Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,034)

Search Parameters:
Keywords = green extraction techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2442 KB  
Article
Sustainable Green Synthesis of Fe3O4 Nanocatalysts for Efficient Oxygen Evolution Reaction
by Erico R. Carmona, Anandhakumar Sukeri, Ronald Nelson, Cynthia Rojo, Arnoldo Vizcarra, Aliro Villacorta, Felipe Carevic, Ricard Marcos, Bernardo Arriaza, Nelson Lara, Tamara Martinez and Lucas Patricio Hernández-Saravia
Nanomaterials 2025, 15(17), 1317; https://doi.org/10.3390/nano15171317 - 27 Aug 2025
Abstract
This work focuses on the sustainable green synthesis of magnetic iron oxide nanoparticles (Fe3O4NPs) using bioreductants derived from orange peel extracts for application in the efficient oxygen evolution reactions (OER). The synthesized catalysts were characterized using X-ray diffraction analysis, [...] Read more.
This work focuses on the sustainable green synthesis of magnetic iron oxide nanoparticles (Fe3O4NPs) using bioreductants derived from orange peel extracts for application in the efficient oxygen evolution reactions (OER). The synthesized catalysts were characterized using X-ray diffraction analysis, field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV–visible spectroscopy. The Fe3O4NPs exhibit a well-defined spherical morphology with a larger Brunauer–Emmett–Teller surface area and a significant electrochemically active surface area. The green synthesis using orange peel extracts leads to an excellent electrocatalytic activity of the apparent spherical Fe3O4NPs (diameter of 9.62 ± 0.07 nm), which is explored for OER in an alkaline medium (1.0 M KOH) using linear-sweep and cyclic voltammetry techniques. These nanoparticles achieved a benchmark current density of 10 mA cm−2 at a low overpotential of 0.3 V versus RHE, along with notable durability and stability. The outstanding OER electrocatalytic activity is attributed to their unique morphology, which offers large surface area and an ideal porous structure that enhances the adsorption and activation of reactive species. Furthermore, structural defects within the nanoparticles facilitate efficient electron transfer and migration of these species, further accelerating the OER process. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Figure 1

