Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (380)

Search Parameters:
Keywords = green–red vegetation index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2125 KB  
Article
Surface Mapping by RPAs for Ballast Optimization and Slip Reduction in Plowing Operations
by Lucas Santos Santana, Lucas Gabryel Maciel do Santos, Josiane Maria da Silva, Aldir Carpes Marques Filho, Francesco Toscano, Enio Farias de França e Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marco Antonio Zanella
AgriEngineering 2025, 7(10), 332; https://doi.org/10.3390/agriengineering7100332 - 3 Oct 2025
Viewed by 226
Abstract
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating [...] Read more.
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating added wheel weights at different speeds for a tractor-reversible plow system. Six 94.5 m2 quadrants were analyzed for slippage monitored by RPA (Mavic3M-RTK) pre- and post-agricultural operation overflights and soil sampling (moisture, density, penetration resistance). A 2 × 2 factorial scheme (F-test) assessed soil-surface attribute correlations and slippage under varying ballasts (52.5–57.5 kg/hp) and speeds. Results showed slippage ranged from 4.06% (52.5 kg/hp, fourth reduced gear) to 11.32% (57.5 kg/hp, same gear), with liquid ballast and gear selection significantly impacting performance in friable clayey soil. Digital Elevation Model (DEM) and spectral indices derived from RPA imagery, including Normalized Difference Red Edge (NDRE), Normalized Difference Water Index (NDWI), Bare Soil Index (BSI), Green–Red Vegetation Index (GRVI), Visible Atmospherically Resistant Index (VARI), and Slope, proved effective. The approach reduced tractor slippage from 11.32% (heavy ballast, 4th gear) to 4.06% (moderate ballast, 4th gear), showing clear improvement in traction performance. The integration of indices and slope metrics supported ballast adjustment strategies, particularly for secondary plowing operations, contributing to improved traction performance and overall operational efficiency. Full article
(This article belongs to the Special Issue Utilization and Development of Tractors in Agriculture)
Show Figures

Figure 1

18 pages, 7125 KB  
Article
Development of Fruit-Specific Spectral Indices and Endmember-Based Analysis for Apple Cultivar Classification Using Hyperspectral Imaging
by Ye-Jin Lee, HwangWeon Jeong, Seoyeon Lee, Eunji Ga, JeongHo Baek, Song Lim Kim, Sang-Ho Kang, Youn-Il Park, Kyung-Hwan Kim and Jae Il Lyu
Horticulturae 2025, 11(10), 1177; https://doi.org/10.3390/horticulturae11101177 - 2 Oct 2025
Viewed by 215
Abstract
Hyperspectral imaging (HSI) has emerged as a powerful tool for non-destructive phenotyping, yet fruit crop applications remain underexplored. We propose a methodological framework to enhance the spectral characterization of apple fruits by identifying robust vegetation indices (VIs) and interpretable endmembers. We screened 284 [...] Read more.
Hyperspectral imaging (HSI) has emerged as a powerful tool for non-destructive phenotyping, yet fruit crop applications remain underexplored. We propose a methodological framework to enhance the spectral characterization of apple fruits by identifying robust vegetation indices (VIs) and interpretable endmembers. We screened 284 Vis, which were evaluated using four feature selection algorithms (Boruta, MI+Lasso, RFE, and ensemble voting), generalizing across red, yellow, green, and purple apple cultivars. An ensemble criterion (≥2 algorithms) yielded 50 selected VIs from the NDSI/DSI/RSI families, preserving > 95% classification accuracy and capturing cultivar-specific variation. Pigment-sensitive wavelength bands were identified via PLS-DA VIP scores and one-vs-rest ANOVA. Using these bands, we formulated a new normalized-difference, ratio, and difference spectral indices tailored to cultivar-specific pigmentation. Several indices achieved >89% classification accuracy and showed patterns consistent with those of anthocyanin, carotenoid, and chlorophyll. A two-stage spectral unmixing pipeline (K-Means → N-FINDR) achieved the lowest reconstruction RMSE (0.043%). This multi-level strategy provides a scalable, interpretable framework for enhancing phenotypic resolution in apple hyperspectral data, contributing to fruit index development and generalized spectral analysis methods for horticultural applications. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

