Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,267)

Search Parameters:
Keywords = glycolytic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2411 KB  
Article
Implication of S-d-Lactoylglutathione in the Spontaneous Cysteine S-Glutathionylation and Lysine N-Lactoylation of Arabidopsis thaliana NAD-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase
by Camille Clément, Sonia Dorion, Natalia V. Bykova, Vincent Fetterley, Elvis Branchini, Charlie Boutin, Laurent Cappadocia and Jean Rivoal
Int. J. Mol. Sci. 2025, 26(19), 9673; https://doi.org/10.3390/ijms26199673 - 3 Oct 2025
Abstract
The glyoxalase pathway intermediate S-d-lactoylglutathione was recently implicated in protein post-translational modifications in animal systems. Here, we examined the spontaneous modification of the Arabidopsis thaliana cytosolic glyceraldehyde-3-phosphate dehydrogenase C1 (GAPC1) by this compound. Incubation of GAPC1 with S-d [...] Read more.
The glyoxalase pathway intermediate S-d-lactoylglutathione was recently implicated in protein post-translational modifications in animal systems. Here, we examined the spontaneous modification of the Arabidopsis thaliana cytosolic glyceraldehyde-3-phosphate dehydrogenase C1 (GAPC1) by this compound. Incubation of GAPC1 with S-d-lactoylglutathione resulted in the inhibition of enzyme activity. The inhibitory effect was concentration dependent and increased at alkaline pHs. Furthermore, the inhibition of GAPC1 by S-d-lactoylglutathione was favored by oxidative conditions and reversed by reduction with dithiothreitol. Analyses of the S-d-lactoylglutathione-treated protein by nanoLC-MS/MS revealed S-glutathionylation of its two Cys residues and N-lactoylation of six Lys residues. Protein structure predictions showed that the double S-glutathionylation is accommodated by the GAPC1 catalytic pocket, which likely explains enzyme inhibition. N-lactoylated sites overlap partially with previously reported N-acetylated sites at the surface of the GAPC1 tetramer. The efficiency of cytosolic glutaredoxin and thioredoxin isoforms was tested for reversing the S-d-lactoylglutathione-induced modification. In these assays, recovery of GAPC1 activity after inhibition by S-d-lactoylglutathione treatment was used as indicator of efficiency. The results show that both types of redoxins were able to reverse inhibition. We propose a model describing the mechanisms involved in the two types of post-translational modifications found on GAPC1 following exposure to S-d-lactoylglutathione. The possible involvement of these findings for the control over glycolytic metabolism is discussed. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 4152 KB  
Article
Effect of Oxygen Tension Modification During Oocyte Maturation on Porcine Oocyte Quality
by Yuki Inoue, Saki Akano, Yuya Suzuki, Kota Ushiroshoji, Asuka Kamio, Koumei Shirasuna and Hisataka Iwata
Vet. Sci. 2025, 12(10), 954; https://doi.org/10.3390/vetsci12100954 - 3 Oct 2025
Abstract
This study investigated the effects of high (atmospheric) and low (5% O2) oxygen tension, as well as a combination of the two, on oocyte metabolism and quality during maturation. Cumulus cell–oocyte complexes collected from gilt ovaries were used for in vitro [...] Read more.
This study investigated the effects of high (atmospheric) and low (5% O2) oxygen tension, as well as a combination of the two, on oocyte metabolism and quality during maturation. Cumulus cell–oocyte complexes collected from gilt ovaries were used for in vitro maturation. In addition, RNA-seq was conducted on the cumulus cells. Low oxygen tension throughout oocyte maturation did not alter the developmental rate to the blastocyst stage; however, it increased oocyte ATP and lipid content while reducing mitochondrial reactive oxygen species and mitochondrial membrane potential. Low-oxygen conditions increased glucose consumption but reduced mitochondrial DNA copy number and mitochondrial protein in cumulus cells. RNA-seq of cumulus cells revealed that low oxygen tension reduced mitochondrial activity and increased glycolysis, with the upregulation of glycolytic genes and downregulation of oxidative phosphorylation and steroidogenesis-related genes. In addition, a two-step oxygen protocol with low (5%) for the first period (0–21 h) and high (20%) for the last half period (21–44 h) increased the ATP and lipid content in oocytes and improved the embryonic developmental ability of the oocytes compared to the high-oxygen group. In conclusion, low oxygen tension during the first part of the maturation period is beneficial for oocyte quality, considering the observed metabolic changes. Full article
(This article belongs to the Section Veterinary Reproduction and Obstetrics)
Show Figures

