Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,924)

Search Parameters:
Keywords = green-extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 937 KB  
Article
From Gamma Rays to Green Light: Comparative Efficacy of Indocyanine Green and Technetium-99m in Sentinel Lymph Node Biopsy for Breast Cancer
by Vlad Alexandru Gâta, Radu Alexandru Ilieș, Nicoleta Zenovia Antone, Roxana Pintican, Codruț Cosmin Nistor-Ciurba, Ștefan Țîțu, Alex Victor Orădan, Maximilian Vlad Muntean, Gheorghe Gerald Filip, Alexandru Irimie and Patriciu Andrei Achimaș-Cadariu
Med. Sci. 2025, 13(4), 231; https://doi.org/10.3390/medsci13040231 (registering DOI) - 13 Oct 2025
Abstract
Background/Objectives: Sentinel lymph node biopsy (SLNB) is currently the standard approach for axillary staging in breast cancer. Conventional techniques are radioisotope-based (Technetium-99m, Tc99m) and remain widely used, but novel tracers like Indocyanine Green (ICG) fluorescence provide potential advantages regarding feasibility and logistics. [...] Read more.
Background/Objectives: Sentinel lymph node biopsy (SLNB) is currently the standard approach for axillary staging in breast cancer. Conventional techniques are radioisotope-based (Technetium-99m, Tc99m) and remain widely used, but novel tracers like Indocyanine Green (ICG) fluorescence provide potential advantages regarding feasibility and logistics. Methods: We conducted a prospective, observational study including 476 female patients diagnosed with primary invasive breast cancer who underwent SLNB at the Institute of Oncology “Prof. Dr. I. Chiricuță”, Cluj-Napoca, Romania, between January 2022 and May 2025. Clinical, surgical, and pathological variables were systematically extracted. SLNB was performed using either Tc99m or ICG, according to institutional protocols. Comparative analyses were performed to evaluate sentinel node characteristics, histopathological parameters, and positive surgical margins predictors. Results: The median age was 60 years (IQR: 52–69). Breast-conserving surgery (BCS) was performed in 77.9% of cases, while mastectomy was performed in 22.1%. Sentinel lymph node positivity was reported in 25.6% of cases, with no significant differences in the number of excised or metastatic nodes between Tc99m and ICG (mean nodes: 3.23 vs. 3.20, p = 0.860; mean positive nodes: 0.35 vs. 0.36, p = 0.897). Histologically, invasive carcinoma NST was predominant (90.1%), and surgical margins were negative in 96.8% of patients, with all margin-positive cases occurring following BCS. No pathological markers (grade, Ki67, TILs, DCIS extent) predicted margin status or nodal involvement. Notably, younger age correlated inversely with the extent of ductal carcinoma in situ (r = −0.21, p < 0.00001). Conclusions: Tc99m and ICG provided comparable diagnostic performance in performing SLNB, with equivalent rates of nodal detection and pathological yield. These findings support that ICG is a safe and effective alternative for routine axillary staging in breast cancer. Full article
(This article belongs to the Section Cancer and Cancer-Related Research)
Show Figures

Figure 1

14 pages, 3404 KB  
Article
From Agro-Industrial Waste to Gold Lixiviant: Evaluating Cassava Wastewater Applications in Artisanal Mining
by Emiliano Mendonça Silva, Maria do Carmo S. Barreto, Marcello M. Veiga and Giorgio De Tomi
Mining 2025, 5(4), 64; https://doi.org/10.3390/mining5040064 (registering DOI) - 13 Oct 2025
Abstract
Artisanal and Small-Scale Gold Mining (ASGM) is a primary source of global mercury pollution, creating an urgent need for sustainable, low-cost alternatives to amalgamation. This study investigates the use of cassava wastewater (manipueira), a cyanogenic agricultural byproduct, as a lixiviant for [...] Read more.
Artisanal and Small-Scale Gold Mining (ASGM) is a primary source of global mercury pollution, creating an urgent need for sustainable, low-cost alternatives to amalgamation. This study investigates the use of cassava wastewater (manipueira), a cyanogenic agricultural byproduct, as a lixiviant for a gold concentrate (14.30–15.87 ppm Au) from an artisanal mine. Two approaches were evaluated: direct leaching with manipueira in natura (250 ppm CN) in single and double 8 h and 12 h cycles, and leaching with a cyanide solution concentrated from dilute manipueira (100 ppm CN) via a simplified air-stripping system. Results were benchmarked against the mine’s amalgamation (44.7% recovery) and 30-day heap leach (75.8% recovery) processes. The most effective method observed was a two-cycle, 8 h leach with manipueira in natura, which achieved a mean gold recovery of 76.75±4.71%. This result is comparable to the efficiency of the site’s lengthy heap leach process and suggests a promising, faster, route to eliminating mercury use. Longer (12 h) leaching cycles yielded lower recoveries, suggesting process limitations such as preg-robbing. The cyanide concentration method proved inefficient, recovering a maximum of 12.40% of the available cyanide and resulting in a weaker lixiviant. The findings demonstrate that while direct leaching is a viable alternative to mercury, the inherent instability of manipueira necessitates a focus on developing efficient, controlled systems to extract and concentrate its cyanide content, thereby creating a standardized “green” reagent from a large-volume agricultural waste stream. Full article
(This article belongs to the Special Issue Feature Papers in Sustainable Mining Engineering)
Show Figures

