its wide bandgap, high thermal conductivity, and radiation hardness. In this work, we present a SPICE model for a 4H-SiC BJT and TTL inverter exposed to gamma radiation. [...] Read more.
Silicon carbide (SiC) is a key material for electronics operating in harsh environments due to its wide bandgap, high thermal conductivity, and radiation hardness. In this work, we present a SPICE model for a 4H-SiC BJT and TTL inverter exposed to gamma radiation. The devices were fabricated using a dedicated SiC bipolar process at KTH (Sweden) and tested at the 60Co Calliope (Italy) facility up to 800 krad (Si). Experimental data, including Gummel plots and inverter transfer characteristics, were used to calibrate and refine a VBIC-based SPICE model. The adjusted model accounts for both bulk and surface degradation mechanisms by extracting parameters of forward current gain (βF), saturation current (IS), base resistance (RB), and forward transit time (TF). Results show a uniform degradation of BJTs, primarily manifested as reduced current gain and increased base resistance, while the inverter maintained functional operation up to 600 krad(Si). Extrapolation of the SPICE model predicts a failure threshold near 16 Mrad(Si), far exceeding the tolerance of conventional silicon circuits. By linking radiation-induced defects at the material and interface levels to circuit-level behavior, the proposed model enables realistic design and lifetime prediction of SiC integrated circuits for satellites, planetary missions, and other radiation-intensive applications. Full article
(This article belongs to the Special Issue SiC Based Miniaturized Devices, 3rd Edition)
Show Figures

Figure 1

9 pages, 2093 KB  
Article
A Cosmic Radiation Modular Telescope on the Moon: The MoonRay Concept
by Pier Simone Marrocchesi
Particles 2025, 8(4), 86; https://doi.org/10.3390/particles8040086 - 27 Oct 2025
Viewed by 248
Abstract
The MoonRay project is carrying out a concept study of a permanent lunar cosmic-ray (CR) and gamma-ray observatory, in view of the implementation of habitats on our satellite. The idea is to build a modular telescope that will be able to overcome the [...] Read more.
The MoonRay project is carrying out a concept study of a permanent lunar cosmic-ray (CR) and gamma-ray observatory, in view of the implementation of habitats on our satellite. The idea is to build a modular telescope that will be able to overcome the limitations, in available power and weight, of the present generation of CR instruments in Low Earth Orbit, while carrying out high-energy gamma-ray observations from a vantage point at the South Pole of the Moon. An array of fully independent modules (towers), with limited individual size and mass, can provide an acceptance more than one order of magnitude larger than instruments in flight at present. The modular telescope is designed to be deployed progressively, during a series of lunar missions, while collecting meaningful scientific data at the intermediate stages of its implementation. The operational power will be made available by the facilities maintaining the lunar habitats. With a geometric factor close to 15 m2sr and about 8 times larger sensitive area than FERMI-LAT, MoonRay will be able to carry out a very rich observational program over a time span of a few decades with an energy reach of 10 PeV allowing the exploration of the CR “knee” and the observation of the Southern Sky with gamma rays well into the TeV scale. Each tower (of approximate size 20 cm × 20 cm ×100 cm) is equipped with three instruments. A combined Charge and Time-of-Flight detector (CD-ToF) can identify individual cosmic elements, leveraging on an innovative two-layered array of pixelated Low-Gain Avalanche Diode (LGAD) sensors, with sub-ns time resolution. The latter can achieve an unprecedented rejection power against backscattered radiation from the calorimeter. It is followed by a tracker, providing also photon conversion, and by a thick crystal calorimeter (55 radiation lengths, 3 proton interaction lengths at normal incidence) with an energy resolution of 30–40% (1–2%) for protons (electrons) and a proton/electron rejection in excess of 105. A time resolution close to 100 ps has been obtained, with prototypal arrays of 3 mm × 3 mm LGAD pixels, in a recent test campaign carried out at CERN with Pb beam fragments. Full article
Show Figures