Graphical abstract

14 pages, 2863 KB  
Article
HSPA1A Can Alleviate CFA-Induced Inflammatory Pain by Modulating Macrophages
by Wenjie Zhang, Xiaojun Xie, Xiaomin Xiong and Feiyu Chen
Int. J. Mol. Sci. 2025, 26(19), 9591; https://doi.org/10.3390/ijms26199591 - 1 Oct 2025
Abstract
Current clinical approaches for managing inflammatory pain are frequently accompanied by adverse effects, significantly compromising patients’ quality of life. This study investigates the analgesic potential of Heat Shock Protein Family A Member 1A (HSPA1A) in alleviating Complete Freund’s Adjuvant (CFA)-induced inflammatory pain. The [...] Read more.
Current clinical approaches for managing inflammatory pain are frequently accompanied by adverse effects, significantly compromising patients’ quality of life. This study investigates the analgesic potential of Heat Shock Protein Family A Member 1A (HSPA1A) in alleviating Complete Freund’s Adjuvant (CFA)-induced inflammatory pain. The immunomodulatory mechanisms were elucidated through behavioral studies, flow cytometry, transcriptomics, proteomics, and cellular metabolic analyses. Findings indicate that HSPA1A mitigates CFA-induced mechanical allodynia, an effect independent of T or B lymphocytes and neutrophils but positively correlated with macrophage abundance. Transcriptomic RNA sequencing suggests involvement of inflammation-associated pathways. In vitro experiments demonstrate that HSPA1A suppresses the polarization of bone marrow-derived macrophages toward the pro-inflammatory M1 phenotype in an inflammatory model, with decreased mRNA expression of pro-inflammatory cytokines Interleukin-1β (Il1b) and Tumor Necrosis Factor (TNF). Macrophage metabolism undergoes reprogramming, characterized by reduced glycolysis and enhanced oxidative phosphorylation. Proteomic pathway analysis reveals suppression of pro-inflammatory and glycolytic proteins, coupled with upregulation of anti-inflammatory and tricarboxylic acid cycle-related proteins. In summary, HSPA1A likely exerts its analgesic effects by inhibiting glycolysis in macrophages, providing novel insights into inflammatory pain management and highlighting potential therapeutic targets for future clinical drug development with substantial translational potential. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

19 pages, 1084 KB  
Article
Production and Quality Control of [68Ga]Ga-FAPI-46: Development of an Investigational Medicinal Product Dossier for a Bicentric Clinical Trial
by Alessandro Cafaro, Cristina Cuni, Stefano Boschi, Elisa Landi, Giacomo Foschi, Manuela Monti, Paola Caroli, Federica Matteucci, Carla Masini and Valentina Di Iorio
Pharmaceuticals 2025, 18(10), 1475; https://doi.org/10.3390/ph18101475 - 30 Sep 2025
Abstract
Background/Objectives: Fibroblast activation protein (FAP) is highly expressed in tumor stroma and selected inflammatory conditions, offering a promising target for molecular imaging. [68Ga]Ga-FAPI-46 is a DOTA-based FAP inhibitor with excellent tumor-to-background ratio and potential advantages over [18F]FDG in low-glycolytic [...] Read more.
Background/Objectives: Fibroblast activation protein (FAP) is highly expressed in tumor stroma and selected inflammatory conditions, offering a promising target for molecular imaging. [68Ga]Ga-FAPI-46 is a DOTA-based FAP inhibitor with excellent tumor-to-background ratio and potential advantages over [18F]FDG in low-glycolytic tumors. This article aims to highlight the quality elements that are relevant to clinical practice and to describe the development of an investigational medicinal product dossier for a bicentric clinical trial involving [68Ga]Ga-FAPI-46. Methods: The radiolabeling was performed by the two facilities using different automated synthesizers, but with the same specifications and acceptance criteria Results: Three validation batches per site were analyzed for radiochemical/radionuclidic purity, pH, endotoxin, sterility, and bioburden according to European Pharmacopoeia standards. Stability was as sessed up to 2 h post-synthesis. All batches met predefined acceptance criteria. Conclusions: Despite differences in radiosynthesizer modules, product quality and process reproducibility were maintained across both centers. [68Ga]Ga-FAPI-46 can be reliably produced in academic settings under GMP-like conditions, enabling multicenter clinical research and facilitating IMPD submissions for broader adoption of FAP-targeted PET imaging. Full article
Show Figures

