Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = generative pre-trained transformer (GPT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 902 KB  
Review
Pulmonary and Immune Dysfunction in Pediatric Long COVID: A Case Study Evaluating the Utility of ChatGPT-4 for Analyzing Scientific Articles
by Susanna R. Var, Nicole Maeser, Jeffrey Blake, Elise Zahs, Nathan Deep, Zoey Vasilakos, Jennifer McKay, Sether Johnson, Phoebe Strell, Allison Chang, Holly Korthas, Venkatramana Krishna, Manojkumar Narayanan, Tuhinur Arju, Dilmareth E. Natera-Rodriguez, Alex Roman, Sam J. Schulz, Anala Shetty, Mayuresh Vernekar, Madison A. Waldron, Kennedy Person, Maxim Cheeran, Ling Li and Walter C. Lowadd Show full author list remove Hide full author list
J. Clin. Med. 2025, 14(17), 6011; https://doi.org/10.3390/jcm14176011 - 25 Aug 2025
Abstract
Coronavirus disease 2019 (COVID-19) in adults is well characterized and associated with multisystem dysfunction. A subset of patients develop post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID), marked by persistent and fluctuating organ system abnormalities. In children, distinct clinical and pathophysiological features [...] Read more.
Coronavirus disease 2019 (COVID-19) in adults is well characterized and associated with multisystem dysfunction. A subset of patients develop post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID), marked by persistent and fluctuating organ system abnormalities. In children, distinct clinical and pathophysiological features of COVID-19 and long COVID are increasingly recognized, though knowledge remains limited relative to adults. The exponential expansion of the COVID-19 literature has made comprehensive appraisal by individual researchers increasingly unfeasible, highlighting the need for new approaches to evidence synthesis. Large language models (LLMs) such as the Generative Pre-trained Transformer (GPT) can process vast amounts of text, offering potential utility in this domain. Earlier versions of GPT, however, have been prone to generating fabricated references or misrepresentations of primary data. To evaluate the potential of more advanced models, we systematically applied GPT-4 to summarize studies on pediatric long COVID published between January 2022 and January 2025. Articles were identified in PubMed, and full-text PDFs were retrieved from publishers. GPT-4-generated summaries were cross-checked against the results sections of the original reports to ensure accuracy before incorporation into a structured review framework. This methodology demonstrates how LLMs may augment traditional literature review by improving efficiency and coverage in rapidly evolving fields, provided that outputs are subjected to rigorous human verification. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

12 pages, 1245 KB  
Proceeding Paper
Implementing Artificial Intelligence in Chaos-Based Image Encryption Algorithms
by Hristina Stoycheva, Stanimir Sadinov, Krasen Angelov, Panagiotis Kogias and Michalis Malamatoudis
Eng. Proc. 2025, 104(1), 20; https://doi.org/10.3390/engproc2025104020 - 25 Aug 2025
Abstract
This paper presents a modification of an image encryption algorithm combining chaos and the Fibonacci matrix by integrating artificial intelligence via a Generative Pre-Trained Transformer (GPT). The goal is to improve the robustness of the algorithm by dynamically adapting the parameters of the [...] Read more.
This paper presents a modification of an image encryption algorithm combining chaos and the Fibonacci matrix by integrating artificial intelligence via a Generative Pre-Trained Transformer (GPT). The goal is to improve the robustness of the algorithm by dynamically adapting the parameters of the chaotic system and generating cryptographic keys based on image characteristics. The proposed methodology includes two main innovations: the implementation of GPT for automated generation of the initial parameters of the chaotic system, which allows for greater variability and security in encryption, and the use of GPT for dynamic determination of the Fibonacci Q-matrix, which provides additional complexity and increased resistance to attacks. The method is realized in the MATLAB (R2023a) environment through integration with OpenAI API and the MATLAB–Python interface for requesting GPT models. The efficiency and reliability of the modified algorithm are compared with those of standard chaotic encryption algorithms, and its robustness to various cryptographic attacks is also studied. Full article
Show Figures

Figure 1

28 pages, 17913 KB  
Article
Towards Robust Industrial Control Interpretation Through Comparative Analysis of Vision–Language Models
by Juan Izquierdo-Domenech, Jordi Linares-Pellicer, Carlos Aliaga-Torro and Isabel Ferri-Molla
Machines 2025, 13(9), 759; https://doi.org/10.3390/machines13090759 - 25 Aug 2025
Viewed by 130
Abstract
Industrial environments frequently rely on analog control instruments due to their reliability and robustness; however, automating the interpretation of these controls remains challenging due to variability in design, lighting conditions, and scale precision requirements. This research investigates the effectiveness of Vision–Language Models (VLMs) [...] Read more.
Industrial environments frequently rely on analog control instruments due to their reliability and robustness; however, automating the interpretation of these controls remains challenging due to variability in design, lighting conditions, and scale precision requirements. This research investigates the effectiveness of Vision–Language Models (VLMs) for automated interpretation of industrial controls through analysis of three distinct approaches: general-purpose VLMs, fine-tuned specialized models, and lightweight models optimized for edge computing. Each approach was evaluated using two prompting strategies, Holistic-Thought Protocol (HTP) and sequential Chain-of-Thought (CoT), across a representative dataset of continuous and discrete industrial controls. The results demonstrate that the fine-tuned Generative Pre-trained Transformer 4 omni (GPT-4o) significantly outperformed other approaches, achieving low Mean Absolute Error (MAE) for continuous controls and the highest accuracy and Matthews Correlation Coefficient (MCC) for discrete controls. Fine-tuned models demonstrated less sensitivity to prompt variations, enhancing their reliability. In contrast, although general-purpose VLMs showed acceptable zero-shot performance, edge-optimized models exhibited severe limitations. This work highlights the capability of fine-tuned VLMs for practical deployment in industrial scenarios, balancing precision, computational efficiency, and data annotation requirements. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

23 pages, 3781 KB  
Article
Evaluating Urban Visual Attractiveness Perception Using Multimodal Large Language Model and Street View Images
by Qianyu Zhou, Jiaxin Zhang and Zehong Zhu
Buildings 2025, 15(16), 2970; https://doi.org/10.3390/buildings15162970 - 21 Aug 2025
Viewed by 237
Abstract
Visual attractiveness perception—an individual’s capacity to recognise and evaluate the visual appeal of urban scene safety—has direct implications for well-being, economic vitality, and social cohesion. However, most empirical studies rely on single-source metrics or algorithm-centric pipelines that under-represent human perception. Addressing this gap, [...] Read more.
Visual attractiveness perception—an individual’s capacity to recognise and evaluate the visual appeal of urban scene safety—has direct implications for well-being, economic vitality, and social cohesion. However, most empirical studies rely on single-source metrics or algorithm-centric pipelines that under-represent human perception. Addressing this gap, we introduce a fully reproducible, multimodal framework that measures and models this domain-specific facet of human intelligence by coupling Generative Pre-trained Transformer 4o (GPT-4o) with 1000 Street View images. The pipeline first elicits pairwise aesthetic judgements from GPT-4o, converts them into a latent attractiveness scale via Thurstone’s law of comparative judgement, and then validates the scale against 1.17 M crowdsourced ratings from MIT’s Place Pulse 2.0 benchmark (Spearman ρ = 0.76, p < 0.001). Compared with a Siamese CNN baseline (ρ = 0.60), GPT-4o yields both higher criterion validity and an 88% reduction in inference time, underscoring its superior capacity to approximate human evaluative reasoning. In this study, we introduce a standardised and reproducible streetscape evaluation pipeline using GPT-4o. We then combine the resulting attractiveness scores with network-based accessibility modelling to generate a “aesthetic–accessibility map” of urban central districts in Chongqing, China. Cluster analysis reveals four statistically distinct street types—Iconic Core, Liveable Rings, Transit-Rich but Bland, and Peripheral Low-Appeal—providing actionable insights for landscape design, urban governance, and tourism planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

23 pages, 10088 KB  
Article
Development of an Interactive Digital Human with Context-Sensitive Facial Expressions
by Fan Yang, Lei Fang, Rui Suo, Jing Zhang and Mincheol Whang
Sensors 2025, 25(16), 5117; https://doi.org/10.3390/s25165117 - 18 Aug 2025
Viewed by 418
Abstract
With the increasing complexity of human–computer interaction scenarios, conventional digital human facial expression systems show notable limitations in handling multi-emotion co-occurrence, dynamic expression, and semantic responsiveness. This paper proposes a digital human system framework that integrates multimodal emotion recognition and compound facial expression [...] Read more.
With the increasing complexity of human–computer interaction scenarios, conventional digital human facial expression systems show notable limitations in handling multi-emotion co-occurrence, dynamic expression, and semantic responsiveness. This paper proposes a digital human system framework that integrates multimodal emotion recognition and compound facial expression generation. The system establishes a complete pipeline for real-time interaction and compound emotional expression, following a sequence of “speech semantic parsing—multimodal emotion recognition—Action Unit (AU)-level 3D facial expression control.” First, a ResNet18-based model is employed for robust emotion classification using the AffectNet dataset. Then, an AU motion curve driving module is constructed on the Unreal Engine platform, where dynamic synthesis of basic emotions is achieved via a state-machine mechanism. Finally, Generative Pre-trained Transformer (GPT) is utilized for semantic analysis, generating structured emotional weight vectors that are mapped to the AU layer to enable language-driven facial responses. Experimental results demonstrate that the proposed system significantly improves facial animation quality, with naturalness increasing from 3.54 to 3.94 and semantic congruence from 3.44 to 3.80. These results validate the system’s capability to generate realistic and emotionally coherent expressions in real time. This research provides a complete technical framework and practical foundation for high-fidelity digital humans with affective interaction capabilities. Full article
(This article belongs to the Special Issue Emotion Recognition Based on Sensors (3rd Edition))
Show Figures

Figure 1

25 pages, 1751 KB  
Review
Large Language Models for Adverse Drug Events: A Clinical Perspective
by Md Muntasir Zitu, Dwight Owen, Ashish Manne, Ping Wei and Lang Li
J. Clin. Med. 2025, 14(15), 5490; https://doi.org/10.3390/jcm14155490 - 4 Aug 2025
Viewed by 831
Abstract
Adverse drug events (ADEs) significantly impact patient safety and health outcomes. Manual ADE detection from clinical narratives is time-consuming, labor-intensive, and costly. Recent advancements in large language models (LLMs), including transformer-based architectures such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pretrained [...] Read more.
Adverse drug events (ADEs) significantly impact patient safety and health outcomes. Manual ADE detection from clinical narratives is time-consuming, labor-intensive, and costly. Recent advancements in large language models (LLMs), including transformer-based architectures such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pretrained Transformer (GPT) series, offer promising methods for automating ADE extraction from clinical data. These models have been applied to various aspects of pharmacovigilance and clinical decision support, demonstrating potential in extracting ADE-related information from real-world clinical data. Additionally, chatbot-assisted systems have been explored as tools in clinical management, aiding in medication adherence, patient engagement, and symptom monitoring. This narrative review synthesizes the current state of LLMs in ADE detection from a clinical perspective, organizing studies into categories such as human-facing decision support tools, immune-related ADE detection, cancer-related and non-cancer-related ADE surveillance, and personalized decision support systems. In total, 39 articles were included in this review. Across domains, LLM-driven methods have demonstrated promising performances, often outperforming traditional approaches. However, critical limitations persist, such as domain-specific variability in model performance, interpretability challenges, data quality and privacy concerns, and infrastructure requirements. By addressing these challenges, LLM-based ADE detection could enhance pharmacovigilance practices, improve patient safety outcomes, and optimize clinical workflows. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