19 pages, 857 KB  
Article
Supercritical CO2 Antisolvent Fractionation of Citrus aurantium Flower Extracts: Enrichment and Characterization of Bioactive Compounds
by Dhekra Trabelsi, José F. Martínez-López, Manef Abderrabba, José S. Urieta and Ana M. Mainar
Plants 2025, 14(17), 2678; https://doi.org/10.3390/plants14172678 - 27 Aug 2025
Abstract
This study investigates the valorisation of sour orange (Citrus aurantium L.) flowers using supercritical antisolvent fractionation (SAF) with CO2 as an antisolvent. SAF was applied to selectively recover bioactive compounds from ethanolic extracts, using supercritical CO2 to induce precipitation. Response [...] Read more.
This study investigates the valorisation of sour orange (Citrus aurantium L.) flowers using supercritical antisolvent fractionation (SAF) with CO2 as an antisolvent. SAF was applied to selectively recover bioactive compounds from ethanolic extracts, using supercritical CO2 to induce precipitation. Response Surface Methodology (RSM) was employed to optimize operational conditions across a pressure range of 8.7–15 MPa and CO2 flow rates of 0.6–1.8 kg/h, at a constant temperature of 40 °C. Pressure showed a statistically significant positive effect on precipitate yield, while higher CO2 flow rates led to reduced recovery. High-performance liquid chromatography (HPLC) analysis identified naringin (33.7%), neohesperidin (21.6%), and synephrine (9.0%) as the main components of the enriched fractions. SAF enabled the selective concentration of these compounds, supporting its application as a green separation technique. As a complementary evaluation, preliminary in silico predictions of ADMET properties and skin permeability were performed. The results indicated favourable absorption, low predicted toxicity, and limited dermal permeation for the major flavonoids. These findings are consistent with available experimental and regulatory safety data. Overall, the study demonstrates the potential of SAF as an effective green technology for the selective extraction and enrichment of high-value bioactive compounds derived from Citrus aurantium flowers, with promising applications in cosmetic, nutraceutical, and pharmaceutical formulations. Full article
28 pages, 2736 KB  
Review
Jaboticaba (Myrciaria cauliflora) Peel Extracts in Dermocosmetics: A Systematic Review Highlighting Antioxidant and Photoprotective Research Gaps
by Jovane Santana Silva, Clayton Pereira de Sá, Márcio Gonçalves dos Santos, Catarina Rosado, Fábia Rafaella Silva Alves, André Rolim Baby and Yohandra Reyes Torres
Cosmetics 2025, 12(5), 182; https://doi.org/10.3390/cosmetics12050182 - 26 Aug 2025
Abstract
This paper presents a literature review on the potential of jaboticaba (Myrciaria cauliflora) peel extracts for application in multifunctional dermocosmetic formulations, particularly as natural antioxidants and photoprotective agents. Utilizing the Methodi Ordinatio methodology, of a total of 1226, 90 scientific articles [...] Read more.
This paper presents a literature review on the potential of jaboticaba (Myrciaria cauliflora) peel extracts for application in multifunctional dermocosmetic formulations, particularly as natural antioxidants and photoprotective agents. Utilizing the Methodi Ordinatio methodology, of a total of 1226, 90 scientific articles were selected from six major databases and analyzed through bibliometric mapping (VOSviewer) and qualitative data processing (MAXQDA). The results highlight research concentration in three key areas: (1) extraction methodologies for bioactive compounds, (2) identification and quantification techniques, and (3) biological activities (antioxidant and photoprotective effects). The most frequent compounds reported were anthocyanins (cyanidin-3-glucoside and delphinidin-3-glucoside), quercetin-derived flavonoids (rutin and myricetin), and phenolic acids (ellagic, gallic, and ferulic acids), which exhibit synergistic effects with conventional UV filters. Ultrasound-assisted extraction (UAE) using ethanol and emerging green solvents, like glycerol and deep eutectic solvents (DESs), was identified as an effective, sustainable alternative. Despite increasing evidence supporting the dermocosmetic potential of jaboticaba peel, studies remain scarce, with only one identified investigation using it in a topical formulation. This review provides a structured scientific foundation to encourage research aimed at developing multifunctional, eco-friendly, plant-based cosmetics aligned with the principles of the circular economy. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Graphical abstract

19 pages, 5930 KB  
Article
rGO Decorated with ZnO Synthesized Using Clitoria ternatea Flower Extract—Characterization, In Vitro and In Vivo Biocompatibility, and Textile Dye Remediation
by Tanvitha Guttapalli, Naven Kumar RK, Harini RM and Koyeli Girigoswami
J. Compos. Sci. 2025, 9(9), 454; https://doi.org/10.3390/jcs9090454 - 25 Aug 2025
Viewed by 37
Abstract
This study explores a green synthesis approach for creating a nanocomposite material consisting of zinc oxide (ZnO) nanoparticles decorated with reduced graphene oxide (rGO), utilizing Clitoria ternatea flower extract as a biogenic reducing agent. The objective was to leverage the phytochemicals present in [...] Read more.
This study explores a green synthesis approach for creating a nanocomposite material consisting of zinc oxide (ZnO) nanoparticles decorated with reduced graphene oxide (rGO), utilizing Clitoria ternatea flower extract as a biogenic reducing agent. The objective was to leverage the phytochemicals present in the flower extract to form ZnO nanoparticles, enhance their properties through rGO integration, and evaluate their structural and photocatalytic characteristics. The nanocomposite was characterized using a comprehensive suite of techniques, including XRD, FTIR, UV–Vis spectroscopy, DLS, zeta potential, SEM, and EDAX. To assess the in vitro biocompatibility, an MTT assay was performed on the normal fibroblast cell line 3T3L1. The nanocomposite exhibited minimal cytotoxicity with over 86% cell viability at concentrations up to 320 μg/mL. Additionally, hemolysis assays demonstrated that the nanocomposite induced less than 5% hemolysis, indicating excellent hemocompatibility. In an in vivo evaluation, zebrafish embryos exhibited no deformities, and the cumulative hatchability was also not affected up to a dose of 50 μg/mL. The exploration of environmental remediation was studied using bromophenol dye degradation, which showed a 65% dye degradation within 30 min of exposure to the composite and sunlight. The outcome of the study showed successful formation of ZnO and its composite with rGO (CT-rGO-ZnO), exhibiting excellent biocompatibility and improved photocatalytic properties. The material demonstrates promise for applications in environmental remediation and energy-related fields. The environmentally friendly nature of the synthesis approach also makes it a valuable contribution toward sustainable nanotechnology. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