26 pages, 9229 KB  
Article
Study on Prediction of Potato Above-Ground Biomass and Yield Based on UAV Visible Light Image
by Yiwen Chen, Yaohua Hu, Mengfei Liu, Xiaoyi Shi, Anxiang Huang, Xing Tong, Liangliang Yang and Linrun Cheng
Remote Sens. 2025, 17(18), 3246; https://doi.org/10.3390/rs17183246 - 19 Sep 2025
Viewed by 303
Abstract
Potato above-ground biomass (AGB) and tuber yield estimation remain challenging due to the subjectivity of farmer-based assessments, the high data requirements of spectral analysis methods, and the sensitivity of traditional Structure from Motion (SfM) techniques to soil elevation variability. To address these challenges, [...] Read more.
Potato above-ground biomass (AGB) and tuber yield estimation remain challenging due to the subjectivity of farmer-based assessments, the high data requirements of spectral analysis methods, and the sensitivity of traditional Structure from Motion (SfM) techniques to soil elevation variability. To address these challenges, this study proposes a novel UAV-based visible-light remote sensing framework to estimate the AGB and predict the tuber yield of potato crops. First, a new vegetation index, the Green-Red Combination Vegetation Index (GRCVI), was developed to improve the separability between vegetation and non-vegetation pixels. Second, an improved single-period SfM method was designed to mitigate errors in canopy height estimation caused by terrain variations. Fractional vegetation coverage (FVC) and plant height (PH) derived from UAV imagery were then integrated into a feedforward neural network (FNN) to predict AGB. Finally, potato tuber yield was predicted using polynomial regression based on AGB. Results showed that GRCVI combined with the numerical intersection method and SVM classification achieved FVC extraction accuracy exceeding 95%. The improved SfM method yielded canopy height estimates with R2 values ranging from 0.8470 to 0.8554 and RMSE values below 2.3 cm. The AGB estimation model achieved an R2 of 0.8341 and an RMSE of 19.9 g, while the yield prediction model obtained an R2 of 0.7919 and an RMSE of 47.0 g. This study demonstrates the potential of UAV-based visible-light imagery for cost-effective, non-destructive, and scalable monitoring of potato growth and yield, providing methodological support for precision agriculture and high-throughput phenotyping. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

25 pages, 8787 KB  
Article
Non-Destructive Drone-Based Multispectral and RGB Image Analyses for Regression Modeling to Assess Waterlogging Stress in Pseudolysimachion linariifolium
by TaekJin Yoon, TaeWan Kim and SungYung Yoo
Horticulturae 2025, 11(9), 1139; https://doi.org/10.3390/horticulturae11091139 - 18 Sep 2025
Viewed by 509
Abstract
Urban gardens play a vital role in enhancing the quality of the environment and biodiversity. However, irregular rainfall and poor soil drainage due to climate change have increased the exposure of garden plants to waterlogging stress. Pseudolysimachion linariifolium (Pall. ex Link) Holub, a [...] Read more.
Urban gardens play a vital role in enhancing the quality of the environment and biodiversity. However, irregular rainfall and poor soil drainage due to climate change have increased the exposure of garden plants to waterlogging stress. Pseudolysimachion linariifolium (Pall. ex Link) Holub, a perennial herbaceous plant native to Northeast Asia, is widely used for its ornamental value in urban landscaping. However, its physiological responses to excess moisture conditions remain understudied. In our study, we evaluated the stress responses of P. linariifolium to waterlogging by using non-destructive analysis with drone-based multispectral imagery. We used R (ver. 4.3.2) and the Quantum Geographical Information System (QGIS ver. 3.42.1) to calculate vegetation indices, including the Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Green Leaf Index (GLI), Normalized Green Red Difference Index (NGRDI), Blue Green Pigment Index (BGI), and Visible Atmospherically Resistant Index (VARI). We analyzed the indices combined with the Cumulative volumetric Soil Moisture content (SM_Cum) measured by sensors. With waterlogging treatment, NDVI decreased by 21% and GNDVI by over 34% to indicate reduced photosynthetic activity and chlorophyll content. Correlation analysis, principal component analysis, and hierarchical clustering clearly distinguished stress responses over time. Regression models using NDVI and GNDVI explained 89.7% of the variance in SM_Cum. Our results demonstrate that drone-based vegetation index analysis can effectively quantify waterlogging stress in garden plants and can contribute to improved moisture management and growth monitoring in urban gardens. Full article
Show Figures

Figure 1

23 pages, 9288 KB  
Article
Integrating UAV-Derived Diameter Estimations and Machine Learning for Precision Cabbage Yield Mapping
by Sara Tokhi Arab, Akane Takezaki, Masayuki Kogoshi, Yuka Nakano, Sunao Kikuchi, Kei Tanaka and Kazunobu Hayashi
Sensors 2025, 25(18), 5652; https://doi.org/10.3390/s25185652 - 10 Sep 2025
Viewed by 524
Abstract
Non-destructive diameter estimation of cabbage heads and yield prediction employing Unmanned Aerial Vehicle (UAV) imagery are superior to conventional approaches, which are labor intensive and time consuming. This approach assesses spatial variability across the field, effective allocation of resources, and supports variable application [...] Read more.
Non-destructive diameter estimation of cabbage heads and yield prediction employing Unmanned Aerial Vehicle (UAV) imagery are superior to conventional approaches, which are labor intensive and time consuming. This approach assesses spatial variability across the field, effective allocation of resources, and supports variable application rates of fertilizer and supply chain management. Here, individual cabbage head diameters were estimated using deep learning-based pose estimation models (YOLOv8s-pose and YOLOv11s-pose) using high spatial resolution RGB images acquired from UAV 6 m during the cabbage-growing season in 2024. With a mean relative error (MRE) of 4.6% and a high mean average precision (mAP) 98.5% at 0.5, YOLOv11s-pose emerged as the best-performing model, verifying its accuracy for pragmatic agricultural use. The approximated diameter was then combined with climatic variables (temperature and rainfall) and canopy reflectance indices (normalized difference vegetation index (NDVI), normalized difference red edge index (NDRE), and green chlorophyll index (CIg)) that were extracted from the multispectral images with 6 m resolution and fed into AI models to develop individual cabbage head fresh weight. Among the machine learning models (MLMs) tested, CatBoost achieved the lowest Mean Squared Error (MSE = 0.025 kg/cabbage), highest R2 (0.89), and outperformed other models based on the Diebold–Mariano statistical test (p < 0.05). This finding suggests that an integrated AI-powered framework enhances non-invasive and precise yield estimation in cabbage farming. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 7290 KB  
Article
Assessing Pacific Madrone Blight with UAS Remote Sensing Under Different Skylight Conditions
by Michael C. Winfield, Michael G. Wing, Julia H. Wood, Savannah Graham, Anika M. Anderson, Dustin C. Hawks and Adam H. Miller
Remote Sens. 2025, 17(18), 3141; https://doi.org/10.3390/rs17183141 - 10 Sep 2025
Viewed by 1107
Abstract
We investigated the relationship between foliar blight, tree structure, and spectral signatures in a Pacific Madrone (Arbutus menziesii) orchard in Oregon using unoccupied aerial system (UAS) multispectral imagery and ground surveying. Aerial data were collected under both cloudy and sunny conditions [...] Read more.
We investigated the relationship between foliar blight, tree structure, and spectral signatures in a Pacific Madrone (Arbutus menziesii) orchard in Oregon using unoccupied aerial system (UAS) multispectral imagery and ground surveying. Aerial data were collected under both cloudy and sunny conditions using a six-band sensor (red, green, blue, near-infrared, red edge, and longwave infrared), and ground surveying recorded foliar blight and tree height for 29 trees. We observed band- and index-dependent spectral variation within crowns and between lighting conditions. The Normalized Difference Vegetation Index (NDVI), Modified Simple Ratio Index Red Edge (MSRE), and Red Edge Chlorophyll Index (RECI) showed higher consistency across lighting changes (adjusted R2 ≈ 0.95), while the Green Chlorophyll Index (GCI), Modified Simple Ratio Index (MSR), and Green Normalized Difference Vegetation Index (GNDVI) showed slightly lower consistency (adjusted R2 ≈ 0.92) but greater sensitivity to blight under cloudy skies. Diffuse skylight increased blue and near-infrared reflectance, reduced red, and enhanced blight detection using GCI, MSR, and GNDVI. Tree height was inversely related to blight presence (p < 0.005), and spectral variation within crowns was significant (p < 0.01), suggesting a role for canopy architecture. The support vector machine classification of tree crowns achieved 92.5% accuracy (kappa = 0.87). Full article
(This article belongs to the Special Issue Plant Disease Detection and Recognition Using Remotely Sensed Data)
Show Figures

Graphical abstract

20 pages, 3484 KB  
Article
Monitoring Fertilizer Effects in Hardy Kiwi Using UAV-Based Multispectral Chlorophyll Estimation
by Sangyoon Lee, Hongseok Mun and Byeongeun Moon
Agriculture 2025, 15(16), 1794; https://doi.org/10.3390/agriculture15161794 - 21 Aug 2025
Viewed by 567
Abstract
This study addresses the need for efficient and non-destructive monitoring of the nutrient status of hardy kiwi (Actinidia arguta), a plantation crop native to East Asia. Traditional nutrient monitoring methods are labor-intensive and often destructive, limiting their practicality in precision agriculture. [...] Read more.
This study addresses the need for efficient and non-destructive monitoring of the nutrient status of hardy kiwi (Actinidia arguta), a plantation crop native to East Asia. Traditional nutrient monitoring methods are labor-intensive and often destructive, limiting their practicality in precision agriculture. To overcome these challenges, we deployed a rotary-wing unmanned aerial vehicle (UAV) equipped with a multispectral camera to capture monthly images of 10 hardy kiwi orchards in South Korea from June to October 2019. We extracted spectral bands (i.e., red, red-edge, green, and near-infrared) to generate normalized difference vegetation index and canopy chlorophyll content index maps, which were correlated with in situ chlorophyll measurements using a chlorophyll meter. Strong positive correlations were observed between vegetation indexes and actual chlorophyll content, with canopy chlorophyll content index achieving the highest predictive accuracy (average correlation coefficient > 0.84). Regression models based on multispectral data enabled reliable estimation of leaf chlorophyll across months and regions, with an average RMSE of 3.1. Our results confirmed that UAV-based multispectral imaging is an effective, scalable approach for real-time monitoring of nutrient status, supporting timely, site-specific fertilizer management. This method has the potential to enhance fertilizer efficiency, reduce environmental impact, and improve the quality of hardy kiwi cultivations. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

15 pages, 3267 KB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 - 1 Aug 2025
Viewed by 696
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

21 pages, 4657 KB  
Article
A Semi-Automated RGB-Based Method for Wildlife Crop Damage Detection Using QGIS-Integrated UAV Workflow
by Sebastian Banaszek and Michał Szota
Sensors 2025, 25(15), 4734; https://doi.org/10.3390/s25154734 - 31 Jul 2025
Viewed by 765
Abstract
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). [...] Read more.
Monitoring crop damage caused by wildlife remains a significant challenge in agricultural management, particularly in the case of large-scale monocultures such as maize. The given study presents a semi-automated process for detecting wildlife-induced damage using RGB imagery acquired from unmanned aerial vehicles (UAVs). The method is designed for non-specialist users and is fully integrated within the QGIS platform. The proposed approach involves calculating three vegetation indices—Excess Green (ExG), Green Leaf Index (GLI), and Modified Green-Red Vegetation Index (MGRVI)—based on a standardized orthomosaic generated from RGB images collected via UAV. Subsequently, an unsupervised k-means clustering algorithm was applied to divide the field into five vegetation vigor classes. Within each class, 25% of the pixels with the lowest average index values were preliminarily classified as damaged. A dedicated QGIS plugin enables drone data analysts (Drone Data Analysts—DDAs) to adjust index thresholds, based on visual interpretation, interactively. The method was validated on a 50-hectare maize field, where 7 hectares of damage (15% of the area) were identified. The results indicate a high level of agreement between the automated and manual classifications, with an overall accuracy of 81%. The highest concentration of damage occurred in the “moderate” and “low” vigor zones. Final products included vigor classification maps, binary damage masks, and summary reports in HTML and DOCX formats with visualizations and statistical data. The results confirm the effectiveness and scalability of the proposed RGB-based procedure for crop damage assessment. The method offers a repeatable, cost-effective, and field-operable alternative to multispectral or AI-based approaches, making it suitable for integration with precision agriculture practices and wildlife population management. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

29 pages, 5503 KB  
Article
Feature Selection Framework for Improved UAV-Based Detection of Solenopsis invicta Mounds in Agricultural Landscapes
by Chun-Han Shih, Cheng-En Song, Su-Fen Wang and Chung-Chi Lin
Insects 2025, 16(8), 793; https://doi.org/10.3390/insects16080793 - 31 Jul 2025
Viewed by 620
Abstract
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant [...] Read more.
The red imported fire ant (RIFA; Solenopsis invicta) is an invasive species that severely threatens ecology, agriculture, and public health in Taiwan. In this study, the feasibility of applying multispectral imagery captured by unmanned aerial vehicles (UAVs) to detect red fire ant mounds was evaluated in Fenlin Township, Hualien, Taiwan. A DJI Phantom 4 multispectral drone collected reflectance in five bands (blue, green, red, red-edge, and near-infrared), derived indices (normalized difference vegetation index, NDVI, soil-adjusted vegetation index, SAVI, and photochemical pigment reflectance index, PPR), and textural features. According to analysis of variance F-scores and random forest recursive feature elimination, vegetation indices and spectral features (e.g., NDVI, NIR, SAVI, and PPR) were the most significant predictors of ecological characteristics such as vegetation density and soil visibility. Texture features exhibited moderate importance and the potential to capture intricate spatial patterns in nonlinear models. Despite limitations in the analytics, including trade-offs related to flight height and environmental variability, the study findings suggest that UAVs are an inexpensive, high-precision means of obtaining multispectral data for RIFA monitoring. These findings can be used to develop efficient mass-detection protocols for integrated pest control, with broader implications for invasive species monitoring. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

23 pages, 4324 KB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 697
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

20 pages, 10320 KB  
Article
Advancing Grapevine Disease Detection Through Airborne Imaging: A Pilot Study in Emilia-Romagna (Italy)
by Virginia Strati, Matteo Albéri, Alessio Barbagli, Stefano Boncompagni, Luca Casoli, Enrico Chiarelli, Ruggero Colla, Tommaso Colonna, Nedime Irem Elek, Gabriele Galli, Fabio Gallorini, Enrico Guastaldi, Ghulam Hasnain, Nicola Lopane, Andrea Maino, Fabio Mantovani, Filippo Mantovani, Gian Lorenzo Mazzoli, Federica Migliorini, Dario Petrone, Silvio Pierini, Kassandra Giulia Cristina Raptis and Rocchina Tisoadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(14), 2465; https://doi.org/10.3390/rs17142465 - 16 Jul 2025
Viewed by 825
Abstract
Innovative applications of high-resolution airborne imaging are explored for detecting grapevine diseases. Driven by the motivation to enhance early disease detection, the method’s effectiveness lies in its capacity to identify isolated cases of grapevine yellows (Flavescence dorée and Bois Noir) and trunk disease [...] Read more.
Innovative applications of high-resolution airborne imaging are explored for detecting grapevine diseases. Driven by the motivation to enhance early disease detection, the method’s effectiveness lies in its capacity to identify isolated cases of grapevine yellows (Flavescence dorée and Bois Noir) and trunk disease (Esca complex), crucial for preventing the disease from spreading to unaffected areas. Conducted over a 17 ha vineyard in the Forlì municipality in Emilia-Romagna (Italy), the aerial survey utilized a photogrammetric camera capturing centimeter-level resolution images of the whole area in 17 minutes. These images were then processed through an automated analysis leveraging RGB-based spectral indices (Green–Red Vegetation Index—GRVI, Green–Blue Vegetation Index—GBVI, and Blue–Red Vegetation Index—BRVI). The analysis scanned the 1.24 · 109 pixels of the orthomosaic, detecting 0.4% of the vineyard area showing evidence of disease. The instances, density, and incidence maps provide insights into symptoms’ spatial distribution and facilitate precise interventions. High specificity (0.96) and good sensitivity (0.56) emerged from the ground field observation campaign. Statistical analysis revealed a significant edge effect in symptom distribution, with higher disease occurrence near vineyard borders. This pattern, confirmed by spatial autocorrelation and non-parametric tests, likely reflects increased vector activity and environmental stress at the vineyard margins. The presented pilot study not only provides a reliable detection tool for grapevine diseases but also lays the groundwork for an early warning system that, if extended to larger areas, could offer a valuable system to guide on-the-ground monitoring and facilitate strategic decision-making by the authorities. Full article
Show Figures