10 pages, 426 KB  
Proceeding Paper
Guiding or Misleading: Challenges of Artificial Intelligence-Generated Content in Heuristic Teaching: ChatGPT
by Ping-Kuo A. Chen
Eng. Proc. 2025, 103(1), 1; https://doi.org/10.3390/engproc2025103001 - 4 Aug 2025
Viewed by 357
Abstract
Artificial intelligence (AI)-generated content (AIGC) is an innovative technology that utilizes machine learning, AI models, reward modeling, and natural language processing (NLP) to create diverse digital content such as videos, images, and text. It has the potential to support various human activities with [...] Read more.
Artificial intelligence (AI)-generated content (AIGC) is an innovative technology that utilizes machine learning, AI models, reward modeling, and natural language processing (NLP) to create diverse digital content such as videos, images, and text. It has the potential to support various human activities with significant implications in teaching and learning, facilitating heuristic teaching for educators. By using AIGC, teachers can create extensive knowledge content and effectively design instructional strategies to guide students, aligning with heuristic teaching. However, incorporating AIGC into heuristic teaching has controversies and concerns, which potentially mislead outcomes. Nevertheless, leveraging AIGC greatly benefits teachers in enhancing heuristic teaching. When integrating AIGC to support heuristic teaching, challenges and risks must be acknowledged and addressed. These challenges include the need for users to possess sufficient knowledge reserves to identify incorrect information and content generated by AIGC, the importance of avoiding excessive reliance on AIGC, ensuring users maintain control over their actions rather than being driven by AIGC, and the necessity of scrutinizing and verifying the accuracy of information and knowledge generated by AIGC to preserve its effectiveness. Full article
Show Figures

Figure 1

8 pages, 192 KB  
Brief Report
Accuracy and Safety of ChatGPT-3.5 in Assessing Over-the-Counter Medication Use During Pregnancy: A Descriptive Comparative Study
by Bernadette Cornelison, David R. Axon, Bryan Abbott, Carter Bishop, Cindy Jebara, Anjali Kumar and Kristen A. Root
Pharmacy 2025, 13(4), 104; https://doi.org/10.3390/pharmacy13040104 - 30 Jul 2025
Viewed by 914
Abstract
As artificial intelligence (AI) becomes increasingly utilized to perform tasks requiring human intelligence, patients who are pregnant may turn to AI for advice on over-the-counter (OTC) medications. However, medications used in pregnancy may pose profound safety concerns limited by data availability. This study [...] Read more.
As artificial intelligence (AI) becomes increasingly utilized to perform tasks requiring human intelligence, patients who are pregnant may turn to AI for advice on over-the-counter (OTC) medications. However, medications used in pregnancy may pose profound safety concerns limited by data availability. This study focuses on a chatbot’s ability to accurately provide information regarding OTC medications as it relates to patients that are pregnant. A prospective, descriptive design was used to compare the responses generated by the Chat Generative Pre-Trained Transformer 3.5 (ChatGPT-3.5) to the information provided by UpToDate®. Eighty-seven of the top pharmacist-recommended OTC drugs in the United States (U.S.) as identified by Pharmacy Times were assessed for safe use in pregnancy using ChatGPT-3.5. A piloted, standard prompt was input into ChatGPT-3.5, and the responses were recorded. Two groups independently rated the responses compared to UpToDate on their correctness, completeness, and safety using a 5-point Likert scale. After independent evaluations, the groups discussed the findings to reach a consensus, with a third independent investigator giving final ratings. For correctness, the median score was 5 (interquartile range [IQR]: 5–5). For completeness, the median score was 4 (IQR: 4–5). For safety, the median score was 5 (IQR: 5–5). Despite high overall scores, the safety errors in 9% of the evaluations (n = 8), including omissions that pose a risk of serious complications, currently renders the chatbot an unsafe standalone resource for this purpose. Full article
(This article belongs to the Special Issue AI Use in Pharmacy and Pharmacy Education)
17 pages, 609 KB  
Article
GPT-Based Text-to-SQL for Spatial Databases
by Hui Wang, Li Guo, Yubin Liang, Le Liu and Jiajin Huang
ISPRS Int. J. Geo-Inf. 2025, 14(8), 288; https://doi.org/10.3390/ijgi14080288 - 24 Jul 2025
Viewed by 551
Abstract
Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However, these methods have limitations when [...] Read more.
Text-to-SQL for spatial databases enables the translation of natural language questions into corresponding SQL queries, allowing non-experts to easily access spatial data, which has gained increasing attention from researchers. Previous research has primarily focused on rule-based methods. However, these methods have limitations when dealing with complicated or unknown natural language questions. While advanced machine learning models can be trained, they typically require large labeled training datasets, which are severely lacking for spatial databases. Recently, Generative Pre-Trained Transformer (GPT) models have emerged as a promising paradigm for Text-to-SQL tasks in relational databases, driven by carefully designed prompts. In response to the severe lack of datasets for spatial databases, we have created a publicly available dataset that supports both English and Chinese. Furthermore, we propose a GPT-based method to construct prompts for spatial databases, which incorporates geographic and spatial database knowledge into the prompts and requires only a small number of training samples, such as 1, 3, or 5 examples. Extensive experiments demonstrate that incorporating geographic and spatial database knowledge into prompts improves the accuracy of Text-to-SQL tasks for spatial databases. Our proposed method can help non-experts access spatial databases more easily and conveniently. Full article
Show Figures