29 pages, 3349 KB  
Review
Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential
by Mateusz Pęśko and Anna Masek
Polymers 2025, 17(17), 2286; https://doi.org/10.3390/polym17172286 - 23 Aug 2025
Viewed by 359
Abstract
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive [...] Read more.
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive and structured overview of the recent progress (2020–2025) in the integration of plant-based biofillers into both thermoplastic and thermosetting polymer matrices, with a focus on surface modification techniques, physicochemical characterization, and emerging industrial applications. Unlike the prior literature, this work highlights the dual environmental and material benefits of using plant-derived fillers, particularly in the context of waste valorization and circular material design. By clearly identifying a current research gap—the limited scalability and processing efficiency of biofillers—this review proposes a strategy in which plant-derived materials function as key enablers for sustainable composite development. Special attention is given to extraction methods of lignocellulosic fillers from renewable agricultural waste streams and their subsequent functionalization to improve matrix compatibility. Additionally, it delineates the principal approaches for biofiller modification, demonstrating how their properties can be tailored to meet specific needs in biocomposite production. This critical synthesis of the state-of-the-art literature not only reinforces the role of biofillers in reducing dependence on non-renewable fillers but also outlines future directions in scaling up their use, improving durability, and expanding performance capabilities of sustainable composites. Overall, the presented analysis contributes novel insights into the material design, processing strategies, and potential of plant biofillers as central elements in next-generation green composites. Full article
Show Figures

Graphical abstract

21 pages, 5297 KB  
Article
Biological Effect of Green Synthesis of Silver Nanoparticles Derived from Malva parviflora Fruits
by Suzan Abdullah Al-Audah, Azzah I. Alghamdi, Sumayah I. Alsanie, Ibtisam M. Ababutain, Essam Kotb, Amira H. Alabdalall, Sahar K. Aldosary, Nada F. AlAhmady, Salwa Alhamad, Amnah A. Alaudah, Munirah F. Aldayel and Arwa A. Aldakheel
Int. J. Mol. Sci. 2025, 26(17), 8135; https://doi.org/10.3390/ijms26178135 - 22 Aug 2025
Viewed by 154
Abstract
The search for novel natural resources, such as extracts from algae and plant for use as reductants and capping agents for the synthesis of nanoparticles, may be appealing to medicine and nanotechnology. This study aimed to use Malva parviflora fruit extract as a [...] Read more.
The search for novel natural resources, such as extracts from algae and plant for use as reductants and capping agents for the synthesis of nanoparticles, may be appealing to medicine and nanotechnology. This study aimed to use Malva parviflora fruit extract as a novel source for the green synthesis of silver nanoparticles (AgNPs) and to evaluate their characterization. The results of biosynthesized AgNP characterization using multiple techniques, such as UV–Vis spectroscopy, scanning electron microscopy (SEM), FTIR analysis, and zeta potential (ZP), demonstrated that M. parviflora AgNPs exhibit a peak at 477 nm; possess needle-like and nanorod morphology with diameters ranging from 156.08 to 258.41 nm; contain –OH, C=O, C-C stretching from phenyl groups, and carbohydrates, pyranoid ring, and amide functional groups; and have a zeta potential of −21.2 mV. Moreover, the antibacterial activity of the M. parviflora AgNPs was assessed against two multidrug-resistant strains, including Staphylococcus aureus MRSA and Escherichia coli ESBL, with inhibition zones of 20.33 ± 0.88 mm and 13.33 ± 0.33 mm, respectively. The minimum bactericidal concentration (MBC) was 1.56 µg/mL for both. SEM revealed structural damage to the treated bacterial cells, and RAPD-PCR confirmed these genetic alterations. Additionally, M. parviflora AgNPs showed antioxidant activity (IC50 = 0.68 mg/mL), 69% protein denaturation inhibition, and cytotoxic effects on MCF-7 breast cancer cells at concentrations above 100 µg/mL. These findings suggest that M. parviflora-based AgNPs are safe and effective for antimicrobial and biomedical applications, such as coatings for implanted medical devices, to prevent biofilm formation and facilitate drug delivery. Full article
Show Figures

