Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,636)

Search Parameters:
Keywords = graphene electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2285 KB  
Article
Rationally Designed Molecularly Imprinted Polymer Electrochemical Biosensor with Graphene Oxide Interface for Selective Detection of Matrix Metalloproteinase-8 (MMP-8)
by Jae Won Lee, Rowoon Park, Sangheon Jeon, Sung Hyun Kim, Young Woo Kwon, Dong-Wook Han and Suck Won Hong
Biosensors 2025, 15(10), 671; https://doi.org/10.3390/bios15100671 - 4 Oct 2025
Viewed by 277
Abstract
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal [...] Read more.
Molecularly imprinted polymer (MIP) biosensors offer an attractive strategy for selective biomolecule detection, yet imprinting proteins with structural fidelity remains a major challenge. In this work, we present a rationally designed electrochemical biosensor for matrix metal-loproteinase-8 (MMP-8), a key salivary biomarker of periodontal disease. By integrating graphene oxide (GO) with electropolymerized poly(eriochrome black T, EBT) films on screen-printed carbon electrodes, the partially reduced GO interface enhanced electrical conductivity and facilitated the formation of well-defined poly(EBT) films with re-designed polymerization route, while template extraction generated artificial antibody-like sites capable of specific protein binding. The MIP-based electrodes were comprehensively validated through morphological, spectroscopic, and electrochemical analyses, demonstrating stable and selective recognition of MMP-8 against structurally similar interferents. Complementary density functional theory (DFT) modeling revealed energetically favorable interactions between the EBT monomer and catalytic residues of MMP-8, providing molecular-level insights into imprinting specificity. These experimental and computational findings highlight the importance of rational monomer selection and nanomaterial-assisted polymerization in achieving selective protein imprinting. This work presents a systematic approach that integrates electrochemical engineering, nanomaterial interfaces, and computational validation to address long-standing challenges in protein-based MIP biosensors. By bridging molecular design with practical sensing performance, this study advances the translational potential of MIP-based electrochemical biosensors for point-of-care applications. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers-Based Biosensors)
Show Figures

Graphical abstract

22 pages, 4095 KB  
Article
Ecosynthesis and Optimization of Nano rGO/Ag-Based Electrode Materials for Superior Supercapacitor Coin Cell Devices
by Belen Orellana, Leonardo Vivas, Carolina Manquian, Tania P. Brito and Dinesh P. Singh
Int. J. Mol. Sci. 2025, 26(19), 9578; https://doi.org/10.3390/ijms26199578 - 1 Oct 2025
Viewed by 270
Abstract
In the shift toward sustainable energy, there is a strong demand for efficient and durable energy storage solutions. Supercapacitors, in particular, are a promising technology, but they require high-performance materials that can be produced using simple, eco-friendly methods. This has led researchers to [...] Read more.
In the shift toward sustainable energy, there is a strong demand for efficient and durable energy storage solutions. Supercapacitors, in particular, are a promising technology, but they require high-performance materials that can be produced using simple, eco-friendly methods. This has led researchers to investigate new materials and composites that can deliver high energy and power densities, along with long-term stability. Herein, we report a green synthesis approach to create a composite material consisting of reduced graphene oxide and silver nanoparticles (rGO/Ag). The method uses ascorbic acid, a natural compound found in fruits and vegetables, as a non-toxic agent to simultaneously reduce graphene oxide and silver nitrate. To enhance electrochemical performance, the incorporation of silver nanoparticles into the rGO structures is optimized. In this study, different molar concentrations of silver nitrate (1.0, 0.10, and 0.01 M) are used to control silver nanoparticle loading during the synthesis and reduction process. A correlation between silver concentration, defect density in rGO, and the resulting capacitive behavior was assessed by systematically varying the silver molarity. The synthesized materials exhibited excellent performance as supercapacitor electrodes in a three-electrode configuration, with the rGO/Ag 1.0 M composite showing the best performance, reaching a maximum specific capacitance of 392 Fg−1 at 5 mVs−1. Furthermore, the performance of this optimized electrode material was investigated in a two-electrode configuration as a coin cell device, which demonstrates a maximum areal-specific capacitance of 22.63 mFcm−2 and a gravimetric capacitance of 19.00 Fg−1, which is within the range of commercially viable devices and a significant enhancement, outperforming low-level graphene-based devices. Full article
(This article belongs to the Special Issue Innovative Nanomaterials from Functional Molecules)
Show Figures