Figure 1

22 pages, 1805 KB  
Article
A Hybrid Semantic and Multi-Attention Mechanism Approach for Detecting Vulnerabilities in Smart Contract Code
by Zhenxiang He, Yanling Liu and Xiaohui Sun
Symmetry 2025, 17(7), 1161; https://doi.org/10.3390/sym17071161 - 21 Jul 2025
Viewed by 547
Abstract
Driven by blockchain technology, numerous industries are increasingly adopting smart contracts to enhance efficiency, reduce costs, and improve transparency. As a result, ensuring the security of smart contracts has become critical. Traditional detection methods often suffer from low efficiency, are prone to missing [...] Read more.
Driven by blockchain technology, numerous industries are increasingly adopting smart contracts to enhance efficiency, reduce costs, and improve transparency. As a result, ensuring the security of smart contracts has become critical. Traditional detection methods often suffer from low efficiency, are prone to missing complex vulnerabilities, and have limited accuracy. Although deep learning approaches address some of these challenges, issues with both accuracy and efficiency remain in current solutions. To overcome these limitations, this paper proposes a symmetry-inspired solution that harmonizes bidirectional and generative semantic patterns. First, we generate distinct feature extraction segments for different vulnerabilities. We then use the Bidirectional Encoder Representations from Transformers (BERT) module to extract original semantic features from these segments and the Generative Pre-trained Transformer (GPT) module to extract generative semantic features. Finally, the two sets of semantic features are fused using a multi-attention mechanism and input into a classifier for result prediction. Our method was tested on three datasets, achieving F1 scores of 93.33%, 93.65%, and 92.31%, respectively. The results demonstrate that our approach outperforms most existing methods in smart contract detection. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

26 pages, 15354 KB  
Article
Transforming Physics Teacher Training Through ChatGPT: A Study on Usability and Impact
by Marcos Guerrero-Zambrano, Leonor Sanchez-Alvarado, Bryan Valarezo-Chamba and Erick Lamilla-Rubio
Educ. Sci. 2025, 15(7), 887; https://doi.org/10.3390/educsci15070887 - 11 Jul 2025
Viewed by 909
Abstract
Teacher training in Physics often faces challenges related to engaging students and conveying abstract concepts effectively. Generative AI tools, such as ChatGPT, present transformative opportunities for designing innovative and tailored educational activities. This study investigates the impact of ChatGPT on pre-service Physics teacher [...] Read more.
Teacher training in Physics often faces challenges related to engaging students and conveying abstract concepts effectively. Generative AI tools, such as ChatGPT, present transformative opportunities for designing innovative and tailored educational activities. This study investigates the impact of ChatGPT on pre-service Physics teacher training, focusing on its usability, effectiveness, and influence on participant satisfaction. Utilizing a quantitative research approach, two Likert-scale surveys were administered to 24 prospective Physics teachers in Ecuador, both before and after an intervention workshop. The workshop introduced participants to ChatGPT’s features and its applications in designing playful, Physics-focused learning activities. Results indicated a significant increase in familiarity with AI tools, enhanced activity design quality, and high satisfaction rates. Notably, 79% of participants highlighted ChatGPT’s utility in adapting activities to diverse learning levels, and 83% acknowledged its efficiency in reducing preparation time. These findings underscore ChatGPT’s potential to revolutionize Physics education by facilitating the creation of personalized and engaging learning resources. Future research should explore larger sample sizes and longitudinal impacts to fully realize the implications of AI-driven tools in educational contexts. Full article
(This article belongs to the Topic Artificial Intelligence in Early Childhood Education)
Show Figures

