Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,329)

Search Parameters:
Keywords = green technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4322 KiB  
Article
Daylighting Performance Simulation and Optimization Design of a “Campus Living Room” Based on BIM Technology—A Case Study in a Region with Hot Summers and Cold Winters
by Qing Zeng and Guangyu Ou
Buildings 2025, 15(16), 2904; https://doi.org/10.3390/buildings15162904 (registering DOI) - 16 Aug 2025
Abstract
In the context of green building development, the lighting design of campus living rooms in hot summer and cold winter areas faces the dual challenges of glare control in summer and insufficient daylight in winter. Based on BIM technology, this study uses Revit [...] Read more.
In the context of green building development, the lighting design of campus living rooms in hot summer and cold winter areas faces the dual challenges of glare control in summer and insufficient daylight in winter. Based on BIM technology, this study uses Revit 2016 modeling and the HYBPA 2024 performance analysis platform to simulate and optimize the daylighting performance of the campus activity center of Hunan City College in multiple rounds of iterations. It is found that the traditional single large-area external window design leads to uneven lighting in 70% of the area, and the average value of the lighting coefficient is only 2.1%, which is lower than the national standard requirement of 3.3%. Through the introduction of the hybrid system of “side lighting + top light guide”, combined with adjustable inner louver shading, the optimized average value of the lighting coefficient is increased to 4.8%, the uniformity of indoor illuminance is increased from 0.35 to 0.68, the proportion of annual standard sunshine hours (≥300 lx) reaches 68.7%, and the energy consumption of the artificial lighting is reduced by 27.3%. Dynamic simulation shows that the uncomfortable glare index at noon on the summer solstice is reduced from 30.2 to 22.7, which meets the visual comfort requirements. The study confirms that the BIM-driven “static-dynamic” simulation coupling method can effectively address climate adaptability issues. However, it has limitations such as insufficient integration with international healthy building standards, insufficient accuracy of meteorological data, and simplification of indoor dynamic shading factors. Future research can focus on improving meteorological data accuracy, incorporating indoor dynamic factors, and exploring intelligent daylighting systems to deepen and expand the method, promote the integration of cross-standard evaluation systems, and provide a technical pathway for healthy lighting environment design in summer-hot and winter-cold regions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
14 pages, 1964 KiB  
Article
Rapid Joule-Heating Synthesis of Efficient Low-Crystallinity Ru-Mo Oxide Catalysts for Alkaline Hydrogen Evolution Reaction
by Tao Shi, Xiaoling Huang, Zhan Zhao, Zizhen Li, Kelei Huang and Xiangchao Meng
Processes 2025, 13(8), 2594; https://doi.org/10.3390/pr13082594 (registering DOI) - 16 Aug 2025
Abstract
Electrocatalytic water splitting has been demonstrated to be a highly efficient and promising technology for green hydrogen production. However, the inefficiency and instability of the cathode hinder its wide application in water electrolysis. Herein, we report a rapid Joule heating method for synthesizing [...] Read more.
Electrocatalytic water splitting has been demonstrated to be a highly efficient and promising technology for green hydrogen production. However, the inefficiency and instability of the cathode hinder its wide application in water electrolysis. Herein, we report a rapid Joule heating method for synthesizing the Ru-Mo oxide catalyst. Comprehensive characterization results confirmed that the as-prepared catalyst featured an internal porous structure with low crystallinity, which weakened the strength of Ru-H bonds through structural and electronic modulation. The enhanced HER performance was attributed to the incorporation of Mo4+ species, which strengthened Ru-O-Mo interactions. As tested, the optimized catalyst exhibited ultralow overpotentials (25.08 mV and 120.52 mV @ 10 and 100 mA cm−2, respectively) and excellent stability (100 h @ 100 mA cm−2) in a 1 M KOH solution. Meanwhile, the as-prepared catalyst was equipped in an anion exchange membrane (AEM) alkaline water electrolyzer, which could deliver 185 mA cm−2 at only 2.16 V with 100% Faradaic efficiency. This study provides a feasible strategy for constructing highly efficient low-crystallinity electrocatalysts. Full article
(This article belongs to the Section Environmental and Green Processes)
23 pages, 2275 KiB  
Article
Novel Environmentally-Friendly Process for Selective Extraction and Enrichment of DHA/EPA-Containing Phospholipids from Krill Oil via Differential Temperature-Controlled Crystallization
by Yi He, Yu Zhang, Jiangying Heng, Bo Liu, Xuan Ma, Jing Jin, Wenjie Yan and Feng Wang
Foods 2025, 14(16), 2841; https://doi.org/10.3390/foods14162841 (registering DOI) - 16 Aug 2025
Abstract
This study presents a novel environmentally-friendly process for the selective extraction and enrichment of DHA/EPA-containing phospholipids (PL-DHA/EPA) from krill oil. The methodology leverages differential crystallization behavior between phospholipids and triacylglycerols in ethanolic solutions, exploiting their distinct freezing point thresholds to achieve precise fractionation. [...] Read more.
This study presents a novel environmentally-friendly process for the selective extraction and enrichment of DHA/EPA-containing phospholipids (PL-DHA/EPA) from krill oil. The methodology leverages differential crystallization behavior between phospholipids and triacylglycerols in ethanolic solutions, exploiting their distinct freezing point thresholds to achieve precise fractionation. Response surface methodology optimization identified optimal extraction parameters: liquid-to-material ratio of 6:1 (v/w), freezing temperature of −20 °C, freezing duration of 25 h, and rotary evaporation temperature of 45 °C, yielding a final product with 39.40% PL-DHA/EPA content. Principal component analysis revealed substantial overlap in confidence ellipses among extraction methodologies, indicating effective preservation of core phospholipid signatures from the parent krill oil while maintaining critical structural characteristics and molecular species distribution. Comprehensive analysis of phospholipid fractions and heatmap analysis revealed distinctive molecular profiles compared to conventional organic solvent extraction, with selective enrichment of EPA-containing phospholipids, particularly PC-EPA and PI-EPA species. The green extraction method demonstrated comparable oxidative stability to conventional approaches, with superior protection against secondary oxidation as evidenced by significantly lower anisidine values. This sustainable approach achieves effective phospholipid enrichment while substantially reducing environmental impact through elimination of halogenated solvents, addressing the critical need for environmentally conscious technologies in marine lipid processing with potential applications in nutraceutical and functional food industries. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

14 pages, 4297 KiB  
Article
Numerical Simulation of Natural Gas Waste Heat Recovery Through Hydrated Salt Particle Desorption in a Full-Size Moving Bed
by Liang Wang, Minghui Li, Yu Men, Yun Jia and Bin Ding
Processes 2025, 13(8), 2589; https://doi.org/10.3390/pr13082589 - 15 Aug 2025
Abstract
To achieve energy conservation, emission reduction, and green low-carbon goals for gas storage facilities, it is crucial to efficiently recover and utilize waste heat during gas injection while maintaining natural gas cooling rates. However, existing sensible and latent heat storage technologies cannot sustain [...] Read more.
To achieve energy conservation, emission reduction, and green low-carbon goals for gas storage facilities, it is crucial to efficiently recover and utilize waste heat during gas injection while maintaining natural gas cooling rates. However, existing sensible and latent heat storage technologies cannot sustain long-term thermal storage or seasonal utilization of waste heat. Thermal chemical energy storage, with its high energy density and low thermal loss during prolonged storage, offers an effective solution for efficient recovery and long-term storage of waste heat in gas storage facilities. This study proposes a novel heat recovery method by combining a moving bed with mixed hydrated salts (CaCl2·6H2O and MgSO4·7H2O). By constructing both small-scale and full-scale three-dimensional models in Fluent, which couple the desorption and endothermic processes of hydrated salts, the study analyzes the temperature and flow fields within the moving bed during heat exchange, thereby verifying the feasibility of this approach. Furthermore, the effects of key parameters, including the inlet temperatures of hydrated salt particles and natural gas, flow velocity, and mass flow ratio on critical performance indicators such as the outlet temperatures of natural gas and hydrated salts, the overall heat transfer coefficient, the waste heat recovery efficiency, and the mass fraction of hydrated salt desorption are systematically investigated. The results indicate that in the small-scale model (1164 × 312 × 49 mm) the outlet temperatures of natural gas and mixed hydrated salts are 79.8 °C and 49.3 °C, respectively, with a waste heat recovery efficiency of only 33.6%. This low recovery rate is primarily due to the insufficient residence time of high-velocity natural gas (10.5 m·s−1) and hydrated salt particles (2 mm·s−1) in the moving bed, which limits heat exchange efficiency. In contrast, the full-scale moving bed (3000 × 1500 × 90 mm) not only accounts for variations in natural gas inlet temperature during the three-stage compression process but also allows for optimized operational adjustments. These optimizations ensure a natural gas outlet temperature of 41.3 °C, a hydrated salt outlet temperature of 82.5 °C, a significantly improved waste heat recovery efficiency of 94.2%, and a hydrated salt desorption mass fraction of 69.2%. This configuration enhances the safety of the gas injection system while maximizing both natural gas waste heat recovery and the efficient utilization of mixed hydrated salts. These findings provide essential theoretical guidance and data support for the effective recovery and seasonal utilization of waste heat in gas storage reservoirs. Full article
(This article belongs to the Special Issue Multiphase Flow Process and Separation Technology)
Show Figures

Figure 1

12 pages, 2161 KiB  
Article
Bio-Based Nanocellulose Piezocatalysts: PH-Neutral Mechanochemical Degradation of Multipollutant Dyes via Ambient Vibration Energy Conversion
by Zhaoning Yang, Zihao Yang, Xiaoxin Shu, Wenshuai Chen, Jiaolong Liu, Keqing Chen and Yanmin Jia
ChemEngineering 2025, 9(4), 90; https://doi.org/10.3390/chemengineering9040090 - 15 Aug 2025
Abstract
Piezoelectric catalytic technology has attracted much attention in the field of dye wastewater treatment, in which inorganic piezoelectric materials have been widely studied. Its core mechanism involves utilizing the piezoelectric effect to generate positive and negative charges, which react with oxygen ions and [...] Read more.
Piezoelectric catalytic technology has attracted much attention in the field of dye wastewater treatment, in which inorganic piezoelectric materials have been widely studied. Its core mechanism involves utilizing the piezoelectric effect to generate positive and negative charges, which react with oxygen ions and hydroxyl radicals, respectively, to generate reactive oxygen species to degrade organic pollutants. Currently, while organic piezoelectric catalysts theoretically offer significant advantages such as low cost and high processability, there has been a notable lack of research in this area, which presents an innovative opportunity for the exploration of new organic piezoelectric catalytic materials. In this study, new research using natural nanocellulose (FC) suspension as an efficient organic piezoelectric catalyst is reported for the first time. The experimental results showed that the catalyst exhibited excellent degradation performance for Rhodamine B (RhB), Acid Orange 7 (AO7), and Methyl Orange (MO) under ultrasonic vibration (40 kHz, 200 W): the degradation rates reached 95.4%, 72.4%, and 31.2%, respectively, for 150 min, and the corresponding first-order reaction kinetic constants were 0.0205, 0.00858, and 0.00249 min−1, respectively. It is noteworthy that the RhB solution can achieve the optimal degradation efficiency without adjustment under neutral initial pH conditions, which significantly enhances the practical application feasibility. The experimental results showed that the catalyst, with a measurable piezoelectric coefficient (d33 = 4.4 pm/V), exhibited excellent degradation performance for Rhodamine B (RhB), Acid Orange 7 (AO7), and Methyl Orange (MO) under ultrasonic vibration (40 kHz, 200 W). This organic piezoelectric catalyst, based on renewable biomass, innovatively converts mechanical vibration energy in the environment into the power to degrade pollutants. It not only expands the application boundaries of organic piezoelectric materials but also provides a new solution for sustainable water treatment technology, demonstrating extremely promising application prospects in the field of green and environmentally friendly water treatment. Full article
Show Figures

Figure 1

22 pages, 1916 KiB  
Article
Evaluating the Assembly Strategy of a Fungal Genome from Metagenomic Data: Solorina crocea (Peltigerales, Ascomycota) as a Case Study
by Ana García-Muñoz and Raquel Pino-Bodas
J. Fungi 2025, 11(8), 596; https://doi.org/10.3390/jof11080596 - 15 Aug 2025
Abstract
The advent of next-generation sequencing technologies has given rise to considerably diverse techniques. However, integrating data from these technologies to generate high-quality genomes remains challenging, particularly when starting from metagenomic data. To provide further insight into this process, the genome of the lichenized [...] Read more.
The advent of next-generation sequencing technologies has given rise to considerably diverse techniques. However, integrating data from these technologies to generate high-quality genomes remains challenging, particularly when starting from metagenomic data. To provide further insight into this process, the genome of the lichenized fungus Solorina crocea was sequenced using DNA extracted from the thallus, which contains the genome of the mycobiont, along with those of the photobionts (a green alga and a cyanobacterium), and other associated microorganisms. Three different strategies were assessed for the assembly of a de novo genome, employing data obtained from Illumina and PacBio HiFi technologies: (1) hybrid assembly based on metagenomic data; (2) assembly based on metagenomic long reads and scaffolded with filtered mycobiont long and short reads; (3) hybrid assembly based on filtered mycobiont short and long reads. Assemblies were compared according to contiguity and completeness criteria. Strategy 2 achieved the most continuous and complete genome, with a size of 55.5 Mb, an N50 of 148.5 kb, and 519 scaffolds. Genome annotation and functional prediction were performed, including identification of secondary metabolite biosynthetic gene clusters. Genome annotation predicted 6151 genes, revealing a high number of genes associated with transport, carbohydrate metabolism, and stress response. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

25 pages, 4376 KiB  
Review
Manganese Resources in China: An Overview of Resource Status and Recent Advances in Metallogenic Models and Exploration
by Erke Peng, Jianguang Yang, Zhilin Wang, Dong Li, Yuanxing Gao, Danyang Yan, Yanfei Chen and Xueyi Guo
Minerals 2025, 15(8), 859; https://doi.org/10.3390/min15080859 - 15 Aug 2025
Abstract
Manganese is a critical metal for modern industry, essential in steelmaking and increasingly important for the production of advanced battery materials. As one of the world’s leading consumers and importers of manganese, China faces a persistent supply–demand imbalance, primarily due to the predominance [...] Read more.
Manganese is a critical metal for modern industry, essential in steelmaking and increasingly important for the production of advanced battery materials. As one of the world’s leading consumers and importers of manganese, China faces a persistent supply–demand imbalance, primarily due to the predominance of low-grade domestic resources that are highly impure and are further characterized by complex mineral textures and assemblages. This challenge is further exacerbated by surging demand from emerging sectors, particularly green energy technologies. This review systematically summarizes the current status of China’s manganese resources, focusing on their geological characteristics, genetic classifications, temporal and spatial distributions, and metallogenic belts. Recent advances in ore-forming theory and major breakthroughs in exploration over the past decade are critically reviewed, with emphasis on their implications for prospecting strategies and metallogenic models. The findings aim to guide future research directions and support strategic resource planning and industrial upgrading. Full article
Show Figures

