Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,798)

Search Parameters:
Keywords = gas production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2519 KB  
Article
Experimental Evaluation of the Treatment Effect of High Viscosity Drilling Fluid and Floating Oil Using Ozone Fine Bubble Technology
by Xiaoxuan Guo, Lei Liu, Nannan Liu, Fulong Hu and Lijuan Zhang
Nanomaterials 2025, 15(17), 1324; https://doi.org/10.3390/nano15171324 (registering DOI) - 28 Aug 2025
Abstract
Drilling fluid plays a critical role in drilling engineering. With the deepening implementation of clean production concepts and increasingly stringent environmental regulations, the treatment standards for drilling wastewater at operational sites have been significantly elevated. In response to the characteristics of high oil [...] Read more.
Drilling fluid plays a critical role in drilling engineering. With the deepening implementation of clean production concepts and increasingly stringent environmental regulations, the treatment standards for drilling wastewater at operational sites have been significantly elevated. In response to the characteristics of high oil content, high COD, high chromaticity, high ammonia nitrogen, and total phosphorus content in drilling, the use of fine bubbles to improve gas utilization efficiency and mass transfer effect, combined with ozone gas, is aimed at degrading difficult-to-degrade high-molecular-weight organic compounds, aiming to solve the problems of high viscosity and high oil content in drilling fluids returned from offshore platforms. Indoor simulation experiments have shown that by using ozone fine bubble technology to treat drilling fluids, the viscosity reduction rate can reach over 29%, and the oil removal rate can reach 40%. Ozone fine bubble technology has significant viscosity reduction and oil removal effects on high viscosity drilling fluids. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
16 pages, 2616 KB  
Article
Photocatalytic Degradation of Organophosphates using Nanocrystalline ZnO Synthesized by Modified Sonochemical Method
by Jamshed Khan, Mshari A. Alotaibi, Israf Ud Din, Abdulrahman I. Alharthi, Tooba Saeed, Qazi Nasir, Ho Soon Min, Abdul Naeem, Md Afroz Bakht and Akil Ahmad
Catalysts 2025, 15(9), 820; https://doi.org/10.3390/catal15090820 (registering DOI) - 28 Aug 2025
Abstract
Organophosphates, especially their ester, are not only toxic to humans but equally toxic to aquatic and other animal life on Earth when exposed to them. Here, we designed an efficient and easy way to degrade hexamethyl phosphoramide and omethoate organophosphate catalytically in a [...] Read more.
Organophosphates, especially their ester, are not only toxic to humans but equally toxic to aquatic and other animal life on Earth when exposed to them. Here, we designed an efficient and easy way to degrade hexamethyl phosphoramide and omethoate organophosphate catalytically in a natural way into non-toxic products. Both hexamethyl phosphoramide and omethoate are possible carcinogens and cause serious health issues in humans and other animals when exposed to them. In this work, a modified sonochemical method was used for the synthesis of ZnO nanoparticles using zinc acetate dihydrate, ethylenediamine dihydrochloride, and polyvinylpyrrolidone. Sodium hydroxide was used as the precipitating agent, and distilled water was used as the solvent. An Elmasonic ultra-sonicator with 240-watt power was used for the preparation of ZnO nanoparticles. The synthesized ZnO nanoparticles with a high surface area (250 m2/g), average particle size of 23 ± 1 nm, and a mesoporous structure with 1.858 nm average pore size were then used for the degradation of organophosphate, i.e., hexamethyl phosphoramide and omethoate pesticide, using 10 µL of concentration to check their catalytic efficiency for the first time. The degradation products were identified using gas chromatography–electron impact mass spectrometry (GC/EIMS). The results showed that omethoate was completely degraded, while hexamethyl phosphoramide showed partial degradation, both producing fewer toxic intermediates. Full article
11 pages, 604 KB  
Article
Olive Leaf Powder as a Potential Functional Component of Food Innovation: An In Vitro Study Evaluating Its Total Antioxidant Capacity and Phenolic Content
by Kalliopi Almpounioti, Olga Papagianni, Panagiota Michaloudi, Sofia Konstantina Tsermoula, Panagiota Potsaki, Charalampia Dimou and Antonios E. Koutelidakis
Appl. Sci. 2025, 15(17), 9462; https://doi.org/10.3390/app15179462 (registering DOI) - 28 Aug 2025
Abstract
Olive leaves (Olea europaea) are the most abundant agricultural by-product of olive tree cultivation, generating substantial waste each year. Their disposal is deemed an environmental challenge, particularly in Mediterranean countries that dominate the olive oil sector, yet their rich bioactive profile [...] Read more.
Olive leaves (Olea europaea) are the most abundant agricultural by-product of olive tree cultivation, generating substantial waste each year. Their disposal is deemed an environmental challenge, particularly in Mediterranean countries that dominate the olive oil sector, yet their rich bioactive profile makes them promising candidates for functional food development. This study aimed to determine the total antioxidant capacity (TAC) and total phenolic content (TPC) of olive leaf powder extracts using different extraction solvents and methods to identify the most efficient strategy for possible incorporation into functional food systems. Extractions were performed with distilled water, 70% ethanol, 80% methanol, and 50% acetone using three methods: stirring, soaking, and ultrasound-assisted extraction (UAE). TAC and TPC were quantified using the FRAP and Folin–Ciocalteu assays, respectively. Among solvents, acetone consistently yielded the highest values across most methods (TAC: 19.02 mmol Fe2+/L, TPC: 1289.95 mg GA/L), while ethanol also showed strong extraction performance (TAC: 15.35 mmol Fe2+/L; TPC: 1214.76 mg GA/L), offering a safer and more scalable option for food applications. Method-wise, UAE achieved the greatest phenolic recovery, while both UAE and stirring proved effective for antioxidant extraction. Overall, these findings provide quantitative evidence supporting possible incorporation of olive leaf powder as a valuable ingredient in functional foods and other sustainable applications, while also contributing to the circular economy through the sustainable valorization of agricultural waste. Full article
Show Figures

Figure 1

24 pages, 6119 KB  
Article
Dynamic Response of Methane Explosion and Roadway Surrounding Rock in Restricted Space: A Simulation Analysis of Fluid-Solid Coupling
by Qiangyu Zheng, Peijiang Ding, Zhenguo Yan, Yaping Zhu and Jinlong Zhang
Appl. Sci. 2025, 15(17), 9454; https://doi.org/10.3390/app15179454 (registering DOI) - 28 Aug 2025
Abstract
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of [...] Read more.
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of the surrounding rock structure, the destruction of equipment, and casualties. The aim of this study is to systematically reveal the propagation characteristics of the blast wave, the spatial and temporal evolution of the wall load, and the damage mechanism of the surrounding rock by establishing a two-way fluid-solid coupling numerical model. Based on the Ansys Fluent fluid solver and Transient Structure module, a framework for the co-simulation of the fluid and solid domains has been constructed by adopting the standard kε turbulence model, finite-rate/eddy-dissipation (FR/ED) reaction model, and nonlinear finite-element theory, and by introducing a dynamic damage threshold criterion based on the Drucker–Prager and Mohr–Coulomb criteria. It is shown that methane concentration significantly affects the kinetic behavior of explosive shock wave propagation. Under chemical equivalence ratio conditions (9.5% methane), an ideal Chapman–Jouguet blast wave structure was formed, exhibiting the highest energy release efficiency. In contrast, lean ignition (7%) and rich ignition (12%) conditions resulted in lower efficiencies due to incomplete combustion or complex combustion patterns. In addition, the pressure time-history evolution of the tunnel enclosure wall after ignition triggering exhibits significant nonlinear dynamics, which can be divided into three phases: the initiation and turbulence development phase, the quasi-steady propagation phase, and the expansion and dissipation phase. Further analysis reveals that the closed end produces significant stress aggregation due to the interference of multiple reflected waves, while the open end increases the stress fluctuation due to turbulence effects. The spatial and temporal evolution of the strain field also follows a three-stage dynamic pattern: an initial strain-induced stage, a strain accumulation propagation stage, and a residual strain stabilization stage and the displacement is characterized by an initial phase of concentration followed by gradual expansion. This study not only deepens the understanding of methane-air premixed gas explosion and its interaction with the roadway’s surrounding rock, but also provides an important scientific basis and technical support for coal mine safety production. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

23 pages, 2736 KB  
Article
Evaluation of Peanut Physiological Responses to Heat and Drought Stress Across Growth Chamber and Field Environments
by Ranadheer Reddy Vennam, Keely M. Beard, David C. Haak and Maria Balota
Plants 2025, 14(17), 2687; https://doi.org/10.3390/plants14172687 - 28 Aug 2025
Abstract
Heat-exacerbated drought stress is becoming increasingly common in crop production systems, including peanuts, yet limited information exists on how peanut cultivars respond to this combined stress. While controlled environments allow for the isolation of these stress effects, their relevance to field conditions remains [...] Read more.
Heat-exacerbated drought stress is becoming increasingly common in crop production systems, including peanuts, yet limited information exists on how peanut cultivars respond to this combined stress. While controlled environments allow for the isolation of these stress effects, their relevance to field conditions remains unclear. In this study, five Virginia-type peanut cultivars were evaluated under four treatments in a growth chamber environment, i.e., control, heat, drought, and combined heat and drought stress; and under two treatments in the field environment, i.e., rainfed control, and combined heat and drought stress using rainout shelters. The physiological traits assessed included stomatal conductance and transpiration rate, as well as leaf temperature difference. In both environments, combined heat and drought resulted in a significant decline in physiological performance compared to control conditions. On average, stomatal conductance decreased by 65% in the growth chamber and 21% in the field under combined heat and drought stress, while transpiration was reduced by 49% and 24%, respectively. In the growth chamber, leaf temperature difference increased by 40% under combined stress, whereas it was not statistically different under field conditions. Correlations of the physiological responses between growth chamber and field were stronger under combined stress conditions than under control conditions. Principal component analysis revealed clear genotypic separation based on gas exchange and thermal traits, with NC 20 and Sullivan consistently associated with higher stomatal conductance and transpiration under stress across environments, indicating greater physiological resilience, while Emery clustered with traits linked to stress susceptibility. These findings underscore the significant impacts of combined stress in peanut production and highlight the importance of evaluating cultivar responses under both controlled and field environments to guide crop improvement strategies. Full article
20 pages, 2684 KB  
Article
Food Waste Bioconversion Features Depending on the Regime of Anaerobic Digestion
by Marta Zofia Cieślik, Andrzej Jan Lewicki, Wojciech Czekała and Iryna Vaskina
Energies 2025, 18(17), 4567; https://doi.org/10.3390/en18174567 - 28 Aug 2025
Abstract
Approximately one-third of global food production is wasted annually, which contributes significantly to greenhouse gas emissions and economic costs. Anaerobic digestion (AD) is an effective method for converting food waste into biogas, but its efficiency depends on factors such as temperature and substrate [...] Read more.
Approximately one-third of global food production is wasted annually, which contributes significantly to greenhouse gas emissions and economic costs. Anaerobic digestion (AD) is an effective method for converting food waste into biogas, but its efficiency depends on factors such as temperature and substrate composition. This study compared mesophilic and thermophilic AD of selectively collected fruit and vegetable waste, quantifying process efficiency and identifying factors leading to collapse. Studies were performed in 1 dm3 reactors with gradually increasing organic loading rates until process collapse. Process dynamics, stability, and gas yields were assessed through daily biogas measurements and analyses of pH, FOS/TAC ratio, sCOD, ammonia, volatile fatty acids, alcohols, total and volatile solids, and C/N ratio. Research has shown that peak methane yields occurred at OLR = 0.5–1.0 kg VS·m−3·d−1, with thermophilic systems producing 0.63–5.48% more methane during stable phases. Collapse occurred at OLR = 3.0 in thermophilic and 4.0 in mesophilic reactors, accompanied by sharp increases in methanol, acetic acid, butyric acid, propionic acid, and FOS/TAC. The pH dropped to 5.49 and 6.09. While thermophilic conditions offered higher methane yields, they were more susceptible to rapid process destabilization due to intermediate metabolite accumulation. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
30 pages, 7450 KB  
Article
Surface Roughness Uniformity Improvement of Additively Manufactured Channels’ Internal Corners by Liquid Metal-Driven Abrasive Flow Polishing
by Yapeng Ma, Kaixiang Li, Baoqi Feng and Lei Zhang
Micromachines 2025, 16(9), 987; https://doi.org/10.3390/mi16090987 (registering DOI) - 28 Aug 2025
Abstract
Additive manufacturing (AM) enables the production of complex components but often results in poor surface quality due to its layer-by-layer deposition process. To improve surface finish, postprocessing methods like abrasive flow machining (AFM) are necessary. However, conventional AFM struggles with achieving uniform polishing [...] Read more.
Additive manufacturing (AM) enables the production of complex components but often results in poor surface quality due to its layer-by-layer deposition process. To improve surface finish, postprocessing methods like abrasive flow machining (AFM) are necessary. However, conventional AFM struggles with achieving uniform polishing in intricate regions, especially at internal corners. This study proposes a liquid metal-driven abrasive flow (LM-AF) strategy designed for polishing complex internal channels in AM parts. By combining experimental and numerical simulations, the research investigates surface roughness variations, particularly focusing on the Sa (Arithmetic Average Surface Roughness) parameter. Experimental results show that conventional AFM leaves significant roughness at internal corners compared to adjacent areas. To address this, a hybrid GA-NN-GA (Genetic Algorithm–Neural Network-Genetic Algorithm) optimization model was developed. The model uses a neural network to predict Sa based on key parameters, with genetic algorithms applied for training and optimization. The optimal process parameters identified include a NaOH concentration of 1 mol/L, a voltage of 50 V, abrasive concentration of 10%, and a frequency of 428.3 Hz. With these parameters, LM-AF significantly reduced roughness at internal corners of flow channels, achieving uniformity with Sa values reduced from 25.365 μm to 15.780 μm, from 22.950 μm to 15.718 μm, and from 10.933 μm to 10.055 μm, outperforming traditional AFM methods. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

16 pages, 2307 KB  
Article
Effect of Carboxyl Content on Mechanical Properties of Lignin/Carboxylated Nitrile Rubber Compounds
by Hongbing Zheng and Dongmei Yue
Polymers 2025, 17(17), 2332; https://doi.org/10.3390/polym17172332 - 28 Aug 2025
Abstract
Nitrile rubber (NBR) exhibits excellent oil resistance, wear resistance, gas barrier properties, and mechanical properties. On the other hand, lignin, a by-product of the pulp and paper industry, can serve as an ideal substitute for carbon black as a reinforcing agent for rubber. [...] Read more.
Nitrile rubber (NBR) exhibits excellent oil resistance, wear resistance, gas barrier properties, and mechanical properties. On the other hand, lignin, a by-product of the pulp and paper industry, can serve as an ideal substitute for carbon black as a reinforcing agent for rubber. However, when NBR is directly compounded with lignin, direct compounding fails to achieve the desired reinforcing effect due to poor dispersion of lignin in the NBR matrix and poor compatibility with the NBR phase. In this paper, carboxyl groups were introduced via cyano group hydrolysis. By controlling the hydrolysis time, we successfully prepared two types of carboxylated NBR with different carboxyl contents. Subsequently, the carboxylated NBR was processed into lignin/NBR composites via dry blending. The results indicated that the introduction of carboxyl groups endowed NBR with higher polarity and reactivity, significantly enhancing the interfacial compatibility between lignin and the rubber matrix. The mechanical properties of the composite were greatly improved, with the mechanical strength increasing from 4.5 MPa without carboxyl groups to 13.8 MPa with high carboxyl content. The good dispersion of lignin also significantly improved the thermal stability of the composite. The carboxylation modification strategy of NBR provides a new approach for preparing high-performance NBR/biomass composites. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 22656 KB  
Article
Development of a Laser Cladding Technology for Repairing First-Stage High-Pressure Turbine Blades in Gas Turbine Engines
by Stepan Tukov, Rudolf Korsmik, Grigoriy Zadykyan, Dmitrii Mukin, Ruslan Mendagaliev and Nikita Roschin
Metals 2025, 15(9), 957; https://doi.org/10.3390/met15090957 - 28 Aug 2025
Abstract
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to [...] Read more.
A gas turbine engine is a technological system consisting of a compressor, a combustion chamber, and other modules. All these components are subjected to dynamic and cyclic loads, which lead to fatigue cracks and mechanical damage. The aim of this work is to repair the worn surfaces of a series of DR-59L high-pressure turbine blades by laser powder cladding. A number of technological parameters of laser cladding were tested to obtain a defect-free structure on the witness sample. The metal powder of the cobalt alloy Stellite 21 was used as a filler material. By modeling the process of restoring rotor blades, the operating mode of laser powder cladding was determined. No defects were detected during capillary control of the restored surfaces of the rotor blades. The results of the uniaxial tension test of the restored rotor blades showed increased tensile strength and elongation. With the use of laser powder cladding technology, it was possible to restore the worn surfaces of a series of rotor blades of the DR-59L high-pressure turbine, thereby increasing the life cycle of power plant products. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