Figure 1

20 pages, 1535 KB  
Article
Multi-Agentic LLMs for Personalizing STEM Texts
by Michael Vaccaro, Mikayla Friday and Arash Zaghi
Appl. Sci. 2025, 15(13), 7579; https://doi.org/10.3390/app15137579 - 6 Jul 2025
Viewed by 761
Abstract
Multi-agent large language models promise flexible, modular architectures for delivering personalized educational content. Drawing on a pilot randomized controlled trial with middle school students (n = 23), we introduce a two-agent GPT-4 framework in which a Profiler agent infers learner-specific preferences and [...] Read more.
Multi-agent large language models promise flexible, modular architectures for delivering personalized educational content. Drawing on a pilot randomized controlled trial with middle school students (n = 23), we introduce a two-agent GPT-4 framework in which a Profiler agent infers learner-specific preferences and a Rewrite agent dynamically adapts science passages via an explicit message-passing protocol. We implement structured system and user prompts as inter-agent communication schemas to enable real-time content adaptation. The results of an ordinal logistic regression analysis hinted that students may be more likely to prefer texts aligned with their profile, demonstrating the feasibility of multi-agent system-driven personalization and highlighting the need for additional work to build upon this pilot study. Beyond empirical validation, we present a modular multi-agent architecture detailing agent roles, communication interfaces, and scalability considerations. We discuss design best practices, ethical safeguards, and pathways for extending this framework to collaborative agent networks—such as feedback-analysis agents—in K-12 settings. These results advance both our theoretical and applied understanding of multi-agent LLM systems for personalized learning. Full article
Show Figures

Figure 1

13 pages, 972 KB  
Article
Assessing ChatGPT-v4 for Guideline-Concordant Inflammatory Bowel Disease: Accuracy, Completeness, and Temporal Drift
by Oguz Ozturk, Mucahit Ergul, Yavuz Cagir, Ali Atay, Kadir Can Acun, Orhan Coskun, Ilyas Tenlik, Muhammed Bahaddin Durak and Ilhami Yuksel
J. Clin. Med. 2025, 14(13), 4599; https://doi.org/10.3390/jcm14134599 - 29 Jun 2025
Viewed by 701
Abstract
Background/Objectives: Chat Generative Pretrained Transformer (ChatGPT) is a useful resource for individuals working in the healthcare field. This paper will include descriptions of several ways in which ChatGPT-4 can achieve greater accuracy in its diagnosis and treatment plans for ulcerative colitis (UC) and [...] Read more.
Background/Objectives: Chat Generative Pretrained Transformer (ChatGPT) is a useful resource for individuals working in the healthcare field. This paper will include descriptions of several ways in which ChatGPT-4 can achieve greater accuracy in its diagnosis and treatment plans for ulcerative colitis (UC) and Crohn’s disease (CD) by following the guidelines set out by the European Crohn’s and Colitis Organization (ECCO). Methods: The survey, which comprised 102 questions, was developed to assess the precision and consistency of respondents’ responses regarding the UC and CD. The questionnaire incorporated true/false and multiple-choice questions, with the objective of simulating real-life scenarios and adhering to the ECCO guidelines. We employed Likert scales to assess the responses. The inquiries were put to ChatGPT-4 on the initial day, the 15th day, and the 180th day. Results: The 51 true or false items demonstrated stability over a six-month period, with an initial accuracy of 92.8% at baseline, 92.8% on the 15th day, and peaked to 98.0% on the 180th day. This finding suggests a negligible effect size. The accuracy of the multiple-choice questions was initially 90.2% on Day 1, reached its highest point at 92.2% on Day 15, and then decreased to 84.3% on Day 180. However, the reliability of the data was found to be suboptimal, and the impact was deemed negligible. A modest, transient increase in performance was observed at 15 days, which subsequently diminished by 180 days, resulting in negligible effect sizes. Conclusions: ChatGPT-4 demonstrates potential as a clinical decision support system for UC and CD, but its assessment is marked by temporal variability and the inconsistent execution of various tasks. Essential initiatives that should be carried out before involving artificial intelligence (AI) technology in IBD trials are routine revalidation, multi-rater comparisons, prompt standardization, and the cultivation of a comprehensive understanding of the model’s limitations. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