Figure 1

40 pages, 2346 KB  
Review
Towards Enhanced Electrospinning of Alginate—Can Recent Strategies Overcome Limitations? A Review
by Paulina Wróbel, Julia Zwolińska, Daniel Szopa and Anna Witek-Krowiak
Polymers 2025, 17(16), 2255; https://doi.org/10.3390/polym17162255 - 20 Aug 2025
Viewed by 487
Abstract
Electrospun alginate nanofibers are emerging as versatile materials for biomedical, environmental, and packaging applications due to their biocompatibility, biodegradability, and functional tunability. However, the direct electrospinning of alginate remains a significant challenge, mainly due to its polyelectrolytic nature, rigid chain structure, and limited [...] Read more.
Electrospun alginate nanofibers are emerging as versatile materials for biomedical, environmental, and packaging applications due to their biocompatibility, biodegradability, and functional tunability. However, the direct electrospinning of alginate remains a significant challenge, mainly due to its polyelectrolytic nature, rigid chain structure, and limited chain entanglement. This review provides a comprehensive analysis of recent strategies developed to overcome these limitations, including polymer blending, chemical modification, the addition of surfactants, multi-fluid techniques, and process optimization. We systematically discuss the integration of nanofibers with functional agents such as microorganisms, bioactive compounds, plant extracts, and nanoparticles, highlighting their potential in wound healing, active packaging, bioremediation, and controlled release systems. This review also examines the scalability of alginate electrospinning, summarizing recent patents, industrial solutions, and challenges related to the standardization of the process. Key knowledge gaps are identified, including the need for long-term stability studies, structure–function correlations, green processing approaches, and expansion into novel application domains beyond healthcare. Addressing these research directions will be crucial to unlocking the full potential of alginate nanofibers as sustainable, high-performance materials for industrial use. Full article
Show Figures

Graphical abstract

40 pages, 4676 KB  
Review
Recent Developments in Polymer Inclusion Membranes: Advances in Selectivity, Structural Integrity, Environmental Applications and Sustainable Fabrication
by Anna Nowik-Zając and Vira Sabadash
Membranes 2025, 15(8), 249; https://doi.org/10.3390/membranes15080249 - 19 Aug 2025
Viewed by 576
Abstract
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and [...] Read more.
Polymer inclusion membranes (PIMs) have undergone substantial advancements in their selectivity and efficiency, driven by their increasing deployment in separation processes, environmental remediation, and sensing applications. This review presents recent progress in the development of PIMs, focusing on strategies to enhance ion and molecule selectivity through the incorporation of novel carriers, including ionic liquids and task-specific extractants, as well as through polymer functionalization techniques. Improvements in mechanical and chemical stability, achieved via the utilization of high-performance polymers such as polyvinylidene fluoride (PVDF) and polyether ether ketone (PEEK), as well as cross-linking approaches, are critically analyzed. The expanded application of PIMs in the removal of heavy metals, organic micropollutants, and gas separation, particularly for carbon dioxide capture, is discussed with an emphasis on efficiency and operational robustness. The integration of PIMs with electrochemical and optical transduction platforms for sensor development is also reviewed, highlighting enhancements in sensitivity, selectivity, and response time. Furthermore, emerging trends towards the fabrication of sustainable PIMs using biodegradable polymers and green solvents are evaluated. Advances in scalable manufacturing techniques, including phase inversion and electrospinning, are addressed, outlining pathways for the industrial translation of PIM technologies. The review concludes by identifying current limitations and proposing future research directions necessary to fully exploit the potential of PIMs in industrial and environmental sectors. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