Graphical abstract

22 pages, 5077 KB  
Article
Restoration of Enzymatic Activity of Energy-Related Proteins in Rats with Traumatic Brain Injury Following Administration of Gamma-Glutamylcysteine Ethyl Ester
by Brittany Rice, Jonathan Overbay, Andrea Sebastian, Patrick G. Sullivan and Tanea T. Reed
Brain Sci. 2025, 15(10), 1067; https://doi.org/10.3390/brainsci15101067 - 30 Sep 2025
Abstract
Background/Objectives: Biochemical processes such as the glycolytic pathway and Kreb’s cycle are important in producing ATP for the brain. Without a sufficient supply of glucose for energy metabolism, the brain cannot efficiently regulate or coordinate the actions and reactions of the body. It [...] Read more.
Background/Objectives: Biochemical processes such as the glycolytic pathway and Kreb’s cycle are important in producing ATP for the brain. Without a sufficient supply of glucose for energy metabolism, the brain cannot efficiently regulate or coordinate the actions and reactions of the body. It is well documented that traumatic brain injury (TBI) is associated with reduced energy metabolism through the production of reactive oxygen/nitrogen species. Antioxidants, such as glutathione (GSH), have been shown to combat the deleterious effects of oxidation by scavenging ROS/RNS, inhibiting propagation, and removing neurotoxic byproducts. Gamma-glutamylcysteine ethyl ester (GCEE), an ethyl ester moiety of gamma-glutamylcysteine, exhibits antioxidant activity by increasing GSH production. This therapeutic has protective effects against oxidative stress through the elevation of glutathione. Methods: This study investigates the enzymatic activities of several key energy-related proteins that have been identified as nitrated in treated Wistar rats with moderate TBI. To test the hypothesis that the elevation of GSH production upon administration of GCEE will normalize enzymatic activity post-TBI, adult male Wistar rats were equally divided into three groups: sham, saline, and GCEE. Rats were treated with 150 mg/kg saline or GCEE at 30 and 60 min post-TBI. Upon sacrifice, brains were harvested and enzymatic activity was measured spectrophotometrically. Results: An increase in enzymatic activity upon GSH elevation via GCEE administration in several key enzymes was observed. Conclusions: GCEE is a potential therapeutic strategy to restore energy-related proteins in the brain post-TBI via GSH elevation. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

25 pages, 1309 KB  
Article
Metabolomic Signatures of Transitional Breast Milk in Gestational Diabetes Mellitus: A Case–Control Study Assessing the Impact of Insulin Therapy
by Merve Küçükoğlu Keser, Sıddika Songül Yalçin, Tuba Reçber and Emirhan Nemutlu
Nutrients 2025, 17(19), 3101; https://doi.org/10.3390/nu17193101 - 29 Sep 2025
Abstract
Background/Objectives: Gestational diabetes mellitus (GDM) alters maternal metabolism during pregnancy and may impact the biochemical composition of breast milk. Given the critical role of human milk in early-life metabolic programming, identifying metabolic alterations in GDM milk and understanding the effects of insulin [...] Read more.
Background/Objectives: Gestational diabetes mellitus (GDM) alters maternal metabolism during pregnancy and may impact the biochemical composition of breast milk. Given the critical role of human milk in early-life metabolic programming, identifying metabolic alterations in GDM milk and understanding the effects of insulin therapy has important implications for neonatal health. This study aims to investigate the metabolomic profile of transitional breast milk in mothers with gestational diabetes mellitus compared with healthy controls and to evaluate the impact of insulin therapy on milk metabolite composition. Methods: Breast milk samples were collected between postpartum days 10 and 15 from 80 mothers with GDM and 80 matched controls. Metabolomic profiling was performed using gas chromatography–mass spectrometry (GC–MS), and data were analyzed using multivariate and univariate statistical techniques including PCA, PLS–DA, logistic regression, and ROC analysis. Conclusions: A total of 133 metabolites were identified, and GDM mothers exhibited a distinct metabolomic signature characterized by significant alterations in carbohydrate, amino acid, and microbial-derived metabolites. In particular, galactinol, arabitol, and pyrogallol were significantly decreased, while α-ketoglutaric acid and citric acid were elevated in the GDM group. Insulin-treated mothers showed unique metabolic changes involving glycolytic intermediates (glycerone phosphoric acid), purine metabolism (xanthine), and oxidative pathways (isocitric acid, gluconic acid lactone). Multivariate models based on the top metabolites achieved moderate discriminatory performance (AUC = 0.68). GDM is associated with substantial metabolic changes in transitional breast milk, and insulin therapy appears to modulate these alterations further. These findings suggest that maternal metabolic status and its treatment can shape the neonatal nutritional environment, potentially influencing early metabolic programming. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

46 pages, 615 KB  
Review
Unveiling Metabolic Signatures as Potential Biomarkers in Common Cancers: Insights from Lung, Breast, Colorectal, Liver, and Gastric Tumours
by Kha Wai Hon and Rakesh Naidu
Biomolecules 2025, 15(10), 1376; https://doi.org/10.3390/biom15101376 - 28 Sep 2025
Abstract
Reprogramming is a hallmark of cancer, enabling tumour cells to sustain rapid proliferation, resist cell death, and adapt to hostile microenvironments. This review explores the expression profiles of key metabolic enzymes and transporters involved in glucose, amino acid, and lipid metabolism across the [...] Read more.
Reprogramming is a hallmark of cancer, enabling tumour cells to sustain rapid proliferation, resist cell death, and adapt to hostile microenvironments. This review explores the expression profiles of key metabolic enzymes and transporters involved in glucose, amino acid, and lipid metabolism across the five most deadly cancers worldwide: lung, breast, colorectal, liver, and gastric cancers. Through a comparative analysis, we identify consistent upregulation of glycolytic enzymes such as LDHA, PKM2, and HK2, as well as nutrient transporters like GLUT1, ASCT2, and LAT1, which contribute to cancer progression, metastasis, and therapy resistance. The role of enzymes involved in glutaminolysis (e.g., GLS1, GDH), one-carbon metabolism (e.g., SHMT2, PHGDH), and fatty acid synthesis (e.g., FASN, ACLY) is also examined, with emphasis on their emerging relevance as diagnostic, prognostic, and predictive biomarkers. While several metabolic proteins show strong potential for clinical translation, only a few, such as tumour M2-pyruvate kinase (TuM2-PK) and serum LDH measurement, have progressed into clinical use or trials. This review addresses some of the challenges in biomarker development. Ultimately, our findings underscore the importance of metabolic proteins not only as functional drivers of malignancy but also as promising candidates for biomarker discovery. Advancing their clinical implementation could significantly enhance early detection, treatment stratification, and personalized oncology. Full article
15 pages, 2703 KB  
Article
Differential Effects of Selenium Compounds on Mitochondrial Function in PRRSV-Infected Porcine Alveolar Macrophages
by Abigail Williams, Christina Bourne, John Byrne, Chaitawat Sirisereewan, Brittany M. Pecoraro and Elisa Crisci
Viruses 2025, 17(10), 1303; https://doi.org/10.3390/v17101303 - 26 Sep 2025
Abstract
Selenium (Se) is a trace mineral with antioxidant and anti-inflammatory properties. Se deficiency increases oxidative stress and immunosuppression. In swine, dietary Se supplementation enhances immunity and growth, and previous studies suggest it protects immune cells during viral infection. Porcine reproductive and respiratory syndrome [...] Read more.
Selenium (Se) is a trace mineral with antioxidant and anti-inflammatory properties. Se deficiency increases oxidative stress and immunosuppression. In swine, dietary Se supplementation enhances immunity and growth, and previous studies suggest it protects immune cells during viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe respiratory and reproductive failure in swine, resulting in annual losses of 1.2 billion USD. Vaccine efficacy is hampered by the virus’s high mutation rate, requiring alternative approaches. This study examines the effects of organic (DL-Selenomethionine, L-Selenomethionine, yeast-selenium) and inorganic (sodium selenite) Se on PRRSV infection in vitro. Porcine alveolar macrophages, the primary target of PRRSV in the lung, were isolated from healthy animals and infected with PRRSV-2 with or without Se. Mitochondrial function, gene expression, oxidative stress, and viral load were assessed post-infection. DL-selenomethionine showed increased glycolytic and mitochondrial ATP production relative to other compounds, suggesting improved mitochondrial function. No antiviral activity against PRRSV was observed. Transcriptome analysis revealed infection-driven modulation, with upregulation of IL6, IL8, IL1B1, MX1, and TXNRD1, but Se had no significant effect. While Se did not exhibit antiviral activity in vitro, its enhancement of mitochondrial function offers additional insight supporting its potential immunomodulatory benefits observed in previous in vivo studies. Full article
(This article belongs to the Special Issue Porcine Viruses 2025)
Show Figures

Figure 1

21 pages, 4367 KB  
Article
Effects of Dietary Protease Levels on Growth Performance, Feeding Regulation, Glucose and Lipid Metabolism, and Endogenous Protease Secretion in Chinese Perch (Siniperca chuatsi)
by Shizhen Liu, Yi Yi, Qingda Tian, Jianmei Su and Liwei Liu
Animals 2025, 15(19), 2809; https://doi.org/10.3390/ani15192809 - 26 Sep 2025
Abstract
300 healthy Chinese perch (Siniperca chuatsi) (34.35 ± 0.47 g) were randomly divided into five groups (P1–P5) fed diets supplemented with 0, 0.2, 0.4, 0.8, and 1.6 g/kg protease for 8 weeks. Compared to P1, protease supplementation significantly up-regulated endogenous pepsinogen [...] Read more.
300 healthy Chinese perch (Siniperca chuatsi) (34.35 ± 0.47 g) were randomly divided into five groups (P1–P5) fed diets supplemented with 0, 0.2, 0.4, 0.8, and 1.6 g/kg protease for 8 weeks. Compared to P1, protease supplementation significantly up-regulated endogenous pepsinogen genes (pga1 and pgc) and down-regulated the muscle deamination gene ampd. In comparison to P1, the expression level of the hepatic gene ast increased in P2, P3, and P5, while gdh elevated in P2 and P3 (p < 0.05). Compared to P1, the expression of feeding-related gene npy decreased while pomc increased in P2; agrp increased in P3; and pomc and cart decreased in P5, resulting in significant increases in feed intake in P2, P3, and P5 (p < 0.05). Glycolytic genes (gk and pk) and lipid metabolism gene pparα were up-regulated in P2, P3 and P5, while hsl increased in P3 but decreased in P5 (p < 0.05). P5 exhibited significantly improved weight gain rate, specific growth rate, protein efficiency ratio, and protein retention rate, alongside reduced feed conversion ratio compared with P1. Therefore, dietary 1.6 g/kg protease significantly enhances growth, improves feed efficiency, stimulates pepsinogen secretion, and modulates deamination, glycolytic, and lipid metabolism genes in Siniperca chuatsi. Full article
(This article belongs to the Special Issue Recent Advances in Nutritional Ingredients for Aquaculture)
Show Figures