Figure 1

27 pages, 12440 KB  
Article
Predicting Perceived Restorativeness of Urban Streetscapes Using Semantic Segmentation and Machine Learning: A Case Study of Liwan District, Guangzhou
by Wenjuan Kang, Ni Kang and Pohsun Wang
Buildings 2025, 15(20), 3671; https://doi.org/10.3390/buildings15203671 (registering DOI) - 12 Oct 2025
Abstract
Urban streetscapes are among the most frequently encountered spatial environments in daily life, and their restorative visual features have a significant impact on well-being. Although existing studies have revealed the relationship between streetscape environments and perceived restorativeness, there remains a lack of scalable, [...] Read more.
Urban streetscapes are among the most frequently encountered spatial environments in daily life, and their restorative visual features have a significant impact on well-being. Although existing studies have revealed the relationship between streetscape environments and perceived restorativeness, there remains a lack of scalable, data-driven methods for quantifying such perception at the street level. This study proposes an interpretable and replicable framework for predicting streetscape restorativeness by integrating semantic segmentation, perceptual evaluation, and machine learning techniques. Taking Liwan District of Guangzhou as a case study, street-view images (SVIs) were collected and processed using the Mask2Former model to extract the following five key visual metrics: greenness, openness, enclosure, walkability, and imageability. Based on the Perceived Restorativeness Scale (PRS), an online questionnaire was designed from four dimensions (fascination, being away, compatibility, and extent) to score a random sample of images. A random forest model was then trained to predict the perceptual levels of the full dataset, followed by K-means clustering to identify spatial distribution patterns. The results revealed that there were significant differences in visual characteristics among high, medium, and low restorativeness street types. The proposed framework enables scalable, data-driven evaluation of perceived restorativeness across diverse urban streetscapes. By embedding perceptual metrics into large-scale urban analysis, the framework offers a replicable and efficient approach for identifying streets with low restorative potential—thus providing urban planners and policymakers with a novel tool for prioritizing street-level renewal, improving public well-being, and supporting perception-oriented urban design without the need for labor-intensive fieldwork. Full article
Show Figures

Figure 1

16 pages, 3215 KB  
Article
A Drilling Cutting Derived Material for High Performance Borehole Sealing
by Pengju Di, Jinwei Hao, Xin Li, Can Zhao and Longyong Shu
Appl. Sci. 2025, 15(20), 10959; https://doi.org/10.3390/app152010959 - 12 Oct 2025
Abstract
Borehole sealing materials have drawn significant research attention for their applications in mine disaster prevention, efficient utilization of coalbed methane resources and green mine construction. However, it is still an enormous challenge to simultaneously achieve sealing materials with lower material consumption, lower expense, [...] Read more.
Borehole sealing materials have drawn significant research attention for their applications in mine disaster prevention, efficient utilization of coalbed methane resources and green mine construction. However, it is still an enormous challenge to simultaneously achieve sealing materials with lower material consumption, lower expense, and lower labor intensity for high-performance long-term borehole sealing. Meanwhile, drilling cuttings (DC) possess large production amounts, low granularity, a large workload for cleaning out the alley, high labor intensity, and high transportation cost. Herein, a composite with universal applicability to DC has been developed, which can be combined with different DC to produce a low-cost sealing material with adjustable strength, fulfilling the sealing requirements of various boreholes. The properties of the sealing material can be adjusted as required by regulating the water/cement ratio and DC content to meet the sealing requirements of different boreholes. Consequently, the DC-derived materials, featuring adjustable strengths and lower usage, can reduce cement usage, material costs, and labor intensity dramatically, displaying great promise in high-performance borehole sealing, coalbed methane extraction and utilization, timely mining waste reutilization, gas disaster prevention, and green mine construction. Full article
Show Figures

Figure 1

21 pages, 3364 KB  
Article
Antibacterial Efficacy of Ethanol Extracts from Edible Rumex madaio Root and Application Potential for Eliminating Staphylococcus aureus and Vibrio cholerae in Aquatic Products for Green Food Preservation
by Huanhuan Fan, Yue Liu, Enyu Tian, Yaping Wang, Shunlin Ren, Bailin Li, Huajun Zheng and Lanming Chen
Foods 2025, 14(20), 3479; https://doi.org/10.3390/foods14203479 (registering DOI) - 12 Oct 2025
Abstract
Edible and medicinal plants provide a treasure trove of natural phytochemