Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = gas-expanded liquid extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 4676 KB  
Review
Recent Developments in Polymer Inclusion Membranes: Advances in Selectivity, Structural Integrity, Environmental Applications and Sustainable Fabrication
by Anna Nowik-Zając and Vira Sabadash
Membranes 2025, 15(8), 249; https://doi.org/10.3390/membranes15080249 - 19 Aug 2025
Viewed by 978
Abstract
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and [...] Read more.
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and molecule selectivity through the incorporation of novel carriers, including ionic liquids and task-specific extractants, as well as through polymer functionalization techniques. Improvements in mechanical and chemical stability, achieved via the utilization of high-performance polymers such as polyvinylidene fluoride (PVDF) and polyether ether ketone (PEEK), as well as cross-linking approaches, are critically analyzed. The expanded application of PIMs in the removal of heavy metals, organic micropollutants, and gas separation, particularly for carbon dioxide capture, is discussed with an emphasis on efficiency and operational robustness. The integration of PIMs with electrochemical and optical transduction platforms for sensor development is also reviewed, highlighting enhancements in sensitivity, selectivity, and response time. Furthermore, emerging trends towards the fabrication of sustainable PIMs using biodegradable polymers and green solvents are evaluated. Advances in scalable manufacturing techniques, including phase inversion and electrospinning, are addressed, outlining pathways for the industrial translation of PIM technologies. The review concludes by identifying current limitations and proposing future research directions necessary to fully exploit the potential of PIMs in industrial and environmental sectors. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

45 pages, 4295 KB  
Review
Recent Trends and Challenges on the Non-Targeted Analysis and Risk Assessment of Migrant Non-Intentionally Added Substances from Plastic Food Contact Materials
by Pablo Miralles, Esther Fuentes-Ferragud, Cristina Socas-Hernández and Clara Coscollà
Toxics 2025, 13(7), 543; https://doi.org/10.3390/toxics13070543 - 28 Jun 2025
Viewed by 1231
Abstract
Non-intentionally added substances (NIAS) in plastic food contact materials represent a critical undercharacterized chemical safety concern, caused by their inherent diversity, potential toxicity, and regulatory challenges. This review synthesizes recent advances and persistent gaps in NIAS analysis, with a primary focus on analytical [...] Read more.
Non-intentionally added substances (NIAS) in plastic food contact materials represent a critical undercharacterized chemical safety concern, caused by their inherent diversity, potential toxicity, and regulatory challenges. This review synthesizes recent advances and persistent gaps in NIAS analysis, with a primary focus on analytical workflows for non-targeted analysis, alongside a consideration of risk assessment and toxicological prioritization frameworks. Conventional plastics (e.g., polyethylene, polypropylene, or polyethylene terephthalate) as well as emerging materials (e.g., bioplastics and recycled polymers) exhibit different NIAS profiles, including oligomers, degradation products, additives, and contaminants, requiring specific approaches for migration testing, extraction, and detection. Advanced techniques, such as ultra-high-performance liquid chromatography or two-dimensional gas chromatography coupled with high-resolution mass spectrometry, have enabled non-targeted analysis approaches. However, the field remains constrained by spectral library gaps, limited reference standards, and inconsistent data processing protocols, resulting in heavy reliance on tentative identifications. Risk assessment procedures mainly employ the Threshold of Toxicological Concern and classification by Cramer’s rules. Nevertheless, addressing genotoxicity, mixture effects, and novel hazards from recycled or bio-based polymers remains challenging with these approaches. Future priorities and efforts may include expanding spectral databases, harmonizing analytical protocols, and integrating in vitro bioassays with computational toxicology to refine hazard characterization. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

23 pages, 12531 KB  
Article
Detailed Numerical Simulation of Planar Liquid Sheet Atomization: Instability Dynamics, Ligament Formation, and Self-Destabilization Mechanisms
by Ziting Zhao, Chenglin Zhou, Jianfeng Zou, Jiaqi Sun and Yufeng Yao
Fire 2025, 8(5), 195; https://doi.org/10.3390/fire8050195 - 13 May 2025
Viewed by 560
Abstract
The primary atomization of planar liquid sheets near nozzle exits plays a critical role in the study of pressure-swirl atomizers, yet its intrinsic destabilization and breakup mechanisms remain insufficiently characterized due to the multi-scale nature of gas–liquid interactions, significantly limiting the predictive capacity [...] Read more.
The primary atomization of planar liquid sheets near nozzle exits plays a critical role in the study of pressure-swirl atomizers, yet its intrinsic destabilization and breakup mechanisms remain insufficiently characterized due to the multi-scale nature of gas–liquid interactions, significantly limiting the predictive capacity of current widely adopted atomization models. This study utilizes three-dimensional direct numerical simulations (DNSs) with adaptive mesh refinement and the Volume-of-Fluid (VOF) method to examine the instability and disintegration of a spatially developing planar liquid sheet under operating conditions representative of aero-engine combustors (thickness h=100 μm, We=2544, Re=886). Adaptive grid resolution (minimum cell size 2.5 μm) enables precise resolution of multi-scale interface dynamics while maintaining mass conservation errors below 0.1‱. High-fidelity simulations reveal distinct atomization cascades originating from the jet tip, characterized by liquid sheet roll-up, interface expanding, interface tearing, and ligament/droplet formation. Through extraction and surface characterization of representative shed liquid ligaments, we quantify temporal and spatial variations between ligaments propagating toward and away from the jet core region. Key findings demonstrate that ligament impingement on the liquid core serves as the dominant mechanism for surface wave destabilization, surpassing the influence of initial gas–liquid shear at the nozzle exit. Spectral analysis of upstream surface waves reveals a pronounced correlation between high-wavenumber disturbances and the mean diameter of shed ligaments. These results challenge assumptions in classical atomization models (e.g., LISA) by highlighting self-destabilization mechanisms driven by droplet–ligament interactions. This work provides critical insights for refining engineering atomization models through physics-based ligament diameter prediction criteria. Full article
(This article belongs to the Special Issue Turbulent Spray Combustion: Mechanism Research and Modeling)
Show Figures

Figure 1

21 pages, 8468 KB  
Article
Study on the Expansion Law of Pressure Drop Funnel in Unsaturated Low-Permeability Coalbed Methane Wells
by Lei Zhang, Qingfeng Zhang, Yuan Wang, Ziling Li, Haikun Lin, Xiaoguang Sun, Wei Sun, Junpeng Zou, Xiaofeng Chen and Quan Zhang
Processes 2025, 13(3), 826; https://doi.org/10.3390/pr13030826 - 12 Mar 2025
Viewed by 681
Abstract
In China, most medium- and shallow-depth coalbed methane (CBM) reservoirs are in the middle to late stages of development. Exploiting CBM in unsaturated low-permeability reservoirs remains particularly challenging. This study investigates the evolution of reservoir pressure in rock strata during CBM extraction from [...] Read more.
In China, most medium- and shallow-depth coalbed methane (CBM) reservoirs are in the middle to late stages of development. Exploiting CBM in unsaturated low-permeability reservoirs remains particularly challenging. This study investigates the evolution of reservoir pressure in rock strata during CBM extraction from a low-permeability coal seam in the Ordos Basin. By integrating the seepage equation, material balance equation, and fluid pressure theory, we establish a theoretical and numerical model of reservoir pressure dynamics under varying bottom-hole flowing pressures. The three-dimensional surface of reservoir pressure is characterized by the formation of a stable pressure drop funnel. The results show that gas–liquid flow capacity is significantly constrained in low-permeability reservoirs. A slower drainage control rate facilitates the formation of stable seepage channels and promotes the expansion of the seepage radius. Under ultra-low permeability (0.5 mD) to low permeability (2.5 mD) conditions, controlling the bottom-hole flowing pressure below the average value aids the effective expansion of the pressure drop funnel. Numerical simulations indicate that the seepage and desorption radii expand more effectively under low decline rates in low-permeability zones. Calculations based on production data reveal that, under ultra-low permeability conditions, Well V1 exhibits a narrower and more elongated pressure drop funnel than Well V2, which operates in a low permeability zone. Furthermore, well interference has a lesser effect on the expansion of the pressure drop funnel under ultra-low permeability conditions. These differences in the steady-state morphology of the pressure drop funnel ultimately lead to variations in production capacity. These findings provide a theoretical foundation and practical guidance for the rational development of low-permeability CBM reservoirs. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization)
Show Figures

Figure 1

32 pages, 16739 KB  
Article
Experimental Study on Two-Dimensional Physical Simulation of CO2 Flooding in Daqingzijing Oilfield
by Jinlong Li, Sijie He, Feifei Fang, Yu Zhan, Weixiang Jin, Yue Gong, Chuxiang Xia and Mingda Dong
Energies 2025, 18(5), 1036; https://doi.org/10.3390/en18051036 - 21 Feb 2025
Cited by 1 | Viewed by 578
Abstract
As global energy demand continues to grow, the difficulty and cost of extracting oil and gas resources are gradually increasing, making enhanced oil recovery (EOR) one of the key issues in oil and gas field development. CO2 flooding, as an effective tertiary [...] Read more.
As global energy demand continues to grow, the difficulty and cost of extracting oil and gas resources are gradually increasing, making enhanced oil recovery (EOR) one of the key issues in oil and gas field development. CO2 flooding, as an effective tertiary oil recovery technique, has significant advantages in improving recovery rates due to its ability to significantly reduce crude oil viscosity, increase formation energy, and expand the swept volume. However, the effectiveness of CO2 flooding is influenced by various factors, including flooding methods, well patterns, and formation parameters. In this study, a two-dimensional high-temperature and high-pressure simulation device was used to simulate the CO2 flooding process under various flooding methods, including water flooding followed by continuous gas flooding, water–gas alternating flooding, and foam flooding, for two types of injection–production well patterns based on the formation oil parameters of the Hei 125 block in the Daqingzijing Oilfield. The results indicate that during the transition from water flooding to continuous gas flooding, gas breakthrough channels form rapidly, leading to a rapid increase in the produced gas–oil ratio (GOR). Alternatively, alternating injection of gas and liquid can effectively control gas mobility, reduce gas phase permeability, delay gas breakthrough time, and improve oil displacement efficiency. Water–gas alternating flooding forms water–gas slugs, allowing CO2 to enter the tiny pores to contact crude oil, reducing resistance in the pores, and enhancing crude oil displacement efficiency. Although the foam system can expand the fluid sweep range, excessive gas injection can lead to premature gas breakthrough. Furthermore, the type of injection–production well pattern has a significant impact on the overall reservoir recovery for foam system and gas alternating flooding with a 1:1 ratio; adjusting the well pattern can increase the sweep efficiency and improve ultimate recovery. This study reveals the mechanisms by which different flooding methods and well patterns affect the effectiveness of CO2 flooding, providing important theoretical and practical guidance for optimizing flooding strategies and improving oil recovery in oil and gas fields. It is of great significance for promoting the application of CO2 flooding technology in oil and gas field development. Full article
Show Figures

Figure 1

22 pages, 1658 KB  
Article
Optimization of a Pressurized Extraction Process Based on a Ternary Solvent System for the Recovery of Neuroprotective Compounds from Eucalyptus marginata Leaves
by Soumaya Hasni, Hajer Riguene, Jose A. Mendiola, Elena Ibáñez, Lidia Montero, Gloria Domínguez-Rodríguez, Hanene Ghazghazi, Ghayth Rigane and Ridha Ben Salem
Int. J. Mol. Sci. 2025, 26(1), 94; https://doi.org/10.3390/ijms26010094 - 26 Dec 2024
Cited by 3 | Viewed by 1196
Abstract
Green chemistry focuses on reducing the environmental impacts of chemicals through sustainable practices. Traditional methods for extracting bioactive compounds from Eucalyptus marginata leaves, such as hydro-distillation and organic solvent extraction, have limitations, including long extraction times, high energy consumption, and potential toxic solvent [...] Read more.
Green chemistry focuses on reducing the environmental impacts of chemicals through sustainable practices. Traditional methods for extracting bioactive compounds from Eucalyptus marginata leaves, such as hydro-distillation and organic solvent extraction, have limitations, including long extraction times, high energy consumption, and potential toxic solvent residues. This study explored the use of supercritical fluid extraction (SFE), pressurized liquid extraction (PLE), and gas-expanded liquid (GXL) processes to improve efficiency and selectivity. These techniques were combined in a single mixture design, where CO2 was used in the experiments carried out under SFE, while water and ethanol were used for the PLE and GXL experiments by varying the concentration of the solvents to cover all the extraction possibilities. The neuroprotective activity of the extracts was evaluated by measuring their antioxidant, anti-inflammatory, and acetylcholinesterase inhibition properties. The optimization resulted in a novel GXL extraction with an optimal ternary mixture of 27% CO2, 55% ethanol, and 18% water, with a high degree of desirability (R2 = 88.59%). Chromatographic analysis carried out by GC-MS and HPLC-ESI-MS/MS identified over 49 metabolites. The designed sustainable extraction process offers a promising approach for producing phenolic-rich plant extracts in industrial applications. Full article
(This article belongs to the Special Issue Neuroprotective Effects of Food Ingredients)
Show Figures