Figure 1

23 pages, 850 KB  
Article
Dietary Rumen-Protected Taurine Enhances Growth Performance and Meat Quality in Heat-Stressed Crossbred Gan-Xi Goats via Modulating GLUT4/PYGM-Mediated Muscle Energy Metabolism
by Guwei Lu, Yijie Wang, Yuting Wei, Xin Liu, Siyu Lu, Xianghui Zhao, Qinghua Qiu, Mingren Qu, Lizhi Li, Yanjiao Li and Kehui Ouyang
Foods 2025, 14(19), 3323; https://doi.org/10.3390/foods14193323 - 25 Sep 2025
Abstract
Heat stress induced by high temperature and humidity in southern China during summer reduce goat production efficiency and meat quality. Taurine (TAU), one of the most abundant amino acids in animal tissues, plays a vital role in alleviating heat stress and regulating energy [...] Read more.
Heat stress induced by high temperature and humidity in southern China during summer reduce goat production efficiency and meat quality. Taurine (TAU), one of the most abundant amino acids in animal tissues, plays a vital role in alleviating heat stress and regulating energy metabolism through its involvement in glucose uptake and glycogen turnover. This study aimed to investigate the effects of rumen-protected (RP)-TAU on the meat quality, hepatic gluconeogenesis, and muscle energy metabolism of heat-stressed goats. During summer, twenty-four male crossbred Gan-xi goats (20.45 ± 2.95 kg) aged 5 months were randomly allocated to two groups treated with or without 0.4% RP-TAU (on a diet weight basis). After feeding for 60 days, six goats per treatment were slaughtered. Compared with the control group, RP-TAU supplementation significantly improved the growth performance of goats, as evidenced by increased final body weight, average daily gain, and average daily feed intake (p < 0.05). The goats in the RP-TAU group showed a reduced splenic index (p < 0.05), lower serum cortisol levels (0.05 < p < 0.1), and decreased muscle crude fat content (p < 0.01). Crucially, meat quality was improved with reduced hardness, gumminess, and chewiness (p < 0.05), indicating better textural properties. Nutritionally, RP-TAU supplementation modulated the muscle fatty acid profile, significantly reducing the concentrations of palmitic (a saturated fatty acid), palmitoleic (a monounsaturated fatty acid), and nervonic acids (p < 0.05), while cystine content was reduced (p < 0.05). RP-TAU supplementation significantly enhanced the muscle contents of glucose and glycogen, glycolytic potential, phosphofructokinase activity, and ATP level, while decreasing the pyruvate level and AMP/ATP ratio (p < 0.05). Gene expression analysis revealed the upregulation of GLUT4 and PYGM and the downregulation of GSK3β in muscle (p < 0.05). These results indicated that dietary supplementation of RP-TAU might be beneficial to improve stress resistance and meat quality by increasing muscle energy supply and glucose uptake in Gan-xi goats. Full article
(This article belongs to the Section Meat)
Show Figures

Graphical abstract

25 pages, 1405 KB  
Article
Growth Phase-Dependent Changes in the Carbohydrate Metabolism of Penicillium Strains from Diverse Temperature Classes in Response to Cold Stress
by Jeny Miteva-Staleva, Ekaterina Krumova and Maria Angelova
Int. J. Mol. Sci. 2025, 26(19), 9308; https://doi.org/10.3390/ijms26199308 - 24 Sep 2025
Viewed by 190
Abstract
Three fungal strains belonging to the genus Penicillium from different temperature classes (two Antarctic strains—psychrotolerant and mesophilic, and a temperate mesophilic) were used to investigate their metabolic cell response to cold stress. The exponential- and stationary-growth-phase fungal cultures were exposed to a transient [...] Read more.
Three fungal strains belonging to the genus Penicillium from different temperature classes (two Antarctic strains—psychrotolerant and mesophilic, and a temperate mesophilic) were used to investigate their metabolic cell response to cold stress. The exponential- and stationary-growth-phase fungal cultures were exposed to a transient temperature downshift from optimal to 6 and 15 °C, respectively. The activity of the enzymes hexokinase, glucose-6-phosphate dehydrogenase, and glyceraldehyde 3-phosphate dehydrogenase from the glycolytic pathway, and that of the enzymes isocitrate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase from the TCA cycle were studied. In all experiments, the cold-induced oxidative stress increased the indicated enzymatic activities depending on the strain’s temperature characteristics, the degree of stress, and the growth phase. Furthermore, enzyme activity was lower in cells from stationary-phase cultures (older cells) compared to those from exponential-phase cultures (younger cells). The cellular response was more pronounced in mesophilic strains, regardless of the location of isolation. The cold-adapted Antarctic psychrotolerant strain exhibited enhanced tolerance to low-temperature stress compared to mesophilic strains. These findings emphasize the significance of temperature preferences and growth phase in the survival of fungi under conditions of cold-induced oxidative stress. New information could prove beneficial in forecasting the behaviour of fungal pathogens such as plant pathogens in agriculture and human pathogens in medicine. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