Graphical abstract

36 pages, 2691 KB  
Review
Advanced Electrochemical Sensors for Rapid and Sensitive Monitoring of Tryptophan and Tryptamine in Clinical Diagnostics
by Janani Sridev, Arif R. Deen, Md Younus Ali, Wei-Ting Ting, M. Jamal Deen and Matiar M. R. Howlader
Biosensors 2025, 15(9), 626; https://doi.org/10.3390/bios15090626 - 19 Sep 2025
Viewed by 850
Abstract
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a [...] Read more.
Tryptophan (Trp) and tryptamine (Tryp), critical biomarkers in mood regulation, immune function, and metabolic homeostasis, are increasingly recognized for their roles in both oral and systemic pathologies, including neurodegenerative disorders, cancers, and inflammatory conditions. Their rapid, sensitive detection in biofluids such as saliva—a non-invasive, real-time diagnostic medium—offers transformative potential for early disease identification and personalized health monitoring. This review synthesizes advancements in electrochemical sensor technologies tailored for Trp and Tryp quantification, emphasizing their clinical relevance in diagnosing conditions like oral squamous cell carcinoma (OSCC), Alzheimer’s disease (AD), and breast cancer, where dysregulated Trp metabolism reflects immune dysfunction or tumor progression. Electrochemical platforms have overcome the limitations of conventional techniques (e.g., enzyme-linked immunosorbent assays (ELISA) and mass spectrometry) by integrating innovative nanomaterials and smart engineering strategies. Carbon-based architectures, such as graphene (Gr) and carbon nanotubes (CNTs) functionalized with metal nanoparticles (Ni and Co) or nitrogen dopants, amplify electron transfer kinetics and catalytic activity, achieving sub-nanomolar detection limits. Synergies between doping and advanced functionalization—via aptamers (Apt), molecularly imprinted polymers (MIPs), or metal-oxide hybrids—impart exceptional selectivity, enabling the precise discrimination of Trp and Tryp in complex matrices like saliva. Mechanistically, redox reactions at the indole ring are optimized through tailored electrode interfaces, which enhance reaction kinetics and stability over repeated cycles. Translational strides include 3D-printed microfluidics and wearable sensors for continuous intraoral health surveillance, demonstrating clinical utility in detecting elevated Trp levels in OSCC and breast cancer. These platforms align with point-of-care (POC) needs through rapid response times, minimal fouling, and compatibility with scalable fabrication. However, challenges persist in standardizing saliva collection, mitigating matrix interference, and validating biomarkers across diverse populations. Emerging solutions, such as AI-driven analytics and antifouling coatings, coupled with interdisciplinary efforts to refine device integration and manufacturing, are critical to bridging these gaps. By harmonizing material innovation with clinical insights, electrochemical sensors promise to revolutionize precision medicine, offering cost-effective, real-time diagnostics for both localized oral pathologies and systemic diseases. As the field advances, addressing stability and scalability barriers will unlock the full potential of these technologies, transforming them into indispensable tools for early intervention and tailored therapeutic monitoring in global healthcare. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