22 pages, 4758 KB  
Article
Comparative Analysis of Flavor Quality of Beef with Tangerine Peel Reheated by Stir-Frying, Steaming and Microwave
by Kaixian Zhu, Huaitao Wang, Hongjun Chen, Wenzheng Zhu, Chunlu Qian, Jun Liu, Juan Kan and Man Zhang
Foods 2025, 14(17), 3017; https://doi.org/10.3390/foods14173017 - 28 Aug 2025
Abstract
A prepared dish needs to be reheated before eating, and various reheating methods affect its flavor quality. This study evaluated the influence of stir-frying reheating, steaming reheating and microwave reheating on moisture content, lipid oxidation and flavor profiles of prepared beef with tangerine [...] Read more.
A prepared dish needs to be reheated before eating, and various reheating methods affect its flavor quality. This study evaluated the influence of stir-frying reheating, steaming reheating and microwave reheating on moisture content, lipid oxidation and flavor profiles of prepared beef with tangerine peel. Stir-frying reheating samples obtained a higher moisture content and the highest thiobarbituric acid reactive substance value. Fifty-seven volatile compounds were identified by gas chromatography–mass spectrometry, of which fifteen compounds were considered as odor-active compounds with an odor activity value > 1. Aldehydes were the most prominent contributors to the aroma of reheated samples. Results revealed that stir-frying reheating samples had the most varieties of odor-active compounds, and the odor activity values of most of them were relatively higher. The heatmap analysis based on the odor activity values indicated that the stir-frying reheating process could maintain the original flavor of samples. A total of fifty-two volatile organic compounds were identified by gas chromatography–ion mobility spectrometry, and the principal component analysis revealed that the three reheated samples could be well distinguished from each other. Moreover, the content of free amino acids and nucleotides in stir-frying reheating samples was higher than that in other reheated samples. In conclusion, different reheating treatments affected the flavor quality of beef samples, and stir-frying process was better to obtain the aroma and taste characteristics of samples. The results of this study could provide useful information about the appropriate reheating method of a dish of prepared beef with tangerine peel for consumers, caterers and industrial production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

20 pages, 6862 KB  
Article
Kinetics and Morphological Characteristics of CO2 Hydrate Formation Within Sandstone Fractures
by Chuanhe Ma, Hongxiang Si, Jiyao Wang, Tingting Luo, Tao Han, Ziyang Dong and Chaozheng Ma
Appl. Sci. 2025, 15(17), 9440; https://doi.org/10.3390/app15179440 - 28 Aug 2025
Abstract
Hydrate-based CO2 sequestration is considered one of the most promising methods in the field of carbon capture, utilization, and storage. The abundant fractured environments in marine sediments provide an ideal setting for the sequestration of CO2 hydrate. Investigating the kinetics and [...] Read more.
Hydrate-based CO2 sequestration is considered one of the most promising methods in the field of carbon capture, utilization, and storage. The abundant fractured environments in marine sediments provide an ideal setting for the sequestration of CO2 hydrate. Investigating the kinetics and morphological characteristics of CO2 hydrate formation within fractures is a critical prerequisite for achieving efficient and safe CO2 sequestration using hydrate technology in subsea environments. Based on the aforementioned considerations, the kinetic experiments on the formation, dissociation, and reformation of CO2 hydrates were conducted using a high-pressure visualization experimental system in this study. The kinetic behaviors and morphological characteristics of CO2 hydrates within sandstone fractures were comprehensively investigated. Particular emphasis was placed on analyzing the effects of fracture width, type, and surface roughness on the processes of hydrate formation, dissociation, and reformation. The experimental results indicate the following: (1) At a formation pressure of 2.9 MPa, the 10 mm width fracture exhibited the shortest induction time, the longest formation duration, and the highest hydrate yield (approximately 0.52 mol) compared to the other two fracture widths. The formed CO2 hydrates exhibited a smooth, thin-walled morphology. (2) In X-type fractures, the formation of CO2 hydrates was characterized by concurrent induction and dissolution processes. Compared to I-type fractures, the hydrate formation process in X-type fractures exhibited shorter formation durations and generally lower hydrate yields. (3) An increase in fracture roughness enhances the number of nucleation sites for the formation of hydrates. In both fracture types (I-type and X-type), the induction time for CO2 hydrate formation was nearly negligible. However, a significant difference in the trend of formation duration was observed under varying roughness conditions. (4) Hydrate dissociation follows a diffusion-controlled mechanism, progressing from the fracture walls towards the interior. The maximum gas production was achieved in the 10 mm-width fracture, reaching 0.24 mol, indicating optimal heat and mass transfer conditions under this configuration. (5) During the reformation process, the induction time was significantly shortened due to the “memory effect.” However, the hydrate yield after the reformation process remained consistently lower than that of the first formation, which is primarily attributed to the high solubility of CO2 in the aqueous phase. Full article
Show Figures