Figure 1

17 pages, 36560 KB  
Article
Comparative Calculation of Spectral Indices for Post-Fire Changes Using UAV Visible/Thermal Infrared and JL1 Imagery in Jinyun Mountain, Chongqing, China
by Juncheng Zhu, Yijun Liu, Xiaocui Liang and Falin Liu
Forests 2025, 16(7), 1147; https://doi.org/10.3390/f16071147 - 11 Jul 2025
Viewed by 358
Abstract
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire [...] Read more.
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire impacts with M-statistic separability, measuring land-cover distinguishability through Jeffries–Matusita (JM) distance analysis, classifying land-cover types using the random forest (RF) algorithm, and verifying classification accuracy. Cumulative human disturbances—such as land clearing, replanting, and road construction—significantly blocked the natural recovery of burn scars, and during long-term human-assisted recovery periods over one year, the Red Green Blue Index (RGBI), Green Leaf Index (GLI), and Excess Green Index (EXG) showed high classification accuracy for six land-cover types: road, bare soil, deadwood, bamboo, broadleaf, and grass. Key accuracy measures showed producer accuracy (PA) > 0.8, user accuracy (UA) > 0.8, overall accuracy (OA) > 90%, and a kappa coefficient > 0.85. Validation results confirmed that visible-spectrum indices are good at distinguishing photosynthetic vegetation, thermal bands help identify artificial surfaces, and combined thermal-visible indices solve spectral confusion in deadwood recognition. Spectral indices provide high-precision quantitative evidence for monitoring post-fire land-cover changes, especially under human intervention, thus offering important data support for time-based modeling of post-fire forest recovery and improvement of ecological restoration plans. Full article
(This article belongs to the Special Issue Wildfire Behavior and the Effects of Climate Change in Forests)
Show Figures

Graphical abstract

20 pages, 2421 KB  
Article
Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated Approaches of UAV-Based Remote Sensing and a Field Trial
by Md. Raihanul Islam, Hasan Muhammad Abdullah, Md Farhadur Rahman, Mahfuzul Islam, Abdul Kaium Tuhin, Md Ashiquzzaman, Kh Shakibul Islam and Daniel Geisseler
Drones 2025, 9(7), 487; https://doi.org/10.3390/drones9070487 - 10 Jul 2025
Cited by 1 | Viewed by 1002
Abstract
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which [...] Read more.
In recent years, global agriculture has encountered several challenges exacerbated by the effects of changes in climate, such as extreme water shortages for irrigation and heat waves. Water-deficit stress adversely affects the morpho-physiology of numerous crops, including soybean (Glycine max L.), which is considered as promising crop in Bangladesh. Seaweed extract (SWE) has the potential to improve crop yield and alleviate the adverse effects of water-deficit stress. Remote and proximal sensing are also extensively utilized in estimating morpho-physiological traits owing to their cost-efficiency and non-destructive characteristics. The study was carried out to evaluate soybean morpho-physiological traits under the application of water extracts of Gracilaria tenuistipitata var. liui (red seaweed) with two varying irrigation water conditions (100% of total crop water requirement (TCWR) and 70% of TCWR). Principal component analysis (PCA) revealed that among the four treatments, the 70% irrigation + 5% (v/v) SWE and the 100% irrigation treatments overlapped, indicating that the application of SWE effectively mitigated water-deficit stress in soybeans. This result demonstrates that the foliar application of 5% SWE enabled soybeans to achieve morpho-physiological performance comparable to that of fully irrigated plants while reducing irrigation water use by 30%. Based on Pearson’s correlation matrix, a simple linear regression model was used to ascertain the relationship between unmanned aerial vehicle (UAV)-derived vegetation indices and the field-measured physiological characteristics of soybean. The Normalized Difference Red Edge (NDRE) strongly correlated with stomatal conductance (R2 = 0.76), photosystem II efficiency (R2 = 0.78), maximum fluorescence (R2 = 0.64), and apparent transpiration rate (R2 = 0.69). The Soil Adjusted Vegetation Index (SAVI) had the highest correlation with leaf relative water content (R2 = 0.87), the Blue Normalized Difference Vegetation Index (bNDVI) with steady-state fluorescence (R2 = 0.56) and vapor pressure deficit (R2 = 0.74), and the Green Normalized Difference Vegetation Index (gNDVI) with chlorophyll content (R2 = 0.73). Our results demonstrate how UAV and physiological data can be integrated to improve precision soybean farming and support sustainable soybean production under water-deficit stress. Full article
(This article belongs to the Special Issue Recent Advances in Crop Protection Using UAV and UGV)
Show Figures

Graphical abstract

20 pages, 5183 KB  
Article
Unmanned Aerial Vehicle (UAV) Imagery for Plant Communities: Optimizing Visible Light Vegetation Index to Extract Multi-Species Coverage
by Meng Wang, Zhuoran Zhang, Rui Gao, Junyong Zhang and Wenjie Feng
Plants 2025, 14(11), 1677; https://doi.org/10.3390/plants14111677 - 30 May 2025
Cited by 1 | Viewed by 853
Abstract
Low-cost unmanned aerial vehicle (UAV) visible light remote sensing provides new opportunities for plant community monitoring, but its practical deployment in different ecosystems is still limited by the lack of standardized vegetation index (VI) optimization for multi-species coverage extraction. This study developed a [...] Read more.
Low-cost unmanned aerial vehicle (UAV) visible light remote sensing provides new opportunities for plant community monitoring, but its practical deployment in different ecosystems is still limited by the lack of standardized vegetation index (VI) optimization for multi-species coverage extraction. This study developed a universal method integrating four VIs—Excess Green Index (EXG), Visible Band Difference Vegetation Index (VDVI), Red-Green Ratio Index (RGRI), and Red-Green-Blue Vegetation Index (RGBVI)—to bridge UAV imagery with plant communities. By combining spectral separability analysis with machine learning (SVM), we established dynamic thresholds applicable to crops, trees, and shrubs, achieving cross-species compatibility without multispectral data. The results showed that all VIs achieved robust vegetation/non-vegetation discrimination (Kappa > 0.84), with VDVI being more suitable for distinguishing vegetation from non-vegetation. The overall classification accuracy for different vegetation types exceeded 92.68%, indicating that the accuracy is considerable. Crop coverage extraction showed a minimum segmentation error of 0.63, significantly lower than that of other vegetation types. These advances enable high-resolution vegetation monitoring, supporting biodiversity assessment and ecosystem service quantification. Our research findings track the impact of plant communities on the ecological environment and promote the application of UAVs in ecological restoration and precision agriculture. Full article
Show Figures

Figure 1

Back to TopTop