15 pages, 6893 KB  
Article
One-Step LCVD Fabrication of Binder-Free Porous Graphene@SiC Heterostructures for Lithium-Ion Battery Anodes
by Song Zhang, Feiyang Ji, Wei Huang, Chitengfei Zhang, Chongjie Wang, Cuicui Li, Qingfang Xu and Rong Tu
Materials 2025, 18(18), 4341; https://doi.org/10.3390/ma18184341 - 17 Sep 2025
Viewed by 397
Abstract
The potential of silicon carbide (SiC) as a promising high-capacity and stable anode material is hindered by poor electronic conductivity and slow lithium diffusion kinetics. Here, we report a one-step laser chemical vapor deposition (LCVD) process to directly synthesize porous graphene@SiC heterostructures on [...] Read more.
The potential of silicon carbide (SiC) as a promising high-capacity and stable anode material is hindered by poor electronic conductivity and slow lithium diffusion kinetics. Here, we report a one-step laser chemical vapor deposition (LCVD) process to directly synthesize porous graphene@SiC heterostructures on carbon fiber substrates. This in situ method yields an integral, binder-free electrode architecture that enhances mechanical robustness against pulverization. A critical feature of this heterostructure is the built-in electric field at the graphene–SiC interface, which is revealed by theoretical calculations to significantly accelerate charge transport and lithium-ion diffusion. The resulting anode delivers a high reversible capacity of 668 mAh·g−1 after 100 cycles at 0.1 A·g−1. More remarkably, a unique multi-stage activation mechanism is discovered, leading to an unprecedented capacity rebound to 735 mAh·g−1 after cycling at rates up to 5 A·g−1. This activation process is observed to accelerate with increasing current density in the 0.1–2 A·g−1 range. Furthermore, post-cycling analysis via XRD, TEM, and XPS confirms both the structural durability of the electrode and a reversible lithium intercalation mechanism, providing a critical foundation for the future design of high-performance LIB anodes. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

23 pages, 6245 KB  
Article
Removal of Cu and Pb in Contaminated Loess by Electrokinetic Remediation Using Novel Hydrogel Electrodes Coupled with Focusing Position Adjustment and Exchange Electrode
by Chengbo Liu, Wenle Hu, Xiang Zhu, Shixu Zhang and Weijing Wang
Processes 2025, 13(9), 2915; https://doi.org/10.3390/pr13092915 - 12 Sep 2025
Viewed by 340
Abstract
Electrokinetic (EK) remediation is a promising approach for the removal of heavy metals from fine-grained soils; however, its efficiency is often hindered by electrode polarization, pH imbalance, and ion accumulation. In this study, we developed a novel hydrogel-based electrode (NH electrode), composed of [...] Read more.
Electrokinetic (EK) remediation is a promising approach for the removal of heavy metals from fine-grained soils; however, its efficiency is often hindered by electrode polarization, pH imbalance, and ion accumulation. In this study, we developed a novel hydrogel-based electrode (NH electrode), composed of sodium alginate and multilayer graphene oxide (GO), to enhance the electrokinetic removal of Cu2+ and Pb2+ from loess. The electrode was systematically characterized by atomic force microscopy (AFM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), confirming its structural integrity, electrochemical activity, and interfacial conductivity. The NH electrode exhibited a smooth layered graphene structure with abundant oxygen-containing functional groups (AFM), negligible electrochemical polarization (CV), and low internal resistance with high conductivity (EIS), enabling efficient ion transport and adsorption. Electrokinetic tests revealed that the NH electrode outperformed conventional graphene (Gr) and electrokinetic graphite (EKG) electrodes. Single regulation strategies, including focusing position adjustment and electrode exchange, improved local removal efficiency by mitigating ion accumulation in targeted regions. The combined regulation strategy, integrating both measures, achieved the most uniform Cu2+ and Pb2+ removal, significantly suppressing hydroxide precipitation in cathodic zones and enhancing ion migration in the mid-section. Compared with literature-reported systems under similar or even more favorable conditions, the NH electrode and combined regulation approach achieved superior performance, with Cu2+ and Pb2+ removal efficiencies reaching 47.25% and 16.93%, respectively. These findings demonstrate that coupling electrode material innovation with spatial–temporal pH/flow field regulation can overcome key bottlenecks in EK remediation of heavy-metal-contaminated loess. Full article
(This article belongs to the Special Issue Advances in Heavy Metal Contaminated Soil and Water Remediation)
Show Figures

Figure 1

22 pages, 1231 KB  
Proceeding Paper
Emerging Trends in Paper-Based Electrochemical Biosensors for Healthcare Applications
by Aparoop Das, Partha Protim Borthakur, Dibyajyoti Das, Jon Jyoti Sahariah, Parimita Kalita and Kalyani Pathak
Eng. Proc. 2025, 106(1), 8; https://doi.org/10.3390/engproc2025106008 - 11 Sep 2025
Viewed by 815
Abstract
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary [...] Read more.
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary action, which make it an ideal candidate for low-cost, functional, and reliable diagnostic devices. The simplicity and cost-effectiveness of paper-based biosensors make them especially suitable for point-of-care (POC) applications, particularly in resource-limited settings where traditional diagnostic tools may be inaccessible. Their lightweight nature and ease of operation allow non-specialized users to perform diagnostic tests without the need for complex laboratory equipment, making them suitable for emergency, field, and remote applications. Technological advancements in paper-based biosensors have significantly enhanced their capabilities. Integration with microfluidic systems has improved fluid handling and reagent storage, resulting in enhanced sensor performance, including greater sensitivity and specificity for target biomarkers. The use of nanomaterials in electrode fabrication, such as reduced graphene oxide and gold nanoparticles, has further elevated their sensitivity, allowing for the precise detection of low-concentration biomarkers. Moreover, the development of multiplexed sensor arrays has enabled the simultaneous detection of multiple biomarkers from a single sample, facilitating comprehensive and rapid diagnostics in clinical settings. These biosensors have found applications in diagnosing a wide range of diseases, including infectious diseases, cancer, and metabolic disorders. They are also effective in genetic analysis and metabolic monitoring, such as tracking glucose, lactate, and uric acid levels, which are crucial for managing chronic conditions like diabetes and kidney diseases. In this review, the latest advancements in paper-based electrochemical biosensors are explored, with a focus on their applications, technological innovations, challenges, and future directions. Full article
Show Figures

Figure 1

40 pages, 3625 KB  
Review
Graphene-Based Biosensors: Enabling the Next Generation of Diagnostic Technologies—A Review
by John Paolo Ramoso, Manoochehr Rasekh and Wamadeva Balachandran
Biosensors 2025, 15(9), 586; https://doi.org/10.3390/bios15090586 - 6 Sep 2025
Viewed by 1600
Abstract
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse [...] Read more.
Graphene, a two-dimensional carbon material with a hexagonal lattice structure, possesses remarkable properties. Exceptional electrical conductivity, mechanical strength, and high surface area that make it a powerful platform for biosensing applications. Its sp2-hybridised network facilitates efficient electron mobility and enables diverse surface functionalisation through bio-interfacing. This review highlights the core detection mechanisms in graphene-based biosensors. Optical sensing techniques, such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), benefit significantly from graphene’s strong light–matter interaction, which enhances signal sensitivity. Although graphene itself lacks intrinsic piezoelectricity, its integration with piezoelectric substrates can augment the performance of piezoelectric biosensors. In electrochemical sensing, graphene-based electrodes support rapid electron transfer, enabling fast response times across a range of techniques, including impedance spectroscopy, amperometry, and voltammetry. Graphene field-effect transistors (GFETs), which leverage graphene’s high carrier mobility, offer real-time, label-free, and highly sensitive detection of biomolecules. In addition, the review also explores multiplexed detection strategies vital for point-of-care diagnostics. Graphene’s nanoscale dimensions and tunable surface chemistry facilitate both array-based configurations and the simultaneous detection of multiple biomarkers. This adaptability makes graphene an ideal material for compact, scalable, and accurate biosensor platforms. Continued advancements in graphene biofunctionalisation, sensing modalities, and integrated multiplexing are driving the development of next-generation biosensors with superior sensitivity, selectivity, and diagnostic reliability. Full article
(This article belongs to the Special Issue Novel Graphene-Based Biosensors for Biomedical Applications)
Show Figures

Figure 1

30 pages, 6580 KB  
Article
Advanced Nanomaterial-Based Electrochemical Biosensing of Loop-Mediated Isothermal Amplification Products
by Ana Kuprešanin, Marija Pavlović, Ljiljana Šašić Zorić, Milinko Perić, Stefan Jarić, Teodora Knežić, Ljiljana Janjušević, Zorica Novaković, Marko Radović, Mila Djisalov, Nikola Kanas, Jovana Paskaš and Zoran Pavlović
Biosensors 2025, 15(9), 584; https://doi.org/10.3390/bios15090584 - 5 Sep 2025
Viewed by 947
Abstract
The rapid and sensitive detection of regulatory elements within transgenic constructs of genetically modified organisms (GMOs) is essential for effective monitoring and control of their distribution. In this study, we present several innovative electrochemical biosensing platforms for the detection of regulatory sequences in [...] Read more.
The rapid and sensitive detection of regulatory elements within transgenic constructs of genetically modified organisms (GMOs) is essential for effective monitoring and control of their distribution. In this study, we present several innovative electrochemical biosensing platforms for the detection of regulatory sequences in genetically modified (GM) plants, combining the loop-mediated isothermal amplification (LAMP) method with electrodes functionalized by two-dimensional (2D) nanomaterials. The sensor design exploits the high surface area and excellent conductivity of reduced graphene oxide, Ti3C2Tx, and molybdenum disulfide (MoS2) to enhance signal transduction. Furthermore, we used a “green synthesis” method for Ti3C2Tx preparation that eliminates the use of hazardous hydrofluoric acid (HF) and hydrochloric acid (HCl), providing a safer and more sustainable approach for nanomaterial production. Within this framework, the performance of various custom-fabricated electrodes, including laser-patterned gold leaf films, physical vapor deposition (PVD)-deposited gold electrodes, and screen-printed gold electrodes, is evaluated and compared with commercial screen-printed gold electrodes. Additionally, gold and carbon electrodes were electrochemically covered by gold nanoparticles (AuNPs), and their properties were compared. Several electrochemical methods were used during the DNA detection, and their importance and differences in excitation signal were highlighted. Electrochemical properties, sensitivity, selectivity, and reproducibility are characterized for each electrode type to assess the influence of fabrication methods and material composition on sensor performance. The developed biosensing systems exhibit high sensitivity, specificity, and rapid response, highlighting their potential as practical tools for on-site GMO screening and regulatory compliance monitoring. This work advances electrochemical nucleic acid detection by integrating environmentally-friendly nanomaterial synthesis with robust biosensing technology. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Graphical abstract

13 pages, 2265 KB  
Article
Enhancement of Spin Transport Properties in Angled-Channel Graphene Spin Valves via Hybrid Spin Drift-Diffusion
by Samuel Olson, Kaleb Hood, Otto Zietz and Jun Jiao
Nanomaterials 2025, 15(17), 1367; https://doi.org/10.3390/nano15171367 - 4 Sep 2025
Viewed by 602
Abstract
Graphene has promise as a channel connecting separate units of large-scale spintronic circuits owing to its outstanding theoretical spin transport properties. However, spin transport properties of experimental devices consistently fall short of theoretical estimates due to impacts from the substrate, electrodes, or defects [...] Read more.
Graphene has promise as a channel connecting separate units of large-scale spintronic circuits owing to its outstanding theoretical spin transport properties. However, spin transport properties of experimental devices consistently fall short of theoretical estimates due to impacts from the substrate, electrodes, or defects in the graphene itself. In this study, we fabricate both traditional non-local spin valves (NLSVs) and novel hybrid drift-diffusion spin valves (HDDSVs) to explore the impact of charge current and AC spin injection efficiency on spin transport. HDDSVs feature channel branches that allow investigation of charge-based spin drift enhancement compared to diffusion-only configurations. We investigate the modulation of spin transport through hybrid drift-diffusion, observing a decrease in spin signal by 11% for channels with a 45° branch angle, and a 21% increase in spin signal for 135° branch angle channels. We then fabricate symmetrical 90° channel branch angle devices, which do not produce consistent spin transport modulation in drift diffusion mode. These findings highlight the role of carrier drift in enhancing or suppressing spin transport, depending on channel geometry and injection configuration. Overall, our work demonstrates a promising approach to optimizing spin transport in graphene devices by leveraging hybrid drift-diffusion effects without requiring additional DC current sources. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