Figure 1

35 pages, 1485 KiB  
Article
Digital Transformation, New Quality Productive Forces, and Corporate Environmental Investment: Empirical Evidence from Chinese A-Share Listed Companies
by Yunsong Xu and Qian Ao
Economies 2025, 13(8), 236; https://doi.org/10.3390/economies13080236 - 15 Aug 2025
Abstract
Amplifying corporate environmental investments is a pivotal strategy for achieving the “carbon peak and carbon neutral” objectives of China’s green development initiative. The digital transformation has the potential to generate new quality productive forces by leveraging data, thereby promoting green technology innovation, enhancing [...] Read more.
Amplifying corporate environmental investments is a pivotal strategy for achieving the “carbon peak and carbon neutral” objectives of China’s green development initiative. The digital transformation has the potential to generate new quality productive forces by leveraging data, thereby promoting green technology innovation, enhancing technology efficiency, and leveraging the impact of resource reallocation. Consequently, this transition enables enterprises to transition from a “passive compliance” model to a “proactive enhancement” model, thereby achieving a significant quality leap forward in their environmental investment. The present study utilises a sample of Chinese A-share companies from 2011 to 2023 to innovatively construct a multifaceted data model to quantitatively analyse the impact of digital transformation on corporate environmental investment. This analysis incorporates the intermediary effects of enhanced new quality productive forces, the intermediary effects of data application, and the threshold effects of environmental uncertainty, as well as the non-linear effects of industry, property rights, regional differences, policy, and the intensity of production factors. The study’s findings are as follows: (1) Digital transformation significantly promotes corporate environmental investment, and this conclusion is robust. (2) The new quality productive forces have a positive intermediary effect on corporate environmental investment during digital transformation. (3) The application of big data has been demonstrated to moderate the intermediary effects of “digital transformation-new quality productive forces-enterprise environmental investment.” (4) The impact of environmental uncertainty on corporate environmental investment during the digital transformation process is characterised by a “barrier effect,” exhibiting a “border effect” that is non-linear in nature. (5) In the context of the lightweight pollution industry, non-state-owned enterprises, the eastern region, and the implementation of environmental policies, the efficacy of digital transformation in enhancing corporate environmental investment is particularly pronounced. In light of the aforementioned, the present study puts forth four specific recommendations, offering invaluable insights for the contemporary Chinese enterprise to navigate the process of transformation and achieve sustainable, high-quality growth. Full article
(This article belongs to the Special Issue Economic Development in the Digital Economy Era)
Show Figures

Figure 1

33 pages, 2560 KiB  
Review
Geospatial Sensing and Data-Driven Technologies in the Western Balkan 6 (Agro)Forestry Region: A Strategic Science–Technology–Policy Nexus Analysis
by Branislav Trudić, Boris Kuzmanović, Aleksandar Ivezić, Nikola Stojanović, Tamara Popović, Nikola Grčić, Miodrag Tolimir and Kristina Petrović
Forests 2025, 16(8), 1329; https://doi.org/10.3390/f16081329 - 15 Aug 2025
Abstract
Geospatial sensing and data-driven technologies (GSDDTs) are playing an increasingly important role in transforming (agro)forestry practices across the Western Balkans 6 region (WB6). This review critically examines the current state of GSDDT application in six WB countries (also known as the WB6 group)—Albania, [...] Read more.
Geospatial sensing and data-driven technologies (GSDDTs) are playing an increasingly important role in transforming (agro)forestry practices across the Western Balkans 6 region (WB6). This review critically examines the current state of GSDDT application in six WB countries (also known as the WB6 group)—Albania, Bosnia and Herzegovina, Kosovo*, Montenegro, North Macedonia, and Serbia—with a focus on their contributions to sustainable (agro)forest management. The analysis explores the use of unmanned aerial vehicles (UAVs), light detection and ranging (LiDAR), geographic information systems (GIS), and satellite imagery in (agro)forest monitoring, biodiversity assessment, landscape restoration, and the promotion of circular economy models. Drawing on 25 identified case studies across WB6—for example, ALFIS, Forest Beyond Borders, ForestConnect, Kuklica Geosite Survey, CREDIT Vibes, and Project O2 (including drone-assisted reforestation in Kosovo*)—this review highlights both technological advancements and systemic limitations. Key barriers to effective GSDDT deployment across WB6 in the (agro)forestry sector and its cross-border cooperation initiatives include fragmented legal frameworks, limited technical expertise, weak institutional coordination, and reliance on short-term donor funding. In addition to mapping current practices, this paper offers a comparative overview of UAV regulations across the WB6 region and identifies six major challenges influencing the adoption and scaling of GSDDTs. To address these, it proposes targeted policy interventions, such as establishing national LiDAR inventories, harmonizing UAV legislation, developing national GSDDT strategies, and creating dedicated GSDDT units within forestry agencies. This review also underscores how GSDDTs contribute to compliance with seven European Union (EU) acquis chapters, how they support eight Sustainable Development Goals (SDGs) and their sixteen targets, and how they advance several EU Green Agenda objectives. Strengthening institutional capacities, promoting legal alignment, and enabling cross-border data interoperability are essential for integrating GSDDTs into national (agro)forest policies and research agendas. This review underscores GSDDTs’ untapped potential in forest genetic monitoring and landscape restoration, advocating for their institutional integration as catalysts for evidence-based policy and ecological resilience in WB6 (agro)forestry systems. Full article
Show Figures

Figure 1

15 pages, 5348 KiB  
Article
High-Performance Asymmetric Supercapacitor Based on a Bilayer Cu0.7Zn0.3CoNiSyO4−y/Ni3S2 Electrode
by Anastassiya Migunova, Maratbek Gabdullin, Renata Nemkayeva and Khabibulla Abdullin
Energies 2025, 18(16), 4348; https://doi.org/10.3390/en18164348 - 15 Aug 2025
Abstract
Supercapacitors have begun to successfully compete with Li-ion batteries in various portable energy storage applications, owing to their ability to enable fast charging, deliver high power and energy, and offer an exceptionally long cycle life. This paper presents the results of a study [...] Read more.
Supercapacitors have begun to successfully compete with Li-ion batteries in various portable energy storage applications, owing to their ability to enable fast charging, deliver high power and energy, and offer an exceptionally long cycle life. This paper presents the results of a study on the performance of a positive electrode composed of a CuxZn1−xCoNiSyO4−y whisker layer and an underlying porous Ni3S2 layer, synthesized in a single step via the hydrothermal method. The coating with the nominal composition Cu0.7Zn0.3CoNiS3O/Ni3S2 exhibited a high specific capacitance of 4.10 C cm−2 at a current density of 2 mA cm−2 or 9535 F g−1 at a current density of 1 A g−1, attributed to the synergistic contribution of both layers and the optimized ratio of the four transition metals in the sulfoxide matrix. The assembled asymmetric supercapacitor (ASC), employing the obtained composite as the positive electrode and activated carbon as the negative electrode, exhibited a specific capacitance of 115 F g−1 (200 C g−1). It achieved a high energy density of 48.3 Wh kg−1 at a power density of 870 W kg−1. After 20,000 charge–discharge cycles at a current density of 10 A g−1, the ASC retained 74% of its initial capacitance, highlighting the potential of the CuxZn1−xCoNiSyO4−y electrode for high-performance energy storage applications. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

31 pages, 2097 KiB  
Article
Enhancing Supply Chain Resilience Through a Fuzzy AHP and TOPSIS to Mitigate Transportation Disruption
by Murad Samhouri, Majdoleen Abualeenein and Farah Al-Atrash
Sustainability 2025, 17(16), 7375; https://doi.org/10.3390/su17167375 - 15 Aug 2025
Abstract
Supply chain resilience is a growing concern as risk becomes increasingly challenging to interpret and anticipate due to sudden global events that disrupt the core of global supply chains. This paper discusses the use of advanced technologies to enhance supply chain resilience, proposing [...] Read more.
Supply chain resilience is a growing concern as risk becomes increasingly challenging to interpret and anticipate due to sudden global events that disrupt the core of global supply chains. This paper discusses the use of advanced technologies to enhance supply chain resilience, proposing a two-step hybrid fuzzy analytic hierarchy process (FAHP) and the technique for order of preference by similarity to ideal solution (TOPSIS) approach that evaluates a set of different supply chain KPIs or criteria that trigger possible supply chain risks, with a focus on transportation disruptions. Using FAHP, the highest potential risks from disasters are identified, and TOPSIS is used to rank alternative solutions that enhance supply chain resilience. The approach is tested on real-world applications across multiple supply chain systems involving various companies and experts to demonstrate its validity, feasibility, and applicability. Based on five criteria and six alternatives per case study, the findings showed that for manufacturing supply chains, the highest risk was attributed to travel time (46%), and the most effective solution to mitigate it was found to be strengthening highway networks (0.72). For transportation, delivery time (56%) was the primary risk, addressed by green logistics and sustainability (0.89). Full article
Show Figures