15 pages, 1415 KB  
Article
Cloud Point Extraction as a Green Method for the Extraction of Antioxidant Compounds from the Juice of Second-Grade Apples
by Maria-Ioanna Togantzi, Martha Mantiniotou, Dimitrios Kalompatsios, Vassilis Athanasiadis, Ioannis Giovanoudis and Stavros I. Lalas
Biomass 2025, 5(3), 48; https://doi.org/10.3390/biomass5030048 - 19 Aug 2025
Viewed by 169
Abstract
Every year, a substantial amount of food is discarded globally. A significant portion of this waste is composed of fruit by-products or fruits that do not meet consumer standards. Apples rank as the third most extensively produced fruit crop globally, generating substantial waste. [...] Read more.
Every year, a substantial amount of food is discarded globally. A significant portion of this waste is composed of fruit by-products or fruits that do not meet consumer standards. Apples rank as the third most extensively produced fruit crop globally, generating substantial waste. This study examined apples that did not meet food industry standards and were destined for disposal. The objective was to recover bioactive compounds from their juice using Cloud Point Extraction (CPE). Like other extraction methods, CPE isolates target compounds from the sample, enhancing recovery yield. A primary advantage of CPE is that it operates without requiring specialized equipment or hazardous reagents. Additional benefits include efficacy, simplicity, safety, and speed. Furthermore, a food-grade surfactant, lecithin, was used to encapsulate bioactive compounds, ensuring non-toxicity for both humans and the environment. After three CPE steps, we recovered 95.95% of the total polyphenols from second-grade apple juice (initial TPC: 540.36 mg GAE/L). The findings highlight CPE’s effectiveness for polyphenol extraction and for producing antioxidant-rich extracts. These extracts may be utilized as nutritional supplements, feed additives, and for nutraceutical or medicinal applications. Full article
Show Figures

Figure 1

21 pages, 3739 KB  
Article
Occurrence State and Extraction of Lithium from Jinyinshan Clay-Type Lithium Deposit, Southern Hubei: Novel Blank Roasting–Acid Leaching Processes
by Hao Zhang, Peng Li, Wensheng Zhang, Jiankang Li, Zhenyu Chen, Jin Yin, Yong Fang, Shuang Liu, Jian Kang and Dan Zhu
Appl. Sci. 2025, 15(16), 9100; https://doi.org/10.3390/app15169100 - 18 Aug 2025
Viewed by 313
Abstract
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to [...] Read more.
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to provide technical guidance for subsequent geological exploration and development of such deposits. Analytical techniques, including AMICS, EPMA, and LA-ICP-MS, reveal that Li primarily occurs in structurally bound forms within cookeite (82.55% of total Li), illite (6.65%), and rectorite (5.20%), with mineral particle sizes concentrated in fine-grained fractions (<45 μm). Leveraging process mineralogical insights, two industrially adaptable blank roasting–acid leaching processes were innovatively developed. Process I employs a full flow of blank roasting–hydrochloric acid leaching–Li-Al separation–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Optimizing roasting temperature (600 °C), hydrochloric acid concentration (18 wt%), and leaching parameters achieved a 92.37% Li leaching rate. Multi-step purification yielded lithium carbonate with >99% Li2CO3 purity and an overall Li recovery of 73.89%. Process II follows blank roasting–sulfuric acid leaching–Al removal via alum precipitation–Al/Fe removal–freeze crystallization for sodium sulfate removal–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Parameter optimization and freezing impurity removal achieved an 89.11% Li leaching rate, producing lithium carbonate with >98.85% Li2CO3 content alongside by-products like crude sodium chloride and ammonium alum. Both processes enable resource utilization of Al-rich residues, with the hydrochloric acid-based method excelling in stability and the sulfuric acid-based approach offering superior by-product valorization potential. This low-energy, high-yield clean extraction system provides critical theoretical and technical foundations for scaling clay-type Li deposit utilization, advancing green Li extraction and industrial chain development. Full article
(This article belongs to the Special Issue Recent Advances in Geochemistry)
Show Figures