Figure 1

14 pages, 1937 KB  
Article
Green Solvents in the Extraction of Bioactive Compounds from Dried Apple Cultivars
by Marcela Hollá, Veronika Pilařová, František Švec and Hana Sklenářová
Foods 2023, 12(4), 893; https://doi.org/10.3390/foods12040893 - 19 Feb 2023
Cited by 6 | Viewed by 2949
Abstract
New extraction protocols, gas-expanded liquid extraction (GXLE), and ultrasound extraction (UE) have been optimized with an emphasis on using green solvents and maximizing the extraction of 14 selected phenolic compounds, including flavonoid-based compounds and phenolic acids from dried apples. The design of the [...] Read more.
New extraction protocols, gas-expanded liquid extraction (GXLE), and ultrasound extraction (UE) have been optimized with an emphasis on using green solvents and maximizing the extraction of 14 selected phenolic compounds, including flavonoid-based compounds and phenolic acids from dried apples. The design of the experiments’ approach was applied to optimize the main extraction parameters. Fine tuning included optimization of the flow rate in GXLE and the extraction time for GXLE and UE. Optimized GXLE was carried out with CO2–ethanol–water (34/53.8/12.2; v/v/v) at a flow rate of 3 mL/min at a temperature of 75 °C and pressure of 120 bar for 30 min. UE with ethanol–water 26/74 (v/v) lasted for 10 min at 70 °C. Both methods differed in solvent consumption and sample throughput, while providing a comparable total phenolic content of 2442 µg/g with an RSD < 10% and 2226 µg/g with RSD < 6%, for GXLE and UE, respectively. Both methods were used in determining the phenolic compounds in five apple cultivars, ‘Angold’, ‘Artiga’, ‘Golden Delicious’, ‘Meteor’, and ‘Topaz’. Phenolic profiles were plotted with chlorogenic acid, catechin, epicatechin, hirsutrin, phloridzin, and guaiaverin as the main components. Statistical evaluation, including pair t-test, Bland–Altman test, and linear regression did not reveal any differences between UE and GXLE results. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

20 pages, 1333 KB  
Review
Low-Frequency Ultrasound Coupled with High-Pressure Technologies: Impact of Hybridized Techniques on the Recovery of Phytochemical Compounds
by Giovani Leone Zabot, Juliane Viganó and Eric Keven Silva
Molecules 2021, 26(17), 5117; https://doi.org/10.3390/molecules26175117 - 24 Aug 2021
Cited by 31 | Viewed by 4323
Abstract
The coupling of innovative technologies has emerged as a smart alternative for the process intensification of bioactive compound extraction from plant matrices. In this regard, the development of hybridized techniques based on the low-frequency and high-power ultrasound and high-pressure technologies, such as supercritical [...] Read more.
The coupling of innovative technologies has emerged as a smart alternative for the process intensification of bioactive compound extraction from plant matrices. In this regard, the development of hybridized techniques based on the low-frequency and high-power ultrasound and high-pressure technologies, such as supercritical fluid extraction, pressurized liquids extraction, and gas-expanded liquids extraction, can enhance the recovery yields of phytochemicals due to their different action mechanisms. Therefore, this paper reviewed and discussed the current scenario in this field where ultrasound-related technologies are coupled with high-pressure techniques. The main findings, gaps, challenges, advances in knowledge, innovations, and future perspectives were highlighted. Full article
(This article belongs to the Special Issue Advances in Ultrasound Chemistry)
Show Figures

Figure 1

14 pages, 3540 KB  
Article
Extraction of Natural Pigments from Gardenia Jasminoides J.Ellis Fruit Pulp Using CO2-Expanded Liquids and Direct Sonication
by Hiroki Sakai, Kento Ono, Shinichi Tokunaga, Tanjina Sharmin, Taku Michael Aida and Kenji Mishima
Separations 2021, 8(1), 1; https://doi.org/10.3390/separations8010001 - 24 Dec 2020
Cited by 13 | Viewed by 3873
Abstract
In this work, a carbon dioxide-expanded liquid (CXL) extraction system was used with or without direct sonication for the extraction of highly polar natural pigments (crocin-1 and crocin-2) from Gardenia jasminoides Ellis fruit pulp. The effects of different parameters, including modifiers (ethanol, water, [...] Read more.
In this work, a carbon dioxide-expanded liquid (CXL) extraction system was used with or without direct sonication for the extraction of highly polar natural pigments (crocin-1 and crocin-2) from Gardenia jasminoides Ellis fruit pulp. The effects of different parameters, including modifiers (ethanol, water, aqueous ethanol), temperature (5–25 °C), pressure (8–14 MPa), and sonication time (0–200 s) on extraction concentrations were examined using the CXL system. Aqueous ethanol (50% or 80%, v/v) was selected for the CXL system as a modifier due to its efficiency. The best conditions for extraction were found at 25 °C and 10 MPa. The CXE 80% extraction system with direct sonication extracted a significantly higher amount of crocin-1 and crocin-2, 13.63 ± 0.5 and 0.51 ± 0.05 μg/mL, respectively, compared to conventional solid–liquid methanol extraction (10.43 ± 0.3 and 0.37 ± 0.02 μg/mL, respectively). Under these conditions, a water-rich phase, an ethanol-rich phase, and a CO2-rich gas phase coexisted in the high-pressure cell in the CXE 80% extraction system, which was vigorously disrupted by the addition of sonication, resulting in a compressed aqueous ethanol phase and an aqueous ethanol-modified CO2-rich phase, and may have a positive influence on extraction. Full article
Show Figures

Figure 1

17 pages, 2995 KB  
Article
Non-Destructive X-ray Spectrometric and Chromatographic Analysis of Metal Containers and Their Contents, from Ancient Macedonia
by Christos S. Katsifas, Despina Ignatiadou, Anastasia Zacharopoulou, Nikolaos Kantiranis, Ioannis Karapanagiotis and George A. Zachariadis
Separations 2018, 5(2), 32; https://doi.org/10.3390/separations5020032 - 11 Jun 2018
Cited by 9 | Viewed by 4785
Abstract
This work describes a holistic archaeometric approach to ancient Macedonian specimens. In the region of the ancient city Lete, the deceased members of a rich and important family were interred in a cluster of seven tombs (4th century BC). Among the numerous grave [...] Read more.
This work describes a holistic archaeometric approach to ancient Macedonian specimens. In the region of the ancient city Lete, the deceased members of a rich and important family were interred in a cluster of seven tombs (4th century BC). Among the numerous grave goods, there was also a set of metal containers preserving their original content. The physico-chemical analysis of the containers and their contents was performed in order to understand the purpose of their use. For the containers, Energy Dispersive micro-X-Ray Fluorescence (EDμXRF) spectroscopy was implemented taking advantage of its non-invasive character. The case (B35) and the small pyxis (B37) were made of a binary Cu-Sn alloy accompanied by a slight amount of impurities (Fe, Pb, As) and the two miniature bowls were made of almost pure Cu. For the study of the contents, a combination of EDμXRF, X-Ray Diffraction (XRD), and Gas Chromatography—Mass Spectrometry (GC-MS) was carried out. Especially for the extraction of the volatile compounds, the Solid Phase Micro-Extraction (SPME) technique was used in the headspace mode. Because of the detection of Br, High Pressure Liquid Chromatography coupled to a Diode-Array-Detector (HPLC-DAD) was implemented, confirming the existence of the ancient dye shellfish purple (porphyra in Greek). The analytical results of the combined implementation of spectrometric and chromatographic analytical techniques of the metal containers and their contents expand our knowledge about the pharmaceutical practices in Macedonia during the 4th century BC. Full article
(This article belongs to the Special Issue Research as Development Perspective)
Show Figures

Figure 1

Back to TopTop