Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = glacier surface velocity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4349 KB  
Article
Assessment of Glacier Transformation in China over the Past 40 Years Using a China-Specific Glacier Classification System
by Tianya Li, Yuzhe Wang, Baojuan Huai, Hongmin An, Lei Wang and Weijun Sun
Remote Sens. 2025, 17(13), 2289; https://doi.org/10.3390/rs17132289 - 3 Jul 2025
Viewed by 517
Abstract
Glacier classification offers a structured framework for assessing glacier characteristics and understanding their responses to climate change. In this study, we apply the Shi–Xie glacier classification system, proposed by Chinese glaciologists Shi and Xie, to evaluate the transformation of extremely continental, subcontinental, and [...] Read more.
Glacier classification offers a structured framework for assessing glacier characteristics and understanding their responses to climate change. In this study, we apply the Shi–Xie glacier classification system, proposed by Chinese glaciologists Shi and Xie, to evaluate the transformation of extremely continental, subcontinental, and maritime glaciers across China over the past four decades. Our results show a widespread rise in equilibrium line altitudes (ELAs), alongside complex changes in climatic and glaciological parameters. Notably, despite ongoing warming trends, nearly half of the glaciers experienced cooling at the ELA, and over two-thirds showed a decline in summer mean temperatures. This apparent contradiction is explained by elevation-induced cooling; as ELAs rise to higher altitudes, the corresponding summer air temperatures decline due to the lapse rate effect. Near-surface ice temperatures (20 m depth) were strongly consistent with changes in annual air temperature. Precipitation trends were spatially heterogeneous, yet around 70% of glaciers experienced stable or slightly increasing annual precipitation. In contrast, maritime glaciers, particularly those in the southeastern glacierized regions, exhibited marked decreases. Glacier surface velocities generally declined, with 90% of glaciers flowing at speeds below 50 m a−1. Threshold-based analysis reveals that glaciers in transitional zones frequently exhibit multi-indicator deviations. Extremely continental glaciers near classification boundaries showed a shift toward warmer, wetter subcontinental conditions, while maritime glaciers tended toward drier, colder subcontinental characteristics. These findings offer new insights into the differentiated responses and ongoing transformation of glacier types in China under climate change. Full article
(This article belongs to the Special Issue ERA5 Climate Application in Cold and Arid Regions)
Show Figures

Graphical abstract

21 pages, 7615 KB  
Article
A Glacier Ice Thickness Estimation Method Based on Deep Convolutional Neural Networks
by Zhiqiang Li, Jia Li, Xuyan Ma, Lei Guo, Long Li, Jiahao Dian, Lingshuai Kong and Huiguo Ye
Geosciences 2025, 15(7), 242; https://doi.org/10.3390/geosciences15070242 - 27 Jun 2025
Viewed by 725
Abstract
Ice thickness is a key parameter for glacier mass estimations and glacier dynamics simulations. Multiple physical models have been developed by glaciologists to estimate glacier ice thickness. However, obtaining internal and basal glacier parameters required by physical models is challenging, often leading to [...] Read more.
Ice thickness is a key parameter for glacier mass estimations and glacier dynamics simulations. Multiple physical models have been developed by glaciologists to estimate glacier ice thickness. However, obtaining internal and basal glacier parameters required by physical models is challenging, often leading to simplified models that struggle to capture the nonlinear characteristics of ice flow and resulting in significant uncertainties. To address this, this study proposes a convolutional neural network (CNN)-based deep learning model for glacier ice thickness estimation, named the Coordinate-Attentive Dense Glacier Ice Thickness Estimate Model (CADGITE). Based on in situ ice thickness measurements in the Swiss Alps, a CNN is designed to estimate glacier ice thickness by incorporating a new architecture that includes a Residual Coordinate Attention Block together with a Dense Connected Block, using the distance to glacier boundaries as a complement to inputs that include surface velocity, slope, and hypsometry. Taking ground-penetrating radar (GPR) measurements as a reference, the proposed model achieves a mean absolute deviation (MAD) of 24.28 m and a root mean square error (RMSE) of 37.95 m in Switzerland, outperforming mainstream physical models. When applied to 14 glaciers in High Mountain Asia, the model achieves an MAD of 20.91 m and an RMSE of 27.26 m compared to reference measurements, also exhibiting better performance than mainstream physical models. These comparisons demonstrate the good accuracy and cross-regional transferability of our approach, highlighting the potential of using deep learning-based methods for larger-scale glacier ice thickness estimation. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