20 pages, 2223 KB  
Article
ChatGPT-Based Model for Controlling Active Assistive Devices Using Non-Invasive EEG Signals
by Tais da Silva Mota, Saket Sarkar, Rakshith Poojary and Redwan Alqasemi
Electronics 2025, 14(12), 2481; https://doi.org/10.3390/electronics14122481 - 18 Jun 2025
Viewed by 778
Abstract
With an anticipated 3.6 million Americans who will be living with limb loss by 2050, the demand for active assistive devices is rapidly increasing. This study investigates the feasibility of leveraging a ChatGPT-based (Version 4o) model to predict motion based on input electroencephalogram [...] Read more.
With an anticipated 3.6 million Americans who will be living with limb loss by 2050, the demand for active assistive devices is rapidly increasing. This study investigates the feasibility of leveraging a ChatGPT-based (Version 4o) model to predict motion based on input electroencephalogram (EEG) signals, enabling the non-invasive control of active assistive devices. To achieve this goal, three objectives were set. First, the model’s capability to derive accurate mathematical relationships from numerical datasets was validated to establish a foundational level of computational accuracy. Next, synchronized arm motion videos and EEG signals were introduced, which allowed the model to filter, normalize, and classify EEG data in relation to distinct text-based arm motions. Finally, the integration of marker-based motion capture data provided motion information, which is essential for inverse kinematics applications in robotic control. The combined findings highlight the potential of ChatGPT-generated machine learning systems to effectively correlate multimodal data streams and serve as a robust foundation for the intuitive, non-invasive control of assistive technologies using EEG signals. Future work will focus on applying the model to real-time control applications while expanding the dataset’s diversity to enhance the accuracy and performance of the model, with the ultimate aim of improving the independence and quality of life of individuals who rely on active assistive devices. Full article
(This article belongs to the Special Issue Advances in Intelligent Control Systems)
Show Figures

Figure 1

8 pages, 1398 KB  
Proceeding Paper
Analysis of Three-Stage Visit Behavior of Tourists Using ChatGPT: Agenda for Future Study
by Pahrudin Pahrudin, Li-Wei Liu, Anfitri Kristin Sihombing and Idrus Jamalulel
Eng. Proc. 2025, 98(1), 15; https://doi.org/10.3390/engproc2025098015 - 18 Jun 2025
Viewed by 560
Abstract
Chat generative pre-trained transformer (ChatGPT) is an artificial intelligence (AI) engine. Research on tourism using ChatGPT has gained traction from scholars all over the world. However, limited studies on ChatGPT and the tourism industry have been conducted using an analysis of three-stage visit [...] Read more.
Chat generative pre-trained transformer (ChatGPT) is an artificial intelligence (AI) engine. Research on tourism using ChatGPT has gained traction from scholars all over the world. However, limited studies on ChatGPT and the tourism industry have been conducted using an analysis of three-stage visit behavior. We analyzed the current trend in tourism research using ChatGPT with a bibliometric analysis based on the Scopus database. A total of 110 documents were used in this study for document review, and R studio Version 2022.12.0+353 was used to analyze the documents. The results present indicators for a systematic review of the documents, such as the number of publications and co-word analysis. A theoretical system was developed in this study to explore travelers’ behavior using ChatGPT in the pre-, during, and post-travel periods. The study results contribute to the development of the tourism industry to understand tourist behavior using ChatGPT. Full article
Show Figures

Figure 1

Back to TopTop