Figure 1

14 pages, 1371 KB  
Article
Enhancing Radiation Shielding Properties of Pharmaceutical Polymers Through Zinc Oxide Incorporation: A Study on Gamma Energy Attenuation
by Mohammad W. Marashdeh, Afnan Alsalman and Muthanna Abdulkarim
Polymers 2025, 17(21), 2859; https://doi.org/10.3390/polym17212859 - 27 Oct 2025
Viewed by 334
Abstract
An investigation was carried out to improve the gamma radiation shielding properties of Benecel K4M pharmaceutical polymer using zinc oxide (ZnO) at concentrations from 0 to 6 wt.%. Compressed composite tablet samples were prepared and tested in the range of photon energies 59.5 [...] Read more.
An investigation was carried out to improve the gamma radiation shielding properties of Benecel K4M pharmaceutical polymer using zinc oxide (ZnO) at concentrations from 0 to 6 wt.%. Compressed composite tablet samples were prepared and tested in the range of photon energies 59.5 to 1332 keV for the assessment of various shielding parameters, including linear attenuation coefficient, radiation protection efficiency (RPE), and mean free path (MFP). As the ZnO content increased, the attenuation properties of the material showed improved shielding behavior, which was attributed to its high density and atomic number. At 59.9 keV, RPE increased from 6.9% for the pure polymer to 12.2% for the 6 wt.% composite, whereas MFP decreased from 13.9 cm to 7.6 cm. The results indicate that ZnO addition significantly enhances the shielding efficiency of Benecel K4M, demonstrating that ZnO can serve as a lightweight and non-toxic alternative to heavy-metal-based materials for pharmaceutical protection in radiation-rich environments. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

23 pages, 2140 KB  
Article
Radiomic-Based Machine Learning for Differentiating Brain Metastases Recurrence from Radiation Necrosis Post-Gamma Knife Radiosurgery: A Feasibility Study
by Mateus Blasques Frade, Paola Critelli, Eleonora Trifiletti, Giuseppe Ripepi and Antonio Pontoriero
Int. J. Transl. Med. 2025, 5(4), 50; https://doi.org/10.3390/ijtm5040050 - 24 Oct 2025
Viewed by 388
Abstract
Background: Radiation therapy is a key treatment modality for brain metastases. While providing a treatment alternative, post-treatment imaging often presents diagnostic challenges, particularly in distinguishing tumor recurrence from radiation-induced changes such as necrosis. Advanced imaging techniques and artificial intelligence (AI)-based radiomic analyses emerge [...] Read more.
Background: Radiation therapy is a key treatment modality for brain metastases. While providing a treatment alternative, post-treatment imaging often presents diagnostic challenges, particularly in distinguishing tumor recurrence from radiation-induced changes such as necrosis. Advanced imaging techniques and artificial intelligence (AI)-based radiomic analyses emerge as alternatives to help lesion characterization. The objective of this study was to assess the capacity of machine learning algorithms to distinguish between brain metastases recurrence and radiation necrosis. Methods: The research was conducted in two phases and used publicly available MRI data from patients treated with Gamma Knife radiosurgery. In the first phase, 30 cases of local recurrence of brain metastases and 30 cases of radiation-induced necrosis were considered. Image segmentation and radiomic feature extraction were performed on these data using MatRadiomics_1_5_3, a MATLAB-based framework integrating PyRadiomics. Features were then selected using point-biserial correlation. In the second phase, a classification was performed using a Support Vector Machine model with repeated stratified cross-validation settings. Results: The results achieved an accuracy on the test set of 83% for distinguishing metastases from necrosis. Conclusions: The results of this feasibility study demonstrate the potential of radiomics and AI to improve diagnostic accuracy and personalized care in neuro-oncology. Full article
Show Figures

Figure 1

7 pages, 180 KB  
Review
Time Markers for SETI in Binary Systems: History and Prospects
by Jacob Haqq-Misra
Astronomy 2025, 4(4), 19; https://doi.org/10.3390/astronomy4040019 - 22 Oct 2025
Viewed by 856
Abstract
Contemporary surveys in the search for extraterrestrial intelligence (SETI) typically make one-off “spot scans” across the sky to search planetary systems for narrow-band radio signals that would indicate the presence of intelligent life. Spot scans may span a duration of seconds to minutes [...] Read more.
Contemporary surveys in the search for extraterrestrial intelligence (SETI) typically make one-off “spot scans” across the sky to search planetary systems for narrow-band radio signals that would indicate the presence of intelligent life. Spot scans may span a duration of seconds to minutes in order to observe a large number of targets with limited resources, but such a strategy does not necessarily consider the timing of exactly when to listen for extraterrestrial signals. Several ideas for possible time markers were suggested in the first few decades of SETI, such as the use of recurrent supernovae, gamma ray bursts, or pulsars as a way of establishing directionality and attracting attention toward an extraterrestrial beacon. Civilizations in binary systems might even choose the points of periastron and apastron in its host system to send transmissions to other single-star civilizations. However, all of these timing considerations were developed prior to the age of exoplanets, which enables a more detailed assessment of targets suitable for SETI. This paper suggests SETI strategies for circumbinary and circumprimary planets based upon the timing of orbital events in such systems. Events such as orbital extremes could represent a logical time marker for extraterrestrial civilizations to transmit, if they desire to be detected. Likewise, a transiting binary pair with inhabited planets around each star could yield maximum detectability of leakage radiation when both stars eclipse within our field of view. As planets in binary systems continue to be discovered, limited-duration SETI surveys should selectively target such systems based upon the occurrence of reasonable time markers. Full article
17 pages, 1527 KB  
Article
Intergenerational Effects of Gamma Radiation on Biology and Transcriptome of Invasive Tomato Leaf Miner, Tuta absoluta
by Yuhan Pan, Haixia Zhang, Qinghe Zhang, Farman Ullah, Yiming Pan, Yaru Wang, Limin Chen, Xiaowei Li, Jinming Zhang, Shuxing Zhou, Yaobin Lu and Youming Hou
Insects 2025, 16(10), 1062; https://doi.org/10.3390/insects16101062 - 17 Oct 2025
Viewed by 493
Abstract
The tomato leaf miner, Tuta absoluta, is a major pest affecting economically important crops like tomatoes, causing significant global economic losses and exhibiting increasing resistance to pesticides. The sterile insect technique (SIT) is an environmentally friendly control method that is sustainable for [...] Read more.
The tomato leaf miner, Tuta absoluta, is a major pest affecting economically important crops like tomatoes, causing significant global economic losses and exhibiting increasing resistance to pesticides. The sterile insect technique (SIT) is an environmentally friendly control method that is sustainable for both ecosystems and human health. This study used age-stage, two-sex life tables, transcriptomics, and bioinformatics to analyze how irradiation affects the reproductive capacity of male T. absoluta. Compared to the control group, the irradiated offspring showed reduced total lifespan, pre-adult survival rate, net reproductive rate, and intrinsic growth rate. Transcriptomic analysis identified 232 differentially expressed genes (DEGs). GO and KEGG enrichment analyses revealed that irradiation impacted biological processes in male adults related to key biomolecules, hormone metabolism and synthesis, and immune responses. Of the 14 selected genes validated through RT-qPCR, 13 were identified as potential regulators of male reproductive capacity, offering possible targets for controlling T. absoluta using inherited sterility-based SIT strategies. Overall, this study provides a theoretical basis for applying SIT in field control and identifies potential genetic targets for managing T. absoluta populations through a genetic sterile insect technique. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

27 pages, 4118 KB  
Article
Improvement of Premium Oil Soybean Variety Heinong 551 with Integrating Conventional Hybridization and Gamma Radiation
by Xiulin Liu, Xueyang Wang, Kezhen Zhao, Chunlei Zhang, Fengyi Zhang, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren and Bixian Zhang
Life 2025, 15(10), 1616; https://doi.org/10.3390/life15101616 - 16 Oct 2025
Viewed by 339
Abstract
Meeting the growing demand for vegetable oil while promoting agricultural sustainability in Northeast China requires developing high-yield, high-oil-content soybean varieties. We present the comprehensive development and evaluation of Heinong 551, an innovative soybean variety created through an integrated approach of conventional breeding methods [...] Read more.
Meeting the growing demand for vegetable oil while promoting agricultural sustainability in Northeast China requires developing high-yield, high-oil-content soybean varieties. We present the comprehensive development and evaluation of Heinong 551, an innovative soybean variety created through an integrated approach of conventional breeding methods and radiation-induced mutation techniques. The breeding program began with hybridization between Heinong 44 (the maternal parent) and Hefeng 47 (the paternal parent), followed by targeted exposure to 60Co gamma radiation at 130 Gy to induce beneficial mutations. Using systematic selection protocols over five generations from 2012 to 2016, we identified superior lines that underwent rigorous multi-location testing across seven sites in Heilongjiang Province during 2020–2021. Field evaluation results showed consistent performance, with Heinong 551 achieving average yields of 2901 kg/ha and 3142 kg/ha in those years, representing significant gains of 10. 6% and 11.0. 0% compared to standard control varieties. The cultivar maintained stable phenological traits with a reliable 120-day maturation period and demonstrated strong environmental adaptability across different growing conditions. Biochemical analysis revealed excellent nutritional value, with 39.45% crude protein and 21.69% crude fat, reaching a combined protein–fat percentage of 61.14%. Quality tests confirmed superior seed integrity, with sound seed rates over 97% and minimal pest or disease damage. Disease resistance assessments showed moderate tolerance to gray leaf spot while maintaining excellent overall plant health, with no signs of viral infections or nematode infestations during testing. Heinong 551 has received official approval for cultivation in Heilongjiang Province’ s second accumulated temperature zone, characterized by thermal units ≥2550 °C above a 10 °C threshold. This represents significant progress in high-oil soybean variety development, illustrating the success of combining traditional breeding methods with modern mutation technology. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

14 pages, 1263 KB  
Article
Impact of 6 MV-LINAC Radiation on Lymphocyte Phenotypes and Cytokine Profiles
by Papichaya Yudech, Wisawa Phongprapun, Pittaya Dankulchai, Duangporn Polpanich, Abdelhamid Elaissari, Rujira Wanotayan and Kulachart Jangpatarapongsa
Radiation 2025, 5(4), 29; https://doi.org/10.3390/radiation5040029 - 7 Oct 2025
Viewed by 598
Abstract
Radiotherapy employs high-energy X-rays to precisely target tumor tissues while minimizing damage to the surrounding healthy structures. Although its clinical efficacy is well established, the immunomodulatory effects of ionizing radiation remain complex and context-dependent. This study investigated the biological effects of radiotherapeutic doses [...] Read more.
Radiotherapy employs high-energy X-rays to precisely target tumor tissues while minimizing damage to the surrounding healthy structures. Although its clinical efficacy is well established, the immunomodulatory effects of ionizing radiation remain complex and context-dependent. This study investigated the biological effects of radiotherapeutic doses on immune cells by evaluating lymphocyte viability, phenotypic profiles, and cytokine expression levels. Peripheral blood mononuclear cells (PBMCs) were isolated from six healthy donors and irradiated with 0, 2, or 6 Gy using a 6 MV linear accelerator (LINAC). Dose validation with an ionization chamber demonstrated strong agreement between estimated and measured values (intraclass correlation coefficient = 1, 95% CI). Immune subsets, including T cells (CD3+), helper T cells (CD3+CD4+), cytotoxic T cells (CD3+CD8+), regulatory T cells (CD3+CD4+Foxp3+), and natural killer (CD3-CD56+) cells, along with intracellular cytokines interleukin-12 (IL-12) and interferon-gamma (IFN-γ), were analyzed via flow cytometry at multiple time points. The results showed a significant, dose-dependent decline in overall lymphocyte viability (p < 0.01) compared to control. Cytotoxic T cells were the most radiosensitive, followed by helper and regulatory T cells, while NK cells were the most radioresistant. IL-12 expression initially increased post-irradiation, while IFN-γ levels remained variable. These findings demonstrate that radiation induces distinct alterations in immune phenotypes and cytokine profiles, which may shape the immune response. Immune profiling following irradiation may therefore provide valuable insights for optimizing combination strategies that integrate radiotherapy and immunotherapy in cancer treatment. Full article
Show Figures

Graphical abstract

15 pages, 2261 KB  
Article
Seasonal Variations in Effective Radiation Dose in Residential Buildings of the Akmola Region: Assessing the Impact of Basement Presence and Proximity to Uranium Tailings
by Anel Lesbek, Yasutaka Omori, Meirat Bakhtin, Danara Ibrayeva, Shinji Tokonami, Baglan Kazhiyakhmetova, Moldir Aumalikova, Elena Saifulina, Elvira Mussaeva, Nursulu Altaeva, Aisulu Nygymanova and Yerlan Kashkinbayev
Environments 2025, 12(10), 357; https://doi.org/10.3390/environments12100357 - 4 Oct 2025
Viewed by 597
Abstract
Residential exposure to radon and environmental gamma radiation poses a significant public health concern in uranium-rich regions. The Akmola Region of Kazakhstan, home to one of the world’s largest uranium tailings sites, lacks localized data on seasonal exposure variations and associated health risks. [...] Read more.
Residential exposure to radon and environmental gamma radiation poses a significant public health concern in uranium-rich regions. The Akmola Region of Kazakhstan, home to one of the world’s largest uranium tailings sites, lacks localized data on seasonal exposure variations and associated health risks. This study assessed indoor radon progeny concentrations and gamma dose rates in 62 dwellings across two settlements—Aqsu and Zavodskoy—in the Akmola Region during autumn 2023 through summer 2024. Using RAMON-02 and Alpharad Plus detectors, seasonal equivalent equilibrium volumetric activity (EEVA) of radon progeny and effective doses were calculated, stratified by presence of a cellar. In Aqsu, ambient dose equivalent rates reached up to 0.55 µSv/h, and winter median EEVA levels exceeded 130 Bq/m3 in some non-cellar homes. Seasonal effective doses peaked in spring (up to 8.82 mSv) in cellar dwellings, with annual doses reaching 23.5 mSv—substantially higher than in Zavodskoy. Although mitigation efforts have reduced exposure in some homes, several cellar dwellings in Aqsu exhibited persistently elevated EEVA, suggesting potential structural vulnerabilities or residual contamination. These findings underscore significant seasonal and structural disparities in radiation exposure and highlight the need for targeted, site-specific interventions to reduce long-term health risks in affected communities. Full article
Show Figures

Figure 1

11 pages, 1765 KB  
Article
Viscosity Analysis of Electron-Beam Degraded Gellan in Dilute Aqueous Solution
by Fathi Elashhab, Lobna Sheha, Nada Elzawi and Abdelsallam E. A. Youssef
Physchem 2025, 5(4), 40; https://doi.org/10.3390/physchem5040040 - 30 Sep 2025
Viewed by 413
Abstract
Gellan gum (Gellan), a versatile polysaccharide applied in gel formation and prebiotic formulations, is often processed to tailor its molecular properties. Previous studies employed gamma irradiation and chemical hydrolysis, though without addressing systematic scaling behavior. This study investigates the structural and conformational modifications [...] Read more.
Gellan gum (Gellan), a versatile polysaccharide applied in gel formation and prebiotic formulations, is often processed to tailor its molecular properties. Previous studies employed gamma irradiation and chemical hydrolysis, though without addressing systematic scaling behavior. This study investigates the structural and conformational modifications of Gellan in dilute aqueous salt solutions using a safer and eco-friendly approach: atmospheric low-dose electron beam (e-beam) degradation coupled with viscosity analysis. Native and E-beam-treated Gellan samples (0.05 g/cm3 in 0.1 M KCl) were examined by relative viscosity at varying temperatures, with intrinsic viscosity and molar mass determined via Solomon–Ciuta and Mark–Houwink relations. Molar mass degradation followed first-order kinetics, yielding rate constants and degradation lifetimes. Structural parameters, including radius of gyration and second virial coefficient, produced scaling coefficients of 0.62 and 0.15, consistent with perturbed coil conformations in a good solvent. The shape factor confirmed preservation of an ideal random coil structure despite irradiation. Conformational flexibility was further analyzed using theoretical models. Transition state theory (TST) revealed that e-beam radiation lowered molar mass and activation energy but raised activation entropy, implying reduced flexibility alongside enhanced solvent interactions. The freely rotating chain (FRC) model estimated end-to-end distance (Rθ) and characteristic ratio (C), while the worm-like chain (WLC) model quantified persistence length (lp). Results indicated decreased Rθ, increased lp, and largely unchanged C, suggesting diminished chain flexibility without significant deviation from ideal coil behavior. Overall, this work provides new insights into Gellan’s scaling laws and flexibility under aerobic low-dose E-beam irradiation, with relevance for bioactive polysaccharide applications. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

Back to TopTop