23 pages, 24141 KB  
Article
Glacier Area and Surface Flow Velocity Variations for 2016–2024 in the West Kunlun Mountains Based on Time-Series Sentinel-2 Images
by Decai Jiang, Shanshan Wang, Bin Zhu, Zhuoyu Lv, Gaoqiang Zhang, Dan Zhao and Tianqi Li
Remote Sens. 2025, 17(7), 1290; https://doi.org/10.3390/rs17071290 - 4 Apr 2025
Viewed by 919
Abstract
The West Kunlun Mountains (WKL) gather lots of large-scale glaciers, which play an important role in the climate and freshwater resource for central Asia. Despite extensive studies on glaciers in this region, a comprehensive understanding of inter-annual variations in glacier area, flow velocity, [...] Read more.
The West Kunlun Mountains (WKL) gather lots of large-scale glaciers, which play an important role in the climate and freshwater resource for central Asia. Despite extensive studies on glaciers in this region, a comprehensive understanding of inter-annual variations in glacier area, flow velocity, and terminus remains lacking. This study used a deep learning model to derive time-series glacier boundaries and the sub-pixel cross-correlation method to calculate inter-annual surface flow velocity in this region from 71 Sentinel-2 images acquired between 2016 and 2024. We analyzed the spatial-temporal variations of glacier area, velocity, and terminus. The results indicate that, as follows: (1) The glacier area in the WKL remained relatively stable, with three glaciers expanding by more than 0.5 km2 and five glaciers shrinking by over 0.5 km2 from 2016 to 2024. (2) Five glaciers exhibited surging behavior during the study period. (3) Six glaciers, with velocities exceeding 50 m/y, have the potential to surge. (4) There were eight obvious advancing glaciers and nine obvious retreating glaciers during the study period. Our study demonstrates the potential of Sentinel-2 for comprehensively monitoring inter-annual changes in mountain glacier area, velocity, and terminus, as well as identifying glacier surging events in regions beyond the study area. Full article
(This article belongs to the Special Issue Remote Sensing for Terrestrial Hydrologic Variables)
Show Figures

Figure 1

18 pages, 5186 KB  
Review
Unmanned Aerial Vehicle Technology for Glaciology Research in the Third Pole
by Chuanxi Zhao, Shengyu Kang, Yihan Fan, Yongjie Wang, Zhen He, Zhaoqi Tan, Yifei Gao, Tianzhao Zhang, Yifei He and Yu Fan
Drones 2025, 9(4), 254; https://doi.org/10.3390/drones9040254 - 27 Mar 2025
Viewed by 1063
Abstract
The Third Pole region contains vast glaciers, and changes in these glaciers profoundly affect the lives and development of billions of people. Therefore, accurate glacier monitoring in this region is of great scientific and practical significance. Unmanned Aerial Vehicles (UAVs) provide high-resolution observation [...] Read more.
The Third Pole region contains vast glaciers, and changes in these glaciers profoundly affect the lives and development of billions of people. Therefore, accurate glacier monitoring in this region is of great scientific and practical significance. Unmanned Aerial Vehicles (UAVs) provide high-resolution observation capabilities and flexible deployment options, effectively overcoming certain limitations associated with traditional in situ and satellite remote sensing observations. Thus, UAV technology is increasingly gaining traction and application in the glaciology community. This review systematically analyzed studies involving UAV technology in Third Pole glaciology research and determined that relevant studies have been performed for a decade (2014–2024). Notably, after 2020, the number of relevant manuscripts has increased significantly. Research activities are biased toward the use of rotary-wing UAVs (63%) and ground control point (GCP) correction methods (67%). Additionally, there is strong emphasis on analyzing glacier surface elevation, surface velocity, and landform evolution. These activities are primarily concentrated in the Himalayan region, with relatively less research being conducted in the western and central areas. UAV technology has significantly contributed to glaciology research in the Third Pole region and holds great potential to enhance the monitoring capabilities in future studies. Full article
(This article belongs to the Special Issue Drones in Hydrological Research and Management)
Show Figures