Figure 1

18 pages, 2724 KB  
Article
Life Cycle Assessment Method for Ship Fuels Using a Ship Performance Prediction Model and Actual Operation Conditions—Case Study of Wind-Assisted Cargo Ship
by Mohammad Hossein Arabnejad, Fabian Thies, Hua-Dong Yao and Jonas W. Ringsberg
Energies 2025, 18(17), 4559; https://doi.org/10.3390/en18174559 - 28 Aug 2025
Abstract
Although wind-assisted ship propulsion (WASP) is an effective technique for reducing the emissions of merchant ships, the best fuel type for complementing WASP remains an open question. This study presents a new original life cycle assessment method for ship fuels that uses a [...] Read more.
Although wind-assisted ship propulsion (WASP) is an effective technique for reducing the emissions of merchant ships, the best fuel type for complementing WASP remains an open question. This study presents a new original life cycle assessment method for ship fuels that uses a validated ship performance prediction model and actual operation conditions for a WASP ship. As a case study, the method is used to evaluate the fuel consumption and environmental impact of different fuels for a WASP ship operating in the Baltic Sea. Using a novel in-house-developed platform for predicting ship performance under actual operation conditions using hindcast data, the engine and fuel tank were sized while accounting for fluctuating weather conditions over a year. The results showed significant variation in the required fuel tank capacity across fuel types, with liquid hydrogen requiring the largest volume, followed by LNG and ammonia. Additionally, a well-to-wake life cycle assessment revealed that dual-fuel engines using green ammonia and hydrogen exhibit the lowest global warming potential (GWP), while grey ammonia and blue hydrogen have substantially higher GWP levels. Notably, NOx, SOx, and particulate matter emissions were consistently lower for dual-fuel and liquid natural gas scenarios than for single-fuel marine diesel oil engines. These results underscore the importance of selecting both an appropriate fuel type and production method to optimize environmental performance. This study advocates for transitioning to greener fuel options derived from sustainable pathways for WASP ships to mitigate the environmental impact of maritime operations and support global climate change efforts. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

26 pages, 2731 KB  
Article
Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study
by Artur Wodołażski
Energies 2025, 18(17), 4557; https://doi.org/10.3390/en18174557 - 28 Aug 2025
Abstract
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the [...] Read more.
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the slurry flow rate on dynamic biocrude oil production is investigated through full transient CFD analysis in a scaled-up CSTR study. The kinetics of the HTL mechanism as a function of temperature, pressure, and residence time distribution were employed in the model through a user-defined function (UDF). The multiphysics simulation of the HTL process in a stirred tank reactor using the Lagrangian–Eulerian (LE) approach, along with a standard k-ε turbulence model, integrated HTL kinetics. The simulation accounts for particle–fluid interactions by coupling CFD-derived hydrodynamic fields with discrete particle motion, enabling prediction of individual particle trajectories based on drag, buoyancy, and interphase momentum exchange. The three-phase flow using a compressible non-ideal gas model and multiphase interaction as design requirements increased process efficiency in high-pressure and high-temperature model conditions. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

25 pages, 7430 KB  
Article
Sustainable Irrigation Management of Winter Wheat and Effects on Soil Gas Emissions (N2O and CH4) and Enzymatic Activity in the Brazilian Savannah
by Alexsandra Duarte de Oliveira, Jorge Cesar dos Anjos Antonini, Marcos Vinícius Araújo dos Santos, Altair César Moreira de Andrade, Juaci Vitoria Malaquias, Arminda Moreira de Carvalho, Artur Gustavo Muller, Francisco Marcos dos Santos Delvico, Ieda de Carvalho Mendes, Jorge Henrique Chagas, Angelo Aparecido Barbosa Sussel and Julio Cesar Albrecht
Sustainability 2025, 17(17), 7734; https://doi.org/10.3390/su17177734 - 28 Aug 2025
Abstract
Water scarcity and greenhouse gas (GHG) emissions pose significant challenges to sustainable wheat production in tropical regions such as the Brazilian Cerrado. This study evaluated the effects of different soil water depletion levels, denoted as f (20%, 40%, 60%, and 80% of available [...] Read more.
Water scarcity and greenhouse gas (GHG) emissions pose significant challenges to sustainable wheat production in tropical regions such as the Brazilian Cerrado. This study evaluated the effects of different soil water depletion levels, denoted as f (20%, 40%, 60%, and 80% of available water capacity—AWC), on no-tillage winter wheat irrigated after rainfed soybean cultivation. Grain yield decreased significantly at depletion levels ≥ 60%, with the highest yields observed at f = 20% (6933 kg ha−1) and f = 40% (6814 kg ha−1). Water use efficiency (WUE) ranged from 12.4 to 14.0 kg ha−1 mm−1, with no significant differences among treatments. Nitrous oxide (N2O) emissions peaked at f = 60% (4.55 kg ha−1), resulting in the highest average global warming potential (GWP = 1.185.78 kg CO2 eq ha−1) and greenhouse gas intensity (GHGI = 192.66 kg CO2 eq Mg−1 grain). Methane (CH4) acted as a net sink across all irrigation levels. Soil enzymatic activities (β-glucosidase and arylsulfatase) were not significantly affected by irrigation management. Overall, irrigation scheduling based on f = 40% soil water depletion provided the best balance between productivity and environmental sustainability, representing a climate-smart and resource-efficient strategy for wheat production in tropical agroecosystems. These findings provide promising insights for tropical agriculture by showing that sustainable irrigation can balance productivity and climate mitigation in the Cerrado. Maintaining soil water depletion below 60% significantly reduces N2O emissions and environmental impact, emphasizing the importance of conservation practices. Additionally, preserving soil biological quality supports the long-term viability of these practices and offers valuable guidance for policies promoting efficient irrigation in climate-vulnerable regions. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Graphical abstract

20 pages, 769 KB  
Article
Morphophysiological and Nutritional Responses of Bean Cultivars in Competition with Digitaria insularis
by Leandro Galon, Carlos Daniel Balla, Otilo Daniel Henz Neto, Lucas Tedesco, Germani Concenço, Ândrea Machado Pereira Franco, Aline Diovana Ribeiro dos Anjos, Otávio Augusto Dassoler, Michelangelo Muzell Trezzi and Gismael Francisco Perin
Plants 2025, 14(17), 2684; https://doi.org/10.3390/plants14172684 - 28 Aug 2025
Abstract
Studies exploring the competitive interactions between common beans and weeds are essential to adopt more efficient management strategies in the field, thereby reducing production costs. This study aimed to evaluate the competitive ability of bean cultivars in the presence of sourgrass (Digitaria [...] Read more.
Studies exploring the competitive interactions between common beans and weeds are essential to adopt more efficient management strategies in the field, thereby reducing production costs. This study aimed to evaluate the competitive ability of bean cultivars in the presence of sourgrass (Digitaria insularis), using different plant proportions in associations. The experiments were conducted in a greenhouse, arranged in a randomized block design with four replications, from October 2020 to February 2021. Treatments were organized in the following plant proportions of beans and sourgrass: 100:0, 75:25, 50:50, 25:75, and 0:100%. The competitiveness analysis was carried out using replacement series diagrams and relative competitiveness indices. At 50 days after emergence (DAE), measurements were taken for leaf area, plant height, gas exchange, shoot dry mass, and nutrient concentration in bean leaves. The results show that interference between common bean cultivars and sourgrass involves equivalent competition mechanisms. Increasing sourgrass density negatively affects physiological traits and gas exchange in beans by about 10%. Beans show about 15% higher relative growth than sourgrass, based on competitiveness indices. Nutrient levels vary by cultivar and competitor ratio. Intercropping harms species more than intraspecific competition. Further field studies should determine critical control stages and economic impacts, aiding weed management decisions in bean production. Full article
(This article belongs to the Special Issue Advances in Weed Control and Management)
Show Figures

Figure 1

Back to TopTop