Figure 1

23 pages, 1534 KiB  
Review
Decarbonisation Prospects of the Chemical and Petrochemical Industry in Italy
by Giuseppina Di Lorenzo, Aldo Bischi and Umberto Desideri
Energies 2025, 18(16), 4346; https://doi.org/10.3390/en18164346 - 15 Aug 2025
Abstract
Although the chemical and petrochemical (C&P) industry is a cornerstone of the Italian and European economies, it is also an intensive energy consumer and a high emitter of greenhouse gases. Europe’s decarbonisation trajectory is often examined through the lens of individual countries, as [...] Read more.
Although the chemical and petrochemical (C&P) industry is a cornerstone of the Italian and European economies, it is also an intensive energy consumer and a high emitter of greenhouse gases. Europe’s decarbonisation trajectory is often examined through the lens of individual countries, as key factors such as industry status, structure and resource accessibility may differ across nations. This study specifically examines the Italian C&P industry, with an emphasis on the basic chemicals sector. It reviews the current status of the production processes, technologies, energy consumption and carbon footprint in the sector, along with advancements towards decarbonisation. Key decarbonisation technologies are reviewed, highlighting their current use or research and development status. The primary barriers to the adoption of prospective decarbonisation solutions (e.g., increased costs and need for additional renewable capacity and infrastructure development) are discussed. While the Italian C&P sector has adopted strategies to enhance energy efficiency and waste recovery and utilisation, it is uncertain whether the industry will be able to meet the 2050 carbon emissions targets by relying on these two decarbonisation approaches alone. A combination of additional decarbonisation technologies, including electrification, green hydrogen and carbon capture utilisation and storage, will likely be necessary. However, technical challenges exist due to the maturity level of these technologies and their applicability to highly integrated processes. Appropriate, timely policy support will be crucial to aiding the green transition of the Italian C&P sector while safeguarding its significant role in the Italian economy. Full article
(This article belongs to the Special Issue Decarbonization and Sustainability in Industrial and Tertiary Sectors)
Show Figures

Figure 1

16 pages, 3830 KiB  
Article
5,7-Dimethoxyflavone Attenuates Sarcopenic Obesity by Enhancing PGC-1α–Mediated Mitochondrial Function in High-Fat-Diet-Induced Obese Mice
by Changhee Kim, Mi-Bo Kim, Sanggil Lee and Jae-Kwan Hwang
Nutrients 2025, 17(16), 2642; https://doi.org/10.3390/nu17162642 - 14 Aug 2025
Abstract
Background/Objectives: Sarcopenic obesity, defined by the coexistence of excessive fat accumulation and progressive muscle loss, is associated with an increased risk of metabolic dysfunction and physical disability. While 5,7-dimethoxyflavone (DMF), a bioactive flavone derived from Kaempferia parviflora, has demonstrated anti-obesity and [...] Read more.
Background/Objectives: Sarcopenic obesity, defined by the coexistence of excessive fat accumulation and progressive muscle loss, is associated with an increased risk of metabolic dysfunction and physical disability. While 5,7-dimethoxyflavone (DMF), a bioactive flavone derived from Kaempferia parviflora, has demonstrated anti-obesity and muscle-preserving properties, its effects on sarcopenic obesity remain unclear. Methods: Four-week-old male C57BL/6J mice were fed a high-fat diet (HFD) for 6 weeks to induce sarcopenic obesity, followed by 8 weeks of continued HFD with the oral administration of DMF. Muscle function was assessed through grip strength and treadmill running tests, while muscle and fat volumes were measured using micro-CT. Mechanistic analyses were performed using gene expression and Western blot analysis. Results: DMF significantly reduced body weight, fat mass, and adipocyte size while enhancing grip strength, endurance, skeletal muscle mass, and the muscle fiber cross-sectional area. In the gastrocnemius muscle, DMF increased the gene expression of peroxisome proliferator-activated receptor gamma coactivator-1α (Ppargc1a) and its isoform Ppargc1a4, thereby promoting mitochondrial biogenesis. It also improved protein turnover by modulating protein synthesis and degradation via the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin signaling pathway. In subcutaneous and brown adipose tissues, DMF increased mitochondrial DNA content and the expression of thermogenic and beige adipocyte-related genes. These findings suggest that DMF alleviates sarcopenic obesity by improving mitochondrial function and regulating energy metabolism in both skeletal muscle and adipose tissues via PGC-1α-mediated pathways. Thus, DMF represents a promising therapeutic candidate for the integrated management of sarcopenic obesity. Full article
Show Figures