23 pages, 1267 KB  
Article
Dysregulated Expression of Canonical and Non-Canonical Glycolytic Enzyme Isoforms in Peripheral Blood from Subjects with Alcohol Use Disorder and from Individuals with Acute Alcohol Consumption
by Maura Rojas-Pirela, Daniel Salete-Granado, Diego Andrade-Alviárez, Alejandro Prieto-Rojas, Cristina Rodríguez, María-Lourdes Aguilar-Sánchez, David Puertas-Miranda, María-Ángeles Pérez-Nieto, Vanessa Rueda-Cala, Candy Pérez, Wilfredo Quiñones, Paul A. M. Michels, Ángeles Almeida and Miguel Marcos
Antioxidants 2025, 14(9), 1143; https://doi.org/10.3390/antiox14091143 - 22 Sep 2025
Viewed by 241
Abstract
Glycolysis is primarily involved in ATP production but also modulates oxidative stress. Chronic alcohol consumption is correlated with an increased incidence of multiple diseases, including cancer and neurodegenerative diseases (NDDs), though the underlying mechanisms remain unclear. Guided by a literature review and bioinformatics [...] Read more.
Glycolysis is primarily involved in ATP production but also modulates oxidative stress. Chronic alcohol consumption is correlated with an increased incidence of multiple diseases, including cancer and neurodegenerative diseases (NDDs), though the underlying mechanisms remain unclear. Guided by a literature review and bioinformatics analysis, we evaluated the expression of 22 genes encoding various isoforms of seven glycolytic enzymes (GEs) in the peripheral blood of patients with alcohol use disorder (AUD), individuals with acute alcohol consumption (AAC), and their respective control groups using qPCR. In parallel, we evaluated the expression of selected genes coding for GEs linked to NDDs, as well as astrocytic markers in primary mouse astrocyte cultures exposed to ethanol. Thirteen GE-related genes, including non-canonical isoforms, were significantly dysregulated in AUD patients; notably, eight of these genes showed similar alterations in individuals with AAC. Several enzymes encoded by these genes are known to be regulated by oxidative stress. Ethanol-exposed astrocytes also showed altered expression of glycolytic genes associated with NDDs and astrocyte function. These findings indicate that glycolytic dysregulation is driven by ethanol intake, regardless of exposure duration or organic damage, highlighting a link between ethanol-driven redox imbalance and glycolytic remodeling, which could contribute to organ damage. Full article
(This article belongs to the Special Issue Alcohol-Induced Oxidative Stress in Health and Disease, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 245 KB  
Article
Novel Blood Collection Tubes Improve Sample Preservation in a Multicenter Study in Thailand
by Khundow Moonla, Renu Wiriyaprasit, Napaporn Apiratmateekul, Nam K. Tran and Wanvisa Treebuphachatsakul
Diagnostics 2025, 15(18), 2398; https://doi.org/10.3390/diagnostics15182398 - 20 Sep 2025
Viewed by 182
Abstract
Background: Blood collection tubes (BCTs) are critical in vitro diagnostic devices used in clinical laboratory testing. Innomed tubes are novel BCTs coated with heparin and anti-glycolytic agents (Innomed 1) and clot activators combined with anti-glycolytic agents (Innomed 2). This study, we focus [...] Read more.
Background: Blood collection tubes (BCTs) are critical in vitro diagnostic devices used in clinical laboratory testing. Innomed tubes are novel BCTs coated with heparin and anti-glycolytic agents (Innomed 1) and clot activators combined with anti-glycolytic agents (Innomed 2). This study, we focus on the verification and multicenter validation of Innomed tubes, aiming to assess their performance in glucose stability, hemolysis resistance, and biochemical interferences relevant to diabetes and non-communicable disease (NCD) monitoring. Methods: Two types of Innomed tubes were evaluated. The verification process, conducted in a reference laboratory, assessed biochemical interferences, glucose stability, and the potential for hemolysis due to centrifugation and blood collection techniques. The multicenter validation of biochemical interferences was carried out across five hospital laboratories. Subsequently, samples were centrifuged at 3500 rpm for 5–10 min and analyzed immediately after separation, not exceeding 2 h from collection. Results: Glucose levels in Innomed 1 and 2 remained stable within 8% of up to 8 h post-collection. No hemolysis was observed under varying centrifugation times (at 3500 rpm) and blood collection techniques, as confirmed through visual inspection and lactate dehydrogenase level determinations. Innomed tubes were suitable BCTs for glucose, HbA1c, thyroid stimulating hormone, free triiodothyronine, free thyroxin, triiodothyronine, carcinoembryonic antigen, and prostate-specific antigen, as well as for 19 routine biochemical assays. Conclusions: Innomed 1 and 2 BCTs maintain blood glucose stability for 8 h, ensuring accurate biochemical, HbA1c, thyroid, and tumor marker testing. Their hemolysis resistance supports diabetes screening and Non-Communicable Diseases (NCD) monitoring. thereby emphasizing their clinical relevance in chronic disease management. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
39 pages, 6702 KB  
Review
Exosome-like Nanoparticles Extracted from Plant Cells for Diabetes Therapy
by Xin Xiao, Yuliang Guo, Nontokozo Zimbili Msomi, Md. Shahidul Islam and Maoquan Chu
Int. J. Mol. Sci. 2025, 26(18), 9155; https://doi.org/10.3390/ijms26189155 - 19 Sep 2025
Viewed by 300
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia and associated complications such as cardiovascular disease, nephropathy, retinopathy, neuropathy, and chronic non-healing wounds. Current antidiabetic therapies offer only partial glycemic control and are limited by poor bioavailability, adverse effects, and [...] Read more.
Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia and associated complications such as cardiovascular disease, nephropathy, retinopathy, neuropathy, and chronic non-healing wounds. Current antidiabetic therapies offer only partial glycemic control and are limited by poor bioavailability, adverse effects, and an inability to prevent disease progression. Plant-derived exosome-like nanoparticles (PENPs) have emerged as a promising class of natural nanocarriers with excellent biocompatibility, low immunogenicity, and intrinsic multi-component bioactivity. However, few reviews have addressed recent progress in PENPs for DM therapy. To capture the recent developments in this area, this review provides a systematic synthesis of recent advances in PENPs for DM therapy, covering plant sources, extraction and purification methods, molecular compositions, and therapeutic mechanisms. Preclinical studies have demonstrated that PENPs can improve hyperglycemia, enhance insulin sensitivity, regulate hepatic lipid metabolism, and promote wound healing by modulating oxidative stress, inflammation, gut microbiota, glucose metabolism, and insulin signaling. Additionally, PENPs have been shown to promote angiogenesis via glycolytic reprogramming. Despite these promising findings, challenges including scalable isolation, standardized physicochemical characterization, and clinical translation remain. Future directions include engineering multifunctional PENPs, establishing Good Manufacturing Practice (GMP)-compliant production, and conducting clinical trials to facilitate their integration into precision therapeutics for diabetes management. Full article
(This article belongs to the Special Issue Micro-Nano Materials for Drug Delivery and Disease Treatment)
Show Figures