Figure 1

13 pages, 9172 KB  
Technical Note
Surge Mechanisms of Garmo Glacier: Integrating Multi-Source Data for Insights into Acceleration and Hydrological Control
by Kunpeng Wu, Jing Feng, Pingping Cheng, Tobias Bolch, Zongli Jiang, Shiyin Liu and Adnan Ahmad Tahir
Remote Sens. 2024, 16(24), 4619; https://doi.org/10.3390/rs16244619 - 10 Dec 2024
Cited by 1 | Viewed by 1222
Abstract
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that [...] Read more.
Understanding the mechanisms of glacial surging is crucial, as surges can lead to severe hazards and significantly impact a glacier’s mass balance. We used various remote sensing data to investigate the surge of Garmo Glacier in the western Pamir. Our findings indicate that the glacier surged between 27 April and 30 September 2022, with peak speeds reaching 8.3 ± 0.03 m d−1. During April 2020 and September 2022, the receiving zone thickened by 37.9 ± 0.55 m, while the reservoir zone decreased by 35.2 ± 0.55 m on average. The velocity decomposition suggests that this meltwater gradually warmed the glacier bed, accelerating the glacier during the pre-surge phase. During the surge, substantial drainage events coincided with sharp deceleration, ultimately halting the surge and suggesting hydrological control. Extreme climate events may not immediately trigger glacial surges; they can substantially impact glacial surging processes over an extended period. Full article
Show Figures

Graphical abstract

17 pages, 18667 KB  
Article
Enhanced Wide-Area Glacier Velocity Monitoring in Svalbard via Synthetic Aperture Radar Offset Tracking Noise Suppression
by Honglei Yang, Songxue Zhao, Zeping Wang, Ao Yan and Zhenhan Shi
Appl. Sci. 2024, 14(23), 10834; https://doi.org/10.3390/app142310834 - 22 Nov 2024
Viewed by 1083
Abstract
Glacier movement is an important indicator of climate change, reflecting the quality and state changes in glacier migration and mass balance in the context of global warming. Although accurately estimating glacier surface flow velocity is crucial for various applications, achieving this is challenging [...] Read more.
Glacier movement is an important indicator of climate change, reflecting the quality and state changes in glacier migration and mass balance in the context of global warming. Although accurately estimating glacier surface flow velocity is crucial for various applications, achieving this is challenging due to factors such as low temporal correlation and high noise effects. This paper presents the pixel offset tracking (POT) technology based on Synthetic Aperture Radar (SAR) data for glacier velocity monitoring, with enhanced cross-correlation matching window and noise suppression approaches. In particular, a noise suppression optimization method and a matching window optimization index suitable for wide-area glacier velocity monitoring are proposed. The inter-annual wide-area two-dimensional plane flow velocity of glaciers in the Svalbard archipelago was obtained by using a total of seven Sentinel-1 data sets from two orbits covering the entire Svalbard archipelago in 2021. The results indicate that 25 large glaciers in Svalbard destabilized in 2021, with a peak flow velocity of 6.18 m/day. At the same time, the influence of climate, topography, and other factors on glacier surface velocity is discussed. The wide-area glacier velocity monitoring method and its application demonstrated in this paper will serve as a valuable reference for studying glacier migration in the Arctic Svalbard archipelago and for other large-scale wide-area deformation monitoring efforts. Full article
(This article belongs to the Special Issue Latest Advances in Radar Remote Sensing Technologies)
Show Figures

Figure 1

14 pages, 15087 KB  
Article
The Improved SBAS-InSAR Technique Reveals Three-Dimensional Glacier Collapse: A Case Study in the Qinghai–Tibet Plateau
by Xinyao Wang, Jiayi Yao, Yanbo Cao and Jiaming Yao
Land 2024, 13(8), 1126; https://doi.org/10.3390/land13081126 - 24 Jul 2024
Viewed by 1528
Abstract
Many debris-covered glaciers are widely distributed on the Qinghai–Tibet Plateau. Glaciers are important freshwater resources and cause disasters such as glacier collapse and landslides. Therefore, it is of great significance to monitor the movement characteristics of large active glaciers and analyze the process [...] Read more.
Many debris-covered glaciers are widely distributed on the Qinghai–Tibet Plateau. Glaciers are important freshwater resources and cause disasters such as glacier collapse and landslides. Therefore, it is of great significance to monitor the movement characteristics of large active glaciers and analyze the process of mass migration, which may cause serious threats and damage to roads and people living in surrounding areas. In this study, we chose a glacier with strong activity in Lulang County, Tibet, as the study area. The complete 4-year time series deformation of the glacier was estimated by using an improved small-baseline subset InSAR (SBAS-InSAR) technique based on the ascending and descending Sentinel-1 datasets. Then, the three-dimensional time series deformation field of the glacier was obtained by using the 3D decomposition technique. Furthermore, the three-dimensional movement of the glacier and its material migration process were analyzed. The results showed that the velocities of the Lulang glacier in horizontal and vertical directions were up to 8.0 m/year and 0.45 m/year, and these were basically consistent with the movement rate calculated from the historical optical images. Debris on both sides of the slope accumulated in the channel after slipping, and the material loss of the three provenances reached 6–9 × 103 m3/year, while the volume of the glacier also decreased by about 76 × 103 m3/year due to snow melting and evaporation. The correlation between the precipitation, temperature, and surface velocity suggests that glacier velocity has a clear association with them, and the activity of glaciers is linked to climate change. Therefore, in the context of global warming, the glacier movement speed will gradually increase with the annual increase in temperature, resulting in debris flow disasters in the future summer high-temperature period. Full article
Show Figures

Figure 1

19 pages, 10012 KB  
Article
Retrospective Analysis of Glacial Lake Outburst Flood (GLOF) Using AI Earth InSAR and Optical Images: A Case Study of South Lhonak Lake, Sikkim
by Yang Yu, Bingquan Li, Yongsheng Li and Wenliang Jiang
Remote Sens. 2024, 16(13), 2307; https://doi.org/10.3390/rs16132307 - 24 Jun 2024
Cited by 8 | Viewed by 5960
Abstract
On 4 October 2023, a glacier lake outburst flood (GLOF) occurred at South Lhonak Lake in the northwest of Sikkim, India, posing a severe threat to downstream lives and property. Given the serious consequences of GLOFs, understanding their triggering factors is urgent. This [...] Read more.
On 4 October 2023, a glacier lake outburst flood (GLOF) occurred at South Lhonak Lake in the northwest of Sikkim, India, posing a severe threat to downstream lives and property. Given the serious consequences of GLOFs, understanding their triggering factors is urgent. This paper conducts a comprehensive analysis of optical imagery and InSAR deformation results to study changes in the surrounding surface of the glacial lake before and after the GLOF event. To expedite the processing of massive InSAR data, an InSAR processing system based on the SBAS-InSAR data processing flow and the AI Earth cloud platform was developed. Sentinel-1 SAR images spanning from January 2021 to March 2024 were used to calculate surface deformation velocity. The evolution of the lake area and surface variations in the landslide area were observed using optical images. The results reveal a significant deformation area within the moraine encircling the lake before the GLOF, aligning with the area where the landslide ultimately occurred. Further research suggests a certain correlation between InSAR deformation results and multiple factors, such as rainfall, lake area, and slope. We speculate that heavy rainfall triggering landslides in the moraine may have contributed to breaching the moraine dam and causing the GLOF. Although the landslide region is relatively stable overall, the presence of a crack in the toparea of landslide raises concerns about potential secondary landslides. Our study may improve GLOF risk assessment and management, thereby mitigating or preventing their hazards. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Graphical abstract

20 pages, 11793 KB  
Article
Ice Thickness Measurement and Volume Modeling of Muztagh Ata Glacier No.16, Eastern Pamir
by Yefei Yang, Zhongqin Li, Feiteng Wang, Weibo Zhao, Jianxin Mu, Shuang Jin, Fanglong Wang, Xin Zhang, Qibin Liang, Zexin Zhan and Hao Ma
Remote Sens. 2024, 16(11), 2009; https://doi.org/10.3390/rs16112009 - 3 Jun 2024
Cited by 4 | Viewed by 1813
Abstract
As a heavily glaciated region, the Eastern Pamir plays a crucial role in regional water supply. However, considerable ambiguity surrounds the distribution of glacier ice thickness and the details of ice volume. Accurate data at the local scale are largely insufficient. In this [...] Read more.
As a heavily glaciated region, the Eastern Pamir plays a crucial role in regional water supply. However, considerable ambiguity surrounds the distribution of glacier ice thickness and the details of ice volume. Accurate data at the local scale are largely insufficient. In this study, ground-penetrating radar (GPR) was applied to assess the ice thickness at Muztagh Glacier No.16 (MG16) in Muztagh Ata, Eastern Pamir, for the first time, detailing findings from four distinct profiles, bridging the gap in regional measurements. We utilized a total of five different methods based on basic shear stress, surface velocity, and mass conservation, aimed at accurately delineating the ice volume and distribution for MG16. Verification was conducted using measured data, and an aggregated model outcome provided a unified view of ice distribution. The different models showed good agreement with the measurements, but there were differences in the unmeasured areas. The composite findings indicated the maximum ice thickness of MG16 stands at 115.87 ± 4.55 m, with an ice volume calculated at 0.27 ± 0.04 km3. This result is relatively low compared to the findings of other studies, which lies in the fact that the GPR measurements somewhat constrain the model. However, the model parameters remain the primary source of uncertainty. The results from this study can be used to enhance water resource assessments for future glacier change models. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

21 pages, 33442 KB  
Article
A Comprehensive Examination of the Medvezhiy Glacier’s Surges in West Pamir (1968–2023)
by Murodkhudzha Murodov, Lanhai Li, Mustafo Safarov, Mingyang Lv, Amirkhamza Murodov, Aminjon Gulakhmadov, Kabutov Khusrav and Yubao Qiu
Remote Sens. 2024, 16(10), 1730; https://doi.org/10.3390/rs16101730 - 14 May 2024
Cited by 5 | Viewed by 1993
Abstract
The Vanj River Basin contains a dynamic glacier, the Medvezhiy glacier, which occasionally poses a danger to local residents due to its surging, flooding, and frequent blockages of the Abdukahor River, leading to intense glacial lake outburst floods (GLOF). This study offers a [...] Read more.
The Vanj River Basin contains a dynamic glacier, the Medvezhiy glacier, which occasionally poses a danger to local residents due to its surging, flooding, and frequent blockages of the Abdukahor River, leading to intense glacial lake outburst floods (GLOF). This study offers a new perspective on the quantitative assessment of glacier surface velocities and associated lake changes during six surges from 1968 to 2023 by using time-series imagery (Corona, Hexagon, Landsat), SRTM elevation maps, ITS_LIVE, unmanned aerial vehicles, local climate, and glacier surface elevation changes. Six turbulent periods (1968, 1973, 1977, 1989–1990, 2001, and 2011) were investigated, each lasting three years within a 10–11-year cycle. During inactive phases, a reduction in the thickness of the glacier tongue in the ablation zone occurred. During a surge in 2011, the flow accelerated, creating an ice dam and conditions for GLOF. Using these datasets, we reconstructed the process of the Medvezhiy glacier surge with high detail and identified a clear signal of uplift in the surface above the lower glacier tongue as well as a uniform increase in velocities associated with the onset of the surge. The increased activity of the Medvezhiy glacier and seasonal fluctuations in surface runoff are closely linked to climatic factors throughout the surge phase, and recent UAV observations indicate the absence of GLOFs in the glacier’s channel. Comprehending the processes of glacier movements and related changes at a regional level is crucial for implementing more proactive measures and identifying appropriate strategies for mitigation. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

44 pages, 25578 KB  
Review
Remote Sensing and Modeling of the Cryosphere in High Mountain Asia: A Multidisciplinary Review
by Qinghua Ye, Yuzhe Wang, Lin Liu, Linan Guo, Xueqin Zhang, Liyun Dai, Limin Zhai, Yafan Hu, Nauman Ali, Xinhui Ji, Youhua Ran, Yubao Qiu, Lijuan Shi, Tao Che, Ninglian Wang, Xin Li and Liping Zhu
Remote Sens. 2024, 16(10), 1709; https://doi.org/10.3390/rs16101709 - 11 May 2024
Cited by 11 | Viewed by 5514
Abstract
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are [...] Read more.
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock–ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are essential for studying climate change, the hydrological cycle, water resource management, and natural disaster mitigation and prevention. However, knowledge gaps, data uncertainties, and other substantial challenges limit comprehensive research in climate–cryosphere–hydrology–hazard systems. To address this, we provide an up-to-date, comprehensive, multidisciplinary review of remote sensing techniques in cryosphere studies, demonstrating primary methodologies for delineating glaciers and measuring geodetic glacier mass balance change, glacier thickness, glacier motion or ice velocity, snow extent and water equivalent, frozen ground or frozen soil, lake ice, and glacier-related hazards. The principal results and data achievements are summarized, including URL links for available products and related data platforms. We then describe the main challenges for cryosphere monitoring using satellite-based datasets. Among these challenges, the most significant limitations in accurate data inversion from remotely sensed data are attributed to the high uncertainties and inconsistent estimations due to rough terrain, the various techniques employed, data variability across the same regions (e.g., glacier mass balance change, snow depth retrieval, and the active layer thickness of frozen ground), and poor-quality optical images due to cloudy weather. The paucity of ground observations and validations with few long-term, continuous datasets also limits the utilization of satellite-based cryosphere studies and large-scale hydrological models. Lastly, we address potential breakthroughs in future studies, i.e., (1) outlining debris-covered glacier margins explicitly involving glacier areas in rough mountain shadows, (2) developing highly accurate snow depth retrieval methods by establishing a microwave emission model of snowpack in mountainous regions, (3) advancing techniques for subsurface complex freeze–thaw process observations from space, (4) filling knowledge gaps on scattering mechanisms varying with surface features (e.g., lake ice thickness and varying snow features on lake ice), and (5) improving and cross-verifying the data retrieval accuracy by combining different remote sensing techniques and physical models using machine learning methods and assimilation of multiple high-temporal-resolution datasets from multiple platforms. This comprehensive, multidisciplinary review highlights cryospheric studies incorporating spaceborne observations and hydrological models from diversified techniques/methodologies (e.g., multi-spectral optical data with thermal bands, SAR, InSAR, passive microwave, and altimetry), providing a valuable reference for what scientists have achieved in cryosphere change research and its hydrological effects on the Third Pole. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

18 pages, 9425 KB  
Article
Two-Decadal Glacier Changes in the Astak, a Tributary Catchment of the Upper Indus River in Northern Pakistan
by Muzaffar Ali, Qiao Liu and Wajid Hassan
Remote Sens. 2024, 16(9), 1558; https://doi.org/10.3390/rs16091558 - 27 Apr 2024
Cited by 1 | Viewed by 2658
Abstract
Snow and ice melting in the Upper Indus Basin (UIB) is crucial for regional water availability for mountainous communities. We analyzed glacier changes in the Astak catchment, UIB, from 2000 to 2020 using remote sensing techniques based on optical satellite images from Landsat [...] Read more.
Snow and ice melting in the Upper Indus Basin (UIB) is crucial for regional water availability for mountainous communities. We analyzed glacier changes in the Astak catchment, UIB, from 2000 to 2020 using remote sensing techniques based on optical satellite images from Landsat and ASTER digital elevation models. We used a surface feature-tracking technique to estimate glacier velocity. To assess the impact of climate variations, we examined temperature and precipitation anomalies using ERA5 Land climate data. Over the past two decades, the Astak catchment experienced a slight decrease in glacier area (−1.8 km2) and the overall specific mass balance was −0.02 ± 0.1 m w.e. a−1. The most negative mass balance of −0.09 ± 0.06 m w.e. a−1 occurred at elevations between 2810 to 3220 m a.s.l., with a lesser rate of −0.015 ± 0.12 m w.e. a−1 above 5500 m a.s.l. This variation in glacier mass balance can be attributed to temperature and precipitation gradients, as well as debris cover. Recent glacier mass loss can be linked to seasonal temperature anomalies at higher elevations during winter and autumn. Given the reliance of mountain populations on glacier melt, seasonal temperature trends can disturb water security and the well-being of dependent communities. Full article
Show Figures

Figure 1

13 pages, 20131 KB  
Communication
Satellite-Derived Variability of Sea Surface Salinity and Geostrophic Currents off Western Patagonia
by Gonzalo S. Saldías, Pedro A. Figueroa, David Carrasco, Diego A. Narváez, Iván Pérez-Santos and Carlos Lara
Remote Sens. 2024, 16(9), 1482; https://doi.org/10.3390/rs16091482 - 23 Apr 2024
Cited by 3 | Viewed by 2036
Abstract
The coastal ocean off western Patagonia is one of the main coastal regions with high freshwater inputs from rivers, rain, and glaciers in the Southern Hemisphere. This study conducts an analysis of the seasonal and interannual variations in sea surface salinity and meridional [...] Read more.
The coastal ocean off western Patagonia is one of the main coastal regions with high freshwater inputs from rivers, rain, and glaciers in the Southern Hemisphere. This study conducts an analysis of the seasonal and interannual variations in sea surface salinity and meridional geostrophic transports, specifically focusing on the Cape Horn Current, using improved satellite-derived data of sea surface salinity (SSS) and geostrophic velocities spanning an ∼11-year period (September 2011–August 2022). Our results reveal a clear salinity minimum in a coastal band between 42–54°S associated with the highest freshwater content. The average geostrophic currents are stronger south of 49°S, in line with the location of the Cape Horn Current. The average salinity minimum tends to disappear south of 54°S, with salinity values increasing slightly southward. The seasonal cycle of salinity shows the most pronounced minimum in summer (∼33.2–33.4). The greatest variability in salinity (standard deviation of salinity fields) occurs in the southern region of the Cape Horn Current. Hovmöller plots reveal two cores of minimum salinity observed in spring and summer (∼33.3–33.4). The freshwater off the Gulf of Penas contributes to the northern core. The meridional geostrophic transport differs between the northern and southern sections, with transports predominantly towards the Equator (Pole) north (south) of about 47–48°S during spring–summer. There is a marked seasonal variability in the magnitude and northern limit of the southward-flowing Cape Horn Current, being extended further north during winter and with a maximum average magnitude during summer–fall (about 2×104 m2 s−1). On the interannual scale, a major drop in surface salinity occurred off northern and central Patagonia during 2018–2019. Finally, a potential long-term freshening trend is observed in the coastal area off southern Patagonia (south of 52°S), although prolonged data records are essential to confirm this pattern. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of Ocean Salinity)
Show Figures