Figure 1

22 pages, 1916 KB  
Article
Evaluating the Assembly Strategy of a Fungal Genome from Metagenomic Data: Solorina crocea (Peltigerales, Ascomycota) as a Case Study
by Ana García-Muñoz and Raquel Pino-Bodas
J. Fungi 2025, 11(8), 596; https://doi.org/10.3390/jof11080596 - 15 Aug 2025
Viewed by 560
Abstract
The advent of next-generation sequencing technologies has given rise to considerably diverse techniques. However, integrating data from these technologies to generate high-quality genomes remains challenging, particularly when starting from metagenomic data. To provide further insight into this process, the genome of the lichenized [...] Read more.
The advent of next-generation sequencing technologies has given rise to considerably diverse techniques. However, integrating data from these technologies to generate high-quality genomes remains challenging, particularly when starting from metagenomic data. To provide further insight into this process, the genome of the lichenized fungus Solorina crocea was sequenced using DNA extracted from the thallus, which contains the genome of the mycobiont, along with those of the photobionts (a green alga and a cyanobacterium), and other associated microorganisms. Three different strategies were assessed for the assembly of a de novo genome, employing data obtained from Illumina and PacBio HiFi technologies: (1) hybrid assembly based on metagenomic data; (2) assembly based on metagenomic long reads and scaffolded with filtered mycobiont long and short reads; (3) hybrid assembly based on filtered mycobiont short and long reads. Assemblies were compared according to contiguity and completeness criteria. Strategy 2 achieved the most continuous and complete genome, with a size of 55.5 Mb, an N50 of 148.5 kb, and 519 scaffolds. Genome annotation and functional prediction were performed, including identification of secondary metabolite biosynthetic gene clusters. Genome annotation predicted 6151 genes, revealing a high number of genes associated with transport, carbohydrate metabolism, and stress response. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

18 pages, 3030 KB  
Article
Sustainable Extraction of Bioactive Compounds from Cocoa Shells Waste and Brewer’s Spent Grain Using a Novel Two-Stage System Integrating Ohmic-Accelerated Steam Distillation (OASD) and Supercritical CO2 Extraction (SSCO2)
by Hao-Yu Ivory Chu, Xinyu Zhang, Yuxin Wang, Taghi Miri and Helen Onyeaka
Sustainability 2025, 17(16), 7373; https://doi.org/10.3390/su17167373 - 14 Aug 2025
Viewed by 333
Abstract
This study introduces a novel, two-stage extraction system that combines Ohmic-Accelerated Steam Distillation (OASD) with Supercritical CO2 Extraction (SSCO2) to efficiently recover bioactive compounds from plant-based wastes with varying cell wall complexities. Brewer’s spent grain (BSG) and cocoa shell were [...] Read more.
This study introduces a novel, two-stage extraction system that combines Ohmic-Accelerated Steam Distillation (OASD) with Supercritical CO2 Extraction (SSCO2) to efficiently recover bioactive compounds from plant-based wastes with varying cell wall complexities. Brewer’s spent grain (BSG) and cocoa shell were selected as representative models for soft and rigid cell wall structures, respectively. The optimized extraction process demonstrated significantly enhanced efficiency compared to traditional methods, achieving recovery rates in BSG of 89% for antioxidants, 91% for phenolic acids, and 90% for polyphenolic compounds. Notably, high yields of p-coumaric acid (95%), gallic acid (94%), ferulic acid (82%), quercetin (87%), and resveratrol (82%) were obtained with minimal cellular structural damage. For cocoa shells, despite their lignin-rich, rigid cell walls, recovery rates reached 73% for antioxidants, 79% for phenolic acids, and 74% for polyphenolic compounds, including chlorogenic acid (94%), catechin (83%), vanillin (81%), and gallic acid (94%). Overall, this hybrid technique significantly improved extraction efficiency by approximately 60% for BSG and 50% for cocoa shell relative to conventional approaches, highlighting its novelty, scalability, and potential for broad application in the sustainable valorization of diverse plant-based waste streams. This research presents a green and efficient platform suitable for valorizing agri-food by-products, supporting circular economy goals. Further studies may explore scale-up strategies and economic feasibility for industrial adoption. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

23 pages, 1100 KB  
Article
Bioactive Power of Black Chokeberry Pomace as Affected by Advanced Extraction Techniques and Cryogrinding
by Maja Repajić, Marija Zorić, Ivan Magnabosca, Sandra Pedisić, Verica Dragović-Uzelac and Ivona Elez Garofulić
Molecules 2025, 30(16), 3383; https://doi.org/10.3390/molecules30163383 - 14 Aug 2025
Viewed by 396
Abstract
Black chokeberry (Aronia melanocarpa L.) pomace (BCP), a major by-product of juice production, is an underutilized source of polyphenols and anthocyanins with strong antioxidant properties. This study aimed to optimize and compare three green extraction techniques—pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), [...] Read more.
Black chokeberry (Aronia melanocarpa L.) pomace (BCP), a major by-product of juice production, is an underutilized source of polyphenols and anthocyanins with strong antioxidant properties. This study aimed to optimize and compare three green extraction techniques—pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE)—for recovering total polyphenols (TP) and total monomeric anthocyanins (TMA) from BCP, with reflux extraction as a benchmark. The effects of temperature, extraction time, and solid–solvent ratio were evaluated, and cryogrinding was assessed as a pre-treatment. PLE achieved the highest TP yields at elevated temperatures but reduced anthocyanin recovery, while MAE offered a balance of high TP and TMA, with strong antioxidant capacity. Cryogrinding enhanced TP extraction, with only 1 min of cryogrinding maximizing yield. UPLC-MS/MS analysis of optimized MAE extract confirmed cyanidin-3-glucoside and cyanidin-3-galactoside as dominant anthocyanins, alongside notable flavonols and phenolic acids, validating the rich phenolic profile. Overall, MAE combined with 1 min of cryogrinding proved to be the most effective approach for preserving heat-sensitive compounds while achieving high yields. These findings demonstrate that optimized green extraction can efficiently valorize BCP, supporting sustainable food processing and waste reduction in line with circular economy principles. Full article
Show Figures

Figure 1

23 pages, 362 KB  
Article
Research on Sustainable Food Literacy Education Talent Cultivation
by Meng Lei Hu and Kuan Ting Chen
Sustainability 2025, 17(16), 7172; https://doi.org/10.3390/su17167172 - 8 Aug 2025
Viewed by 331
Abstract
This research aims to develop a model for cultivating talents in sustainable food literacy education in Taiwan. The project adopts the professional and theoretical axes of the food industry, sustainable development, and food literacy. The research employs a mixed-method approach, combining qualitative and [...] Read more.
This research aims to develop a model for cultivating talents in sustainable food literacy education in Taiwan. The project adopts the professional and theoretical axes of the food industry, sustainable development, and food literacy. The research employs a mixed-method approach, combining qualitative and quantitative techniques, to construct sustainable food literacy assessment indicators for Taiwan. In the first year, through literature analysis and qualitative research, the core content of “sustainable food literacy” in Taiwan was extracted, resulting in four major dimensions with 24 indicator items. Then, using the Fuzzy Delphi method, the indicators were constructed, defining the core content and dimension indicators of sustainable food literacy, which include “sustainable agriculture and production”, “healthy diet and culture”, “green environmental protection and consumption”, and “food social responsibility and ethics”, encompassing a total of 20 indicators. In the second year, based on the dimensions identified in the first year, a sustainable food literacy curriculum was developed. A 10-week quasi-experimental teaching curriculum was conducted for students enrolled in the “Vegetable and Fruit Carving” elective course in two classes of the Department of Food and Beverage Management at Jingwen University of Science and Technology. By comparing the pre-test and post-test scores of students’ sustainable food literacy and their sustainable food works, as well as analyzing student learning portfolios and teacher reflections, it was shown that the curriculum developed in this research significantly enhanced students’ sustainable food literacy and their performance. The results of this two-year study can be used for the assessment of sustainable food literacy talents in Taiwan, contributing both academically and practically. Full article
22 pages, 775 KB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Cited by 1 | Viewed by 634
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

Back to TopTop