Graphical abstract

22 pages, 1536 KB  
Review
Unlocking MSC Potential: Metabolic Reprogramming via Synthetic Biology Approaches
by Natalia Trufanova, Oleh Trufanov and Oleksandr Petrenko
SynBio 2025, 3(3), 13; https://doi.org/10.3390/synbio3030013 - 17 Sep 2025
Viewed by 262
Abstract
Metabolic engineering of mesenchymal stem/stromal cells (MSCs) represents a compelling frontier for advanced cellular therapies, enabling the precise tuning of their biological outputs. This feature paper examines the critical role of engineered culture microenvironments, specifically 3D platforms, hypoxic preconditioning, and other priming approaches, [...] Read more.
Metabolic engineering of mesenchymal stem/stromal cells (MSCs) represents a compelling frontier for advanced cellular therapies, enabling the precise tuning of their biological outputs. This feature paper examines the critical role of engineered culture microenvironments, specifically 3D platforms, hypoxic preconditioning, and other priming approaches, which are synthetic biology strategies used to guide and optimize MSC metabolic states for desired functional outcomes. We show that these non-genetic approaches can significantly enhance MSC survival, immunomodulatory capacity, and regenerative potential by shifting their metabolism toward a more glycolytic phenotype. Furthermore, we propose a new paradigm of “designer” MSCs, which are programmed with synthetic circuits to sense and respond to the physiological cues of an injured microenvironment. This approach promises to transform regenerative medicine from an inconsistent field into a precise, predictable, and highly effective therapeutic discipline. Full article
Show Figures

Figure 1

Back to TopTop