Figure 1

19 pages, 7568 KB  
Article
Contrasting Changes of Debris-Free Glacier and Debris-Covered Glacier in Southeastern Tibetan Plateau
by Chuanxi Zhao, Zhen He, Shengyu Kang, Tianzhao Zhang, Yongjie Wang, Teng Li, Yifei He and Wei Yang
Remote Sens. 2024, 16(5), 918; https://doi.org/10.3390/rs16050918 - 5 Mar 2024
Cited by 4 | Viewed by 1985
Abstract
Debris-free and debris-covered glaciers are both extensively present in the southeastern Tibetan Plateau. High-precision and rigorous comparative observational studies on different types of glaciers help us to accurately understand the overall state of water resource variability and the underlying mechanisms. In this study, [...] Read more.
Debris-free and debris-covered glaciers are both extensively present in the southeastern Tibetan Plateau. High-precision and rigorous comparative observational studies on different types of glaciers help us to accurately understand the overall state of water resource variability and the underlying mechanisms. In this study, we used multi-temporal simultaneous UAV surveys to systematically explore the surface elevation change, surface velocity, and surface mass balance of two representative glaciers. Our findings indicate that the thinning rate in the debris-free Parlung No. 4 glacier UAV survey area was consistently higher than that in the debris-covered 24K glacier in 2020–2021 (−1.16 ± 0.03 cm/d vs. −0.36 ± 0.02 cm/d) and 2021–2022 (−0.69 ± 0.03 cm/d vs. −0.26 ± 0.03 cm/d). Moreover, the surface velocity of the Parlung No. 4 glacier was also consistently higher than that of the 24K glacier across the survey period, suggesting a more dynamic glacial state. The surface mass balance of the Parlung No. 4 glacier (2020–2021: −1.82 ± 0.09 cm/d; 2021–2022: −1.30 ± 0.09 cm/d) likewise outpaced that of the 24K glacier (2020–2021: −0.81 ± 0.07 cm/d; 2021–2022: −0.70 ± 0.07 cm/d) throughout the observation period, which indicates that the debris cover slowed the glacier’s melting. Additionally, we extracted the melt contribution of the ice cliff area in the 24K glacier and found that the melt ratio of this ‘hotspot’ area ranged from 10.4% to 11.6% from 2020 to 2022. This comparative analysis of two representative glaciers provides evidence to support the critical role of debris cover in controlling surface elevation changes, glacier dynamics, and surface mass balance. Full article
(This article belongs to the Special Issue Remote Sensing of Cryosphere and Related Processes)
Show Figures

Figure 1

13 pages, 4446 KB  
Communication
The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985
by Xuanru Zhao, Jinquan Cheng, Weijin Guan, Yuxuan Zhang and Bo Cao
Remote Sens. 2024, 16(5), 762; https://doi.org/10.3390/rs16050762 - 22 Feb 2024
Viewed by 1647
Abstract
In High Mountain Asia, most glaciers and glacial lakes have undergone rapid variations throughout changes in the climate. Unlike land-terminating glaciers, lake-terminating glaciers show rapid shrinkage due to dynamic interactions between proglacial lakes and glacier dynamics. In this study, we conducted a detailed [...] Read more.
In High Mountain Asia, most glaciers and glacial lakes have undergone rapid variations throughout changes in the climate. Unlike land-terminating glaciers, lake-terminating glaciers show rapid shrinkage due to dynamic interactions between proglacial lakes and glacier dynamics. In this study, we conducted a detailed analysis of the changes in the surface elevation, velocity, and especially frontal ablation on Jiongpu Co lake-terminating glacier. The results show that the Jiongpu Co glacier has twice as much negative mass balance compared to other glaciers, and the annual surface velocity has anomalously increased (3.6 m a−1 per decade) while other glaciers show a decreased trend. The frontal ablation fraction in the net mass loss of the Jiongpu Co glacier increased from 26% to 52% with the accelerated expansion of the proglacial lake. All available evidence indicates the presence of positive feedback between the proglacial lake and its host glacier. Our findings highlight the existence of proglacial lake affects the spatial change patterns of the lake-terminating glacier. Furthermore, the ongoing enlargement of the lake area amplifies the changes associated with the evolution of the lake-terminating glacier. Full article
Show Figures

Graphical abstract

Back to TopTop