14 pages, 3061 KB  
Article
High–Energy–Density Fiber Supercapacitor Based on Graphene-Enhanced Hierarchically Nanostructured Conductive Polymer Composite Electrodes
by Chuangen Ye, Qingfeng Yang, Mingxian Xu, Haitang Qiu, Xiaozhen Zhang, Jianping Ma, Haiyang Gao, Xuansheng Feng and Yong Li
Nanomaterials 2025, 15(17), 1350; https://doi.org/10.3390/nano15171350 - 2 Sep 2025
Viewed by 630
Abstract
The development of portable and wearable electronics has promoted the advancement of fiber supercapacitors (FSCs), but their low energy density still limits their application in flexible devices. Herein, we incorporated micron-sized graphene dispersions at varying concentrations into the polyaniline (PANI) precursor solution prepared [...] Read more.
The development of portable and wearable electronics has promoted the advancement of fiber supercapacitors (FSCs), but their low energy density still limits their application in flexible devices. Herein, we incorporated micron-sized graphene dispersions at varying concentrations into the polyaniline (PANI) precursor solution prepared via electrochemical polymerization and subsequently electrodeposited PANI/graphene composites onto the surface of carbon nanotube (CNT) fibers, ultimately obtaining fibrous PANI/graphene@CNT composite electrodes. This electrode material not only exhibits the superior electrochemical activity characteristic of conducting polymers synthesized by electrochemical polymerization but also possesses a relatively high specific surface area. Furthermore, we fabricated coaxial fiber supercapacitors using PANI/graphene@CNT composite fibers and CNT films as the positive and negative electrode materials, respectively. The maximum energy density and power density could reach 160.5 µWh cm−2 and 13 mW cm−2 respectively, proving its excellent energy storage and output capabilities. More importantly, the prepared CFASC device showed remarkable mechanical and electrochemical durability. Even after 3000 bending cycles, it retained 89.77% of its original capacitance, highlighting its promising applicability in the realm of flexible electronics. The resulting devices demonstrate excellent electrochemical performance and mechanical stability. Full article
(This article belongs to the Special Issue Application of Nanostructures in Electrochemical Energy Storage)
Show Figures

Figure 1

20 pages, 6302 KB  
Article
Functionalized Bisphenol A-Based Polymer for High-Performance Structural Supercapacitor Composites
by Jayani Anurangi, Janitha Jeewantha, Hazem Shebl, Madhubhashitha Herath and Jayantha Epaarachchi
Polymers 2025, 17(17), 2380; https://doi.org/10.3390/polym17172380 - 31 Aug 2025
Viewed by 775
Abstract
Over the last few decades, polymer composites have been rapidly making inroads in critical applications of electrical storage devices such as batteries and supercapacitors. Structural supercapacitor composites (SSCs) have emerged as multifunctional materials capable of storing energy while bearing mechanical loads, offering lightweight [...] Read more.
Over the last few decades, polymer composites have been rapidly making inroads in critical applications of electrical storage devices such as batteries and supercapacitors. Structural supercapacitor composites (SSCs) have emerged as multifunctional materials capable of storing energy while bearing mechanical loads, offering lightweight and compact solutions for energy systems. This study investigates the functionalization of Bisphenol A-based thermosetting polymers with ionic liquids, aiming to synthesize dual-functional structural electrolytes for SSC fabrication. A multifunctional sandwich structure was subsequently fabricated, in which the fabricated SSC served as the core layer, bonded between two structurally robust outer skins. The core layer was fabricated using carbon fibre layers coated with 10% graphene nanoplatelets (GNPs), while the skin layers contained 0.25% GNPs dispersed in the resin matrix. The developed device demonstrated stable operation up to 85 °C, achieving a specific capacitance of 57.28 mFcm−2 and an energy density of 179 mWhm−2 at room temperature. The performance doubled at 85 °C, maintaining excellent capacitance retentions across all experimented temperatures. The flexural strength of the developed sandwich SSC at elevated temperature (at 85 °C) was 71 MPa, which exceeds the minimum requirement for roofing sheets as specified in Australian building standard AS 4040.1 (Methods of testing sheet roof and wall cladding, Method 1: Resistance to concentrated loads). Finite element analysis (FEA) was performed using Abaqus CAE to evaluate structural integrity under mechanical loading and predict damage initiation zones under service conditions. The simulation was based on Hashin’s failure criteria and demonstrated reasonable accuracy. This research highlights the potential of multifunctional polymer composite systems in renewable energy infrastructure, offering a robust and energy-efficient material solution aligned with circular economy and sustainability goals. Full article
Show Figures

Graphical abstract

17 pages, 3890 KB  
Article
Multiple Functions of Carbon Additives in NASICON-Type Electrodes for Stabilizing the Sodium Storage Performance
by Trajche Tushev, Sonya Harizanova, Maria Shipochka, Radostina Stoyanova and Violeta Koleva
Molecules 2025, 30(17), 3547; https://doi.org/10.3390/molecules30173547 - 29 Aug 2025
Viewed by 689
Abstract
Recently, there has been increased interest in NASICON-type electrodes for sodium-ion batteries due to their unique combination of intercalation properties, low cost, and safety. However, their commercialization is hindered by the low electrical conductivity. One strategy to overcome this issue is to integrate [...] Read more.
Recently, there has been increased interest in NASICON-type electrodes for sodium-ion batteries due to their unique combination of intercalation properties, low cost, and safety. However, their commercialization is hindered by the low electrical conductivity. One strategy to overcome this issue is to integrate NASICON materials with carbon additives. This study shows that carbon additives improve the sodium storage performance of a NASICON-type electrode in various ways, depending on the additives’ functional groups, texture, and conductivity properties. The proof-of-concept is based on a multi-electron phospho-sulphate electrode, NaFeVPO4(SO4)2 (NFVPS) mixed with carbon black (C) and reduced graphene oxide (rGO). Carbon-coated samples are obtained via a simple ball milling procedure followed by thermal treatment in an argon flow. Sodium storage in the composites occurs through capacitive and Faradaic reactions. The Faradaic reaction is facilitated at the carbon black composite, while the capacitive reaction dominates for the rGO composite. NFVPS operates through two-electron reactions at 20 °C, while the increased temperatures favor the three-electron reaction. The rGO composite outperforms the carbon black composite in terms of cycling stability and rate capability at 20 and 40 °C. The role of the rGO and carbon black in electrochemical performance is discussed based on the different reactivity of hydroxyl/epoxide and carbonyl functional groups with the electrolyte salt, NaPF6, and the solvent, polypropylene carbonate. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Graphical abstract

28 pages, 10014 KB  
Article
Nanomaterial Functionalized Carbon Fiber-Reinforced Composites with Energy Storage Capabilities
by Venkatesh Gangipamula, Karamat Subhani, Peter J. Mahon and Nisa Salim
Nanomaterials 2025, 15(17), 1325; https://doi.org/10.3390/nano15171325 - 28 Aug 2025
Viewed by 937
Abstract
We have demonstrated the fabrication of laminate composites with functional features to demonstrate energy storage capabilities. The present study investigates the surface modification of carbon fibers by coating dual materials of reduced graphene oxide (rGO) and cellulose-based activated carbon to enhance their energy [...] Read more.
We have demonstrated the fabrication of laminate composites with functional features to demonstrate energy storage capabilities. The present study investigates the surface modification of carbon fibers by coating dual materials of reduced graphene oxide (rGO) and cellulose-based activated carbon to enhance their energy storage capacitance for the development of structural supercapacitors. The dual coating on carbon fibers enabled a near 210-fold improvement in surface area, surpassing that of pristine carbon fibers. This formed a highly porous graphene network with activated carbon, resulting in a well-connected fiber–graphene-activated carbon network on carbon fibers. The electrochemical supercapacitor, fabricated from surface-functionalized carbon fibers, provides the best performance, with a specific capacitance of 172 F g−1 in an aqueous electrolyte. Furthermore, the symmetrical structural supercapacitor (SSSC) device delivered a specific capacitance of 227 mF g−1 across a wide potential window of 6 V. The electrochemical stability of the SSSC device was validated by a high capacitance retention of 97.3% over 10,000 cycles. Additionally, the study showcased the practical application of this technology by successfully illuminating an LED using the proof-of-concept SSSC device with G-aC/CF electrodes. Overall, the findings of this study highlight the potential of carbon fiber composites as a promising hybrid material, offering both structural integrity and a functional performance suitable for aerospace and automobile applications. Full article
(This article belongs to the Special Issue Fabrication and Applications of Polymer Nanocomposite Materials)
Show Figures

Graphical abstract

12 pages, 4939 KB  
Article
Synergistic Tuning of Active Sites and π-Conjugation in 2D Conductive MOFs Boosts Uric Acid Electrosensing
by Yanli Liu, Yifan Fu, Haitong Zhang, Lingyu Wang, Xuejing Lin and Jingjuan Liu
Chemosensors 2025, 13(9), 318; https://doi.org/10.3390/chemosensors13090318 - 25 Aug 2025
Viewed by 585
Abstract
Uric acid (UA) detection is critical for human health monitoring, necessitating the development of electrochemical sensing electrodes suitable for physiological environments. This study evaluated four 2D conductive metal–organic frameworks (2D c-MOFs), namely Cu-HHTP, Ni-HHTP, Cu-HAB, and Ni-HAB, which share identical graphene-like 2D [...] Read more.
Uric acid (UA) detection is critical for human health monitoring, necessitating the development of electrochemical sensing electrodes suitable for physiological environments. This study evaluated four 2D conductive metal–organic frameworks (2D c-MOFs), namely Cu-HHTP, Ni-HHTP, Cu-HAB, and Ni-HAB, which share identical graphene-like 2D sheet structures but differ in π-conjugation extent and catalytic active centers [MX4] (M = Cu or Ni; X = O or NH) as electrosensing electrodes. Electrochemical sensing performance was compared by detecting UA in phosphate-buffered saline (PBS). Herein, the Ni-HHTP electrode demonstrated superior sensitivity (6.79 μA·μM−1·cm−2), the lowest oxidation potential (0.272 V), and the lowest detection limit (0.44 μM). Langmuir adsorption isotherm analysis revealed that the Ni-HHTP electrode possesses the highest surface coverage (ΓA) (5061.16 pmol cm−2) and the most favorable Gibbs adsorption free energy (ΔG°) (−18.775 kJ mol−1), indicating its strongest UA adsorption capacity and molecular interaction. This enhanced performance is attributed to the optimal synergy between [NiO4] catalytic centers and extended ligand π-conjugation, facilitating greater analyte adsorption and electron transfer efficiency. This work establishes clear structure–performance relationships for 2D c-MOF electrodes in UA detection, providing key insights for designing advanced electrosensing materials. Full article
(This article belongs to the Special Issue New Electrodes Materials for Electroanalytical Applications)
Show Figures

Graphical abstract

31 pages, 6393 KB  
Review
Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring
by Matiar M. R. Howlader, Wei-Ting Ting and Md Younus Ali
Pharmaceuticals 2025, 18(9), 1257; https://doi.org/10.3390/ph18091257 - 24 Aug 2025
Cited by 1 | Viewed by 960
Abstract
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food [...] Read more.
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food products is crucial for regulating safe use and preventing unnecessary antibiotic exposure. Electrochemical sensors are low-cost, sensitive, and easily detect CAP. This paper reviews recent research on electrochemical sensors for CAP detection, with a focus on the materials and fabrication techniques employed. The sensors are evaluated based on key performance parameters, including limit of detection, sensitivity, linear range, selectivity, and the ability to perform simultaneous detection. Specifically, we highlight the use of metal and carbon-based electrode modifications, including gold nanoparticles (AuNPs), nickel–cobalt (Ni-Co) hollow nano boxes, platinum–palladium (Pt-Pd), graphene (Gr), and covalent organic frameworks (COFs), as well as molecularly imprinted polymers (MIPs) such as polyaniline (PANI) and poly(o-phenylenediamine) (P(o-PD)). The mechanisms by which these modifications enhance CAP detection are discussed, including improved conductivity, increased surface-to-volume ratio, and enhanced binding site availability. The reviewed sensors demonstrated promising results, with some exhibiting high selectivity and sensitivity, and the effective detection of CAP in complex sample matrices. This review aims to support the development of next-generation sensors for antibiotic monitoring and contribute to global efforts to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Application of Biosensors in Pharmaceutical Research)
Show Figures

Graphical abstract

Back to TopTop