Figure 1

28 pages, 1605 KiB  
Article
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
by Oleksii Pirotti, Diane Scicluna, Robert N. Farrugia, Tonio Sant and Daniel Buhagiar
Energies 2025, 18(16), 4344; https://doi.org/10.3390/en18164344 - 14 Aug 2025
Abstract
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant [...] Read more.
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage, both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution, capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year, seasonal cycle. Key findings demonstrate that the HPES system of choice, namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system, significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events), while maintaining hydrogen production levels, despite the integration of the energy storage system, which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain, it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system, which is estimated to be EUR 18.83/kg, proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment, especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance, cost reductions would be expected, and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production, particularly in the Mediterranean, and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems. Full article
Show Figures

Figure 1

25 pages, 16018 KiB  
Article
Textures and Inclusions in Mengyin Diamonds: Insights on Their Formation Within the Southeastern North China Craton
by Yu-Meng Sun, Yi-Qi Wang, Liang Zhang, Li-Qiang Yang, Zhi-Yuan Chu and Hao-Shuai Wang
Minerals 2025, 15(8), 856; https://doi.org/10.3390/min15080856 - 14 Aug 2025
Abstract
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only [...] Read more.
Beyond its renowned gemological value, diamond serves as a vital economic mineral and a unique messenger from Earth’s deep interior, preserving invaluable geological information. Since the Mengyin region is the source of China’s greatest diamond deposits, research on the diamonds there not only adds to our understanding of their origins but also offers an essential glimpse into the development of the North China Craton’s mantle lithosphere. In this article, 50 diamond samples from Mengyin were investigated using gemological microscopy, Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, DiamondView™, and X-ray micro-computed tomography (CT) scanning technologies. The types of Mengyin diamonds are mainly Type IaAB, Type IaB, and Type IIa, and the impurity elements are N and H. Inclusions in diamonds serve as direct indicators of mantle-derived components, providing crucial constraints on the pressure–temperature (P–T) conditions during their crystallization. Mengyin diamonds have both eclogite-type and peridotite-type inclusions. It formed at depths ranging from 147 to 176 km, which corresponds to source pressures of approximately 4.45–5.35 GPa, as determined by the Raman shifts of olivine inclusions. The discovery of coesite provides key mineralogical evidence for subduction of an ancient oceanic plate in the source region. The surface morphology of diamonds varies when they are reabsorbed by melts from the mantle, reflecting distinctive features that record subsequent geological events. Distinctive surface features observed on Mengyin diamonds include fusion pits, tile-like etch patterns, and growth steps. Specifically, regular flat-bottomed negative trigons are mainly formed during diamond resorption in kimberlite melts with a low CO2 (XCO2 < ~0.5) and high H2O content. The samples exhibit varying fluorescence under DiamondView™, displaying blue, green, and a combination of blue and green colors. This diversity indicates that the diamonds have undergone a complex process of non-uniform growth. The nitrogen content of the melt composition also varies significantly throughout the different growth stages. The N3 center is responsible for the blue fluorescence, suggesting that it originated in a long-term, hot, high-nitrogen craton, and the varied ring band structure reveals localized, episodic environmental variations. Radiation and medium-temperature annealing produce H3 centers, which depict stagnation throughout the ascent of kimberlite magma and are responsible for the green fluorescence. Full article
Show Figures

Figure 1

Back to TopTop