Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,347)

Search Parameters:
Keywords = green efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 2707 KB  
Review
Review of Energy-Efficient Pneumatic Propulsion Systems in Vehicle Applications
by Ryszard Dindorf and Jakub Takosoglu
Energies 2025, 18(17), 4688; https://doi.org/10.3390/en18174688 - 3 Sep 2025
Abstract
This review comprehensively presents the development of energy-efficient pneumatic propulsion systems (PPSs) in road vehicle applications, which are classified as green vehicles. The advantages and disadvantages of PPSs were presented, and PPSs were compared with combustion propulsion systems (CPSs) and electric propulsion systems [...] Read more.
This review comprehensively presents the development of energy-efficient pneumatic propulsion systems (PPSs) in road vehicle applications, which are classified as green vehicles. The advantages and disadvantages of PPSs were presented, and PPSs were compared with combustion propulsion systems (CPSs) and electric propulsion systems (EPSs), as well as their power-to-weight ratios (PWRs), energy densities, and CO2 emissions. The review of compressed air vehicles (CAVs) focuses on their historical development and future prospects. This review discusses the use of PPSs with compressed air engines (CAEs) as an alternative propulsion system in green vehicles, providing a simple, energy-saving, and environmentally friendly solution. This review also discusses hybrid air propulsion, which, when combined with internal combustion engines (ICEs) or electric motors (EMs), offers innovative energy-efficient propulsion systems that are more economical than conventional hybrid propulsion systems. This review focuses on recent advances in lightweight air vehicles that improve vehicle handling, increase efficiency, and reduce propulsion energy consumption. Discussion of the study results concerns the use of PPSs in a three-wheeled rehabilitation tricycle (RTB). A comprehensive computation model of the RTB was presented, and the key performance parameters crucial to its operation were analyzed. The results of the RTB simulation were verified through field tests. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
17 pages, 2861 KB  
Article
Recombinant Oncolytic Vesicular Stomatitis Virus Expressing Mouse Interleukin-12 and Granulocyte-Macrophage Colony-Stimulating Factor (rVSV-dM51-mIL12-mGMCSF) for Immunotherapy of Lung Carcinoma
by Anastasia Ryapolova, Margarita Zinovieva, Kristina Vorona, Bogdan Krapivin, Vasiliy Moroz, Nizami Gasanov, Ilnaz Imatdinov, Almaz Imatdinov, Roman Ivanov, Alexander Karabelsky and Ekaterina Minskaia
Int. J. Mol. Sci. 2025, 26(17), 8567; https://doi.org/10.3390/ijms26178567 (registering DOI) - 3 Sep 2025
Abstract
The unique ability of oncolytic viruses (OVs) to replicate in and destroy malignant cells while leaving healthy cells intact and activating the host immune response makes them powerful targeted anti-cancer therapeutic agents. Vesicular stomatitis virus (VSV) only causes mild and asymptomatic infection, lacks [...] Read more.
The unique ability of oncolytic viruses (OVs) to replicate in and destroy malignant cells while leaving healthy cells intact and activating the host immune response makes them powerful targeted anti-cancer therapeutic agents. Vesicular stomatitis virus (VSV) only causes mild and asymptomatic infection, lacks pre-existing immunity, can be genetically engineered for enhanced efficiency and improved safety, and has a broad cell tropism. VSV can facilitate targeted delivery of immunostimulatory cytokines for an enhanced immune response against cancer cells, thus decreasing the possible toxicity frequently observed as a result of systemic delivery. In this study, the oncolytic potency of the two rVSV versions, rVSV-dM51-GFP, delivering green fluorescent protein (GFP), and rVSV-dM51-mIL12-mGMCSF, delivering mouse interleukin-12 (mIL-12) and granulocyte-macrophage colony-stimulating factor (mGMCSF), was compared on the four murine cancer cell lines of different origin and healthy mesenchymal stem cells (MSCs) at 24 h post-infection by flow cytometry. Lewis lung carcinoma (LL/2) cells were demonstrated to be more susceptible to the lytic effects of both rVSV versions compared to melanoma (B16-F10) cells. Detection of expression levels of antiviral and pro-apoptotic genes in response to the rVSV-dM51-GFP infection by quantitative PCR (qPCR) showed lower levels of IFIT, RIG-I, and N-cadherin and higher levels of IFNβ and p53 in LL/2 cells. Subsequently, C57BL/6 mice, infused subcutaneously with the LL/2 cells, were injected intratumorally with the rVSV-dM51-mIL12-mGMCSF 7 days later to assess the synergistic effect of rVSV and immunostimulatory factors. The in vivo study demonstrated that treatment with two rVSV-dM51-mIL12-mGMCSF doses 3 days apart resulted in a tumor growth inhibition index (TGII) of over 50%. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

44 pages, 5390 KB  
Article
Sustainable Material Recovery from Demolition Waste: Knowledge Management and Insights from a Public Sector Building Renovation
by Issara Sereewatthanawut, Babatunde Oluwaseun Ajayi, Bamisaye Mayowa Emmanuel, Adithep Bunphot, Anatawat Chayutthanabun, John Bosco Niyomukiza and Thanwadee Chinda
Buildings 2025, 15(17), 3167; https://doi.org/10.3390/buildings15173167 - 3 Sep 2025
Abstract
The utilization of knowledge management (KM) assists construction companies in planning for waste management. This study applies KM in the material recovery of a public sector building renovation, focusing on aluminum composite panels (ACPs). The cost/benefit analysis (CBA) method examines suitable scenarios, where [...] Read more.
The utilization of knowledge management (KM) assists construction companies in planning for waste management. This study applies KM in the material recovery of a public sector building renovation, focusing on aluminum composite panels (ACPs). The cost/benefit analysis (CBA) method examines suitable scenarios, where costs and benefits cover economic, environmental, and social perspectives. The cost/benefit (C/B) ratios reveal that the repurposing scenario, where ACP waste is repurposed as signboards, is the most suitable scenario, with a C/B of 0.96. The refurbishing scenario, in which ACP waste is refurbished as new facades, may be considered if the labor cost could be reduced through training. The repurposing scenario is further examined with a sensitivity analysis and the Leadership in Energy and Environmental Design certification, and it is found that implementing this scenario serves as a beginning step toward green certification and aligns with Thailand’s national strategies for green building promotion and the long-term Net Zero 2065 target. The study results serve as a guideline for Thailand’s transition toward a low-carbon and resource-efficient construction sector. Future studies are recommended to examine the complex relationships between costs and benefits and to track dynamic changes in the C/B ratio over time. Full article
Show Figures

Figure 1

28 pages, 5175 KB  
Article
Buckling Characteristics of Bio-Inspired Helicoidal Laminated Composite Spherical Shells Under External Normal and Torsional Loads Subjected to Elastic Support
by Mohammad Javad Bayat, Amin Kalhori, Masoud Babaei and Kamran Asemi
Buildings 2025, 15(17), 3165; https://doi.org/10.3390/buildings15173165 - 3 Sep 2025
Abstract
Spherical shells exhibit superior strength-to-geometry efficiency, making them ideal for industrial applications such as fluid storage tanks, architectural domes, naval vehicles, nuclear containment systems, and aeronautical and aerospace components. Given their critical role, careful attention to the design parameters and engineering constraints is [...] Read more.
Spherical shells exhibit superior strength-to-geometry efficiency, making them ideal for industrial applications such as fluid storage tanks, architectural domes, naval vehicles, nuclear containment systems, and aeronautical and aerospace components. Given their critical role, careful attention to the design parameters and engineering constraints is essential. The present paper investigates the buckling responses of bio-inspired helicoidal laminated composite spherical shells under normal and torsional loading, including the effects of a Winkler elastic medium. The pre-buckling equilibrium equations are derived using linear three-dimensional (3D) elasticity theory and the principle of virtual work, solved via the classical finite element method (FEM). The buckling load is computed using a nonlinear Green strain formulation and a generalized geometric stiffness approach. The shell material employed in this study is a T300/5208 graphite/epoxy carbon fiber-reinforced polymer (CFRP) composite. Multiple helicoidal stacking sequences—linear, Fibonacci, recursive, exponential, and semicircular—are analyzed and benchmarked against traditional unidirectional, cross-ply, and quasi-isotropic layups. Parametric studies assess the effects of the normal/torsional loads, lamination schemes, ply counts, polar angles, shell thickness, elastic support, and boundary constraints on the buckling performance. The results indicate that quasi-isotropic (QI) laminate configurations exhibit superior buckling resistance compared to all the other layup arrangements, whereas unidirectional (UD) and cross-ply (CP) laminates show the least structural efficiency under normal- and torsional-loading conditions, respectively. Furthermore, this study underscores the efficacy of bio-inspired helicoidal stacking sequences in improving the mechanical performance of thin-walled composite spherical shells, exhibiting significant advantages over conventional laminate configurations. These benefits make helicoidal architectures particularly well-suited for weight-critical, high-performance applications in aerospace, marine, and biomedical engineering, where structural efficiency, damage tolerance, and reliability are paramount. Full article
(This article belongs to the Special Issue Computational Mechanics Analysis of Composite Structures)
Show Figures

Figure 1

20 pages, 6785 KB  
Article
Measurement and Spatio-Temporal Evolution Analysis of Green Water Efficiency in Shaanxi Province Based on the SBM-Malmquist Model
by Liu Yang, Xiaoying Li, Bing Wang, Youru Hao and Wanfei Gao
Water 2025, 17(17), 2603; https://doi.org/10.3390/w17172603 - 3 Sep 2025
Abstract
Improving water resource green efficiency is an important approach to alleviating the contradiction between water supply and demand. This paper takes Shaanxi Province as the study area and constructs a panel dataset using data from 10 prefecture-level cities in Shaanxi Province from 2013 [...] Read more.
Improving water resource green efficiency is an important approach to alleviating the contradiction between water supply and demand. This paper takes Shaanxi Province as the study area and constructs a panel dataset using data from 10 prefecture-level cities in Shaanxi Province from 2013 to 2023. First, the SBM model and Malmquist index are used to calculate and analyze the green efficiency of water resources in Shaanxi Province. Second, the Tobit model is used to test the factors influencing the green efficiency of water resources in Shaanxi Province. The results show the following: (1) During the period from 2013 to 2023, Shaanxi Province’s water resource green efficiency was generally poor, but it showed an overall upward trend with significant regional differences. (2) The average Malmquist index for water resource green efficiency in Shaanxi Province from 2013 to 2023 was 1.176, and there was a noticeable lag in the conversion between technological innovation and its practical application in Shaanxi Province. (3) The proportion of the secondary industry and per capita water resources had a significant impact on water resource green efficiency in Shaanxi Province. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

17 pages, 1892 KB  
Article
The Use of Collagen Hydrolysate from Chromium Waste in the Optimization of Leather Retanning
by Jan Zarlok, Małgorzata Kowalska and Jerzy Szakiel
Sustainability 2025, 17(17), 7912; https://doi.org/10.3390/su17177912 - 3 Sep 2025
Abstract
Leather tanning generates substantial amounts of solid waste and effluents, posing significant environmental challenges due to the presence of hazardous chromium compounds. The aim of this study was to develop and optimize a method for recycling chromium-tanned leather waste by utilizing it as [...] Read more.
Leather tanning generates substantial amounts of solid waste and effluents, posing significant environmental challenges due to the presence of hazardous chromium compounds. The aim of this study was to develop and optimize a method for recycling chromium-tanned leather waste by utilizing it as a raw material in the retanning process. Collagen hydrolysate was extracted from chrome-tanned leather shavings through acid hydrolysis and subsequently incorporated, together with melamine, into novel retanning compositions. The experimental design, based on the Kleeman method, involved varying the hydrolysate content (25%, 30%, 35%) and melamine concentration (2.5%, 3.0%, 3.5%, 4.0%) to assess their impact on the physicochemical properties of retanned wet-blue leathers. An innovative aspect of the study was the integration of the Kateskór computer program, employing the Kleeman experimental planning method, to optimize the formulation of retanning compositions. This computational approach enabled the precise determination of hydrolysate and melamine quantities required to achieve leather properties that meet both producer and consumer expectations. The optimized formulation identified the hydrolysate content in the range of 28.78–29.63% and melamine in the range of 3.61–3.68% as optimal for obtaining leathers with the desired mechanical strength, shrinkage temperature, and water vapor permeability. The study presents a practical model of a circular economy within the leather industry, aligning with the European Green Deal Strategy by promoting resource efficiency and minimizing hazardous waste. The proposed methodology provides a viable pathway for sustainable leather production through waste valorization and process optimization. Full article
(This article belongs to the Special Issue Organic Matter Degradation, Biomass Conversion and CO2 Reduction)
Show Figures

Figure 1

20 pages, 8670 KB  
Review
Advances in Preparation and Biomedical Applications of Sodium Alginate-Based Electrospun Nanofibers
by Xuan Zhou, Yudong Wang and Changchun Ji
Gels 2025, 11(9), 704; https://doi.org/10.3390/gels11090704 - 3 Sep 2025
Abstract
Sodium alginate (SA) has the advantages of good biocompatibility, water absorption, oxygen permeability, non-toxicity, and film-forming properties. SA is compounded with other materials to formulate a spinning solution. Subsequently, electrospinning is employed to fabricate nanofiber membranes. These membranes undergo cross-linking modification or hydrogel [...] Read more.
Sodium alginate (SA) has the advantages of good biocompatibility, water absorption, oxygen permeability, non-toxicity, and film-forming properties. SA is compounded with other materials to formulate a spinning solution. Subsequently, electrospinning is employed to fabricate nanofiber membranes. These membranes undergo cross-linking modification or hydrogel composite functionalization, yielding nanofiber composites exhibiting essential properties, including biodegradability, biocompatibility, low immunogenicity, and antimicrobial activity. Consequently, these functionalized composites are widely utilized in tissue engineering, regenerative engineering, biological scaffolds, and drug delivery systems, among other biomedical applications. This work reviews the sources, characteristics, and electrospinning preparation methods of SA, with a focus on the application and research status of SA composite nanofibers in tissue engineering scaffolds, wound dressings, drug delivery, and other fields. It can be concluded that SA electrospun nanofibers have great development potential and application prospects in biomedicine, which could better meet the increasingly complex and diverse needs of tissue or wound healing. At the same time, the future development trend of SA composite nanofibers was prospected in order to provide some theoretical reference for the development of biomedical textiles and to promote its development in the direction of being green, safe, and efficient. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

11 pages, 1951 KB  
Review
Recent Advances in Materials for Uranium Extraction from Salt Lake Brine: A Review
by Panting Wang, Miao Lei, Junhang Huang, Yuanhao Li, Ye Li and Junpeng Guo
Chemistry 2025, 7(5), 142; https://doi.org/10.3390/chemistry7050142 - 3 Sep 2025
Abstract
With the rising importance of nuclear energy in the global energy landscape, the sustainable development of uranium resources has garnered increasing attention. Salt lake brine, as an unconventional uranium source, holds significant potential due to its relatively high uranium concentration and the co-occurrence [...] Read more.
With the rising importance of nuclear energy in the global energy landscape, the sustainable development of uranium resources has garnered increasing attention. Salt lake brine, as an unconventional uranium source, holds significant potential due to its relatively high uranium concentration and the co-occurrence of valuable elements such as lithium, boron, and potassium. However, the high salinity and complex ionic composition of brine environments pose considerable challenges for the efficient and selective extraction of uranium. In recent years, the rapid advancement of novel adsorbent materials has provided promising technological pathways for uranium extraction from salt lake brine. This review systematically summarizes recent progress in the application of inorganic and carbon-based materials, organic polymers with functional group modifications, and biomass-derived and green adsorbents in this field. The construction strategies, performance characteristics, and adsorption mechanisms of these materials are discussed in detail, with particular emphasis on their selectivity and stability under complex saline conditions. Furthermore, the application status and future prospects of emerging materials and techniques—such as photocatalysis and electrochemistry—are also explored. This review aims to offer theoretical insights and technical references to support the sustainable exploitation of uranium resources from salt lake brines. Full article
(This article belongs to the Section Green and Environmental Chemistry)
Show Figures

Graphical abstract

32 pages, 2308 KB  
Article
Green and Cooperative Task-and-Route Optimization for Container Trucks with Heterogeneous Carriers Based on Task Sharing
by Ruijia Zhao, Lichang Han, Yunting Song and Zuoxian Gan
Symmetry 2025, 17(9), 1437; https://doi.org/10.3390/sym17091437 - 3 Sep 2025
Abstract
To address the issues of capacity resource waste and increased carbon emissions caused by the asymmetry between import and export container transportation tasks in port collection and dispatching, a green and cooperative task-and-route optimization method for container trucks with heterogeneous carriers based on [...] Read more.
To address the issues of capacity resource waste and increased carbon emissions caused by the asymmetry between import and export container transportation tasks in port collection and dispatching, a green and cooperative task-and-route optimization method for container trucks with heterogeneous carriers based on task sharing is proposed from the perspective of system optimization. Based on the concept of a sharing economy, a sharing and cooperation mechanism with dual elasticity in capacity and information is designed, which integrates the container trucks’ resources and dissymmetric transportation tasks of heterogeneous carriers to expand the revenue potential for all participants. Based on task sharing and matching, a green and cooperative task-and-route optimization model for container trucks with heterogeneous carriers based on task sharing is formulated in order to optimize container trucks’ resources and transportation tasks comprehensively and reduce the system’s carbon emissions. A column generation algorithm embedded with a ring-increasing strategy is designed to solve the problem to improve computational efficiency. Through algorithm testing and a case analysis, the effectiveness of the model and algorithm is validated. The optimization results show that the overall carbon emissions are reduced by more than 28%, the number of used trucks decreases by 28%, and the profits of participants are increased by 24–65% compared with independent operations. Finally, several management insights are obtained regarding the number of shared trucks, the external market demand, task demand variability, the mixed fleet composition, subsidies, and bonus adjustments. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 2464 KB  
Article
Microwave-Assisted Catalytic Transfer Hydrogenation of Chalcones: A Green, Fast, and Efficient One-Step Reduction Using Ammonium Formate and Pd/C
by Wender Alves Silva, Sayuri Cristina Santos Takada, Felipe Marques Nogueira and Luiz Arthur Ramos Almeida
Organics 2025, 6(3), 40; https://doi.org/10.3390/org6030040 - 3 Sep 2025
Abstract
Catalytic transfer hydrogenation (CTH) and microwave-assisted organic synthesis (MAOS) have each advanced the sustainability of reduction chemistry; however, their combined application to conjugated enones remains largely unexplored. To the best of our knowledge, no unified protocol has been reported for the rapid, one-pot [...] Read more.
Catalytic transfer hydrogenation (CTH) and microwave-assisted organic synthesis (MAOS) have each advanced the sustainability of reduction chemistry; however, their combined application to conjugated enones remains largely unexplored. To the best of our knowledge, no unified protocol has been reported for the rapid, one-pot conversion of chalcones into saturated alcohols under microwave irradiation. Herein, we report a concise and green method that integrates MAOS with Pd/C-catalyzed CTH, employing inexpensive ammonium formate in ethanol. In contrast to state-of-the-art hydrogenations that require pressurized H2 or costly metal complexes, our strategy (i) achieves complete conversion within 20 min at 60 °C, (ii) tolerates both electron-rich and electron-poor substrates, (iii) reduces nitro-substituted chalcones in a single step, and (iv) consumes < 0.005 kWh per reaction—an approximately 250-fold energy saving relative to conventional procedures. These results position microwave-driven CTH as a scalable alternative for synthesizing pharmacologically relevant saturated alcohol scaffolds from readily available chalcones. Full article
Show Figures

Graphical abstract

26 pages, 5572 KB  
Article
Enhanced Biosorption of Triarylmethane Dyes by Immobilized Trametes versicolor and Pleurotus ostreatus: Optimization, Kinetics, and Reusability
by Ruchi Upadhyay, Wioletta Przystaś, Roman Turczyn and Marcelina Jureczko
Water 2025, 17(17), 2600; https://doi.org/10.3390/w17172600 - 2 Sep 2025
Abstract
The discharge of synthetic dyes from industries poses severe environmental challenges, necessitating eco-friendly remediation strategies. This study investigated the biosorption of triarylmethane dyes Crystal Violet (CV), and Brilliant Green (BG) using self-immobilized and sponge-immobilized biosorbents of Trametes versicolor (strain CB8, CB8/S2) and Pleurotus [...] Read more.
The discharge of synthetic dyes from industries poses severe environmental challenges, necessitating eco-friendly remediation strategies. This study investigated the biosorption of triarylmethane dyes Crystal Violet (CV), and Brilliant Green (BG) using self-immobilized and sponge-immobilized biosorbents of Trametes versicolor (strain CB8, CB8/S2) and Pleurotus ostreatus (strain BWPH, BWPH/S2). Tests were conducted with live and autoclaved biomass under varying conditions of dye concentration (100–400 mg/L), temperature (15–55 °C), and pH (2–10). Sponge-immobilized live biomass (CB8/S2 and BWPH/S2) showed superior performance, removing up to 90.3% and 81.7% of BG and 43.9% and 39.3% of CV, respectively, within 6 h, demonstrating 3–5 times higher efficiency than self-immobilized biomass for both dyes. Maximum sorption of 379.4 mg/g of BG and 48.9 mg/g of CV was achieved by CB8/S2 at 400 mg/L. Principal Component Analysis biplot confirmed immobilization efficacy, where Dim1 (85.9–91.8% variance) dominated dye concentration and contact time. The optimized conditions for BG removal by CB8/S2 was 20.85–32.17 °C and pH 3.4–6, and for CV, at pH 6.5–7.5 and 30 °C. The percentage of dye sorption data fitted well with the quadratic model (p < 0.05). Fourier transform infrared spectroscopy (FT-IR) analysis indicated that hydrogen bonding and electrostatic interactions facilitated dye binding onto fungal mycelium. Notably, sponge-immobilized biosorbents were reusable without additional treatment. The findings support fungal biomass immobilization as a viable strategy to augment the bioremediation potential in treating dye-laden wastewater. Full article
Show Figures

Graphical abstract

24 pages, 3866 KB  
Article
Improved Heterogeneous Spatiotemporal Graph Network Model for Traffic Flow Prediction at Highway Toll Stations
by Yaofang Zhang, Jian Chen, Fafu Chen and Jianjie Gao
Sustainability 2025, 17(17), 7905; https://doi.org/10.3390/su17177905 - 2 Sep 2025
Abstract
This study aims to guide the management and service of highways towards a more efficient and intelligent direction, and also provides intelligent and green data support for achieving sustainable development goals. The forecasting of traffic flow at highway stations serves as the cornerstone [...] Read more.
This study aims to guide the management and service of highways towards a more efficient and intelligent direction, and also provides intelligent and green data support for achieving sustainable development goals. The forecasting of traffic flow at highway stations serves as the cornerstone for spatiotemporal analysis and is vital for effective highway management and control. Despite considerable advancements in data-driven traffic flow prediction, the majority of existing models fail to differentiate between directions. Specifically, entrance flow prediction has applications in dynamic route guidance, disseminating real-time traffic conditions, and offering optimal entrance selection suggestions. Meanwhile, exit flow prediction is instrumental for congestion and accident alerts, as well as for road network optimization decisions. In light of these needs, this study introduces an enhanced heterogeneous spatiotemporal graph network model tailored for predicting highway station traffic flow. To accurately capture the dynamic impact of upstream toll stations on the target station’s flow, we devise an influence probability matrix. This matrix, in conjunction with the covariance matrix across toll stations, updated graph structure data, and integrated external weather conditions, allows the attention mechanism to assign varied combination weights to the target toll station from temporal, spatial, and external standpoints, thereby augmenting prediction accuracy. We undertook a case study utilizing traffic flow data from the Chengdu-Chengyu station on the Sichuan Highway to gauge the efficacy of our proposed model. The experimental outcomes indicate that our model surpasses other baseline models in performance metrics. This study provides valuable insights for highway management and control, as well as for reducing traffic congestion. Furthermore, this research highlights the importance of using data-driven approaches to reduce carbon emissions associated with transportation, enhance resource allocation at toll plazas, and promote sustainable highway transportation systems. Full article
Show Figures

Figure 1

24 pages, 1988 KB  
Article
Performance Analysis of Dynamic Switching Method for Signal Relay Protocols for Cooperative PDMA Networks over Nakagami-m Fading Channels
by Wanwei Tang, Qingwang Ren, Lixia Wang and Zedai Wang
Telecom 2025, 6(3), 64; https://doi.org/10.3390/telecom6030064 - 2 Sep 2025
Abstract
This study investigates a dynamic switching method for signal relay protocols in Cooperative Pattern Division Multiple Access (Co-PDMA) networks. The proposed approach aims to fully utilize the advantages of signal relays in fading-prone environment while simultaneously reducing the network outage probability and improving [...] Read more.
This study investigates a dynamic switching method for signal relay protocols in Cooperative Pattern Division Multiple Access (Co-PDMA) networks. The proposed approach aims to fully utilize the advantages of signal relays in fading-prone environment while simultaneously reducing the network outage probability and improving the throughput and energy efficiency. To demonstrate the necessity of implementing the dynamic switching method for signal relay protocols, Co-PDMA networks with Decode-and-Forward (DF) or Amplify-and-Forward (AF) protocols are explored over Nakagami-m fading. Based on the analysis of these two scenarios, the overall outage probability, throughput, and energy efficiency of the Co-PDMA network with a dynamic DF/AF protocol are determined. The results demonstrate that the proposed method selects the optimal signal relay protocol for forwarding user data in a simple and efficient manner across varying transmit signal-to-noise ratios, quality of service, and signal relay locations. Compared with fixed signal relay protocols, the proposed method is more conducive to achieving green communication in Co-PDMA networks, as it enhances communication reliability and the total volume of data transmitted. Full article
22 pages, 804 KB  
Article
Greening Through Recognition: Unveiling the Mechanisms of China’s High-Tech Enterprise Identification Policy on Sustainable Innovation
by Daleng Xin, Wenying Liu, Zhonghe Wang and Kehui Wang
Sustainability 2025, 17(17), 7896; https://doi.org/10.3390/su17177896 - 2 Sep 2025
Abstract
This study examines whether China’s high-tech enterprise identification policy promotes corporate sustainable innovation. Using panel data from Chinese listed firms on the Shanghai and Shenzhen stock exchanges between 2008 and 2022, we adopt a time-varying difference-in-differences (DID) model to evaluate the policy’s effectiveness [...] Read more.
This study examines whether China’s high-tech enterprise identification policy promotes corporate sustainable innovation. Using panel data from Chinese listed firms on the Shanghai and Shenzhen stock exchanges between 2008 and 2022, we adopt a time-varying difference-in-differences (DID) model to evaluate the policy’s effectiveness and explore its underlying mechanisms. The results reveal that this certification policy significantly facilitates green innovation, and the findings remain robust across various checks, including alternative measurements, placebo tests, propensity score matching DID (PSM-DID), and the exclusion of digital transformation trend and confounding macro-level policies. Mechanism analysis shows that the policy influences green innovation by alleviating financing constraints, increasing access to government subsidies, facilitating the agglomeration of scientific and technological talent, and encouraging greater R&D investment. Heterogeneity analysis further indicates that the policy effect is more pronounced among non-state-owned enterprises, small-scale firms, capital-intensive businesses, those located in high-institutional-quality regions, and firms in China’s eastern provinces. Moreover, the positive impact is strongest for growth-stage firms. The policy has also been found to improve green innovation efficiency. These findings offer empirical insights for optimizing selective industrial policies to enhance sustainable innovation and support China’s dual-carbon goals. Full article
Show Figures

Figure 1

32 pages, 2476 KB  
Article
Identifying the Impact of Climate Policy on Urban Carbon Emissions: New Insights from China’s Environmental Protection Tax Reform
by Xianpu Xu, Yiqi Fu, Qiqi Meng and Jiarui Hu
Sustainability 2025, 17(17), 7898; https://doi.org/10.3390/su17177898 - 2 Sep 2025
Abstract
Environmental protection tax (EPT), as a major tool to improve air quality and reduce carbon emissions, is of great significance for promoting urban low-carbon transformation. In this context, this paper has compiled a dataset from 282 Chinese cities during 2006–2022 and empirically identify [...] Read more.
Environmental protection tax (EPT), as a major tool to improve air quality and reduce carbon emissions, is of great significance for promoting urban low-carbon transformation. In this context, this paper has compiled a dataset from 282 Chinese cities during 2006–2022 and empirically identify the implication of EPT for carbon emissions at the city level by using the intensity difference-in-differences (I-DID) model. The result discloses that EPT greatly lowers carbon emissions by an average of 10.9% compared to non-pilot cities. Even after conducting some robustness checks, the result remains unchanged. Mechanism testing reveals that EPT curbs carbon emissions through enhancing energy utilization efficiency, fostering green technological advancements, and modernizing urban industries. Meanwhile, we show that EPT exerts a more substantial effect on carbon emissions in innovative cities, central and western cities, non-industrial-based cities, and non-resource-dependent cities. More importantly, EPT greatly promotes imitation and learning in neighboring regions, forming a radiation impact upon carbon reduction in surrounding areas. Hence, these results offer an important decision-making guide for optimizing the EPT system, strengthening the coordinated governance of carbon emission across regions, and ultimately promoting urban low-carbon development. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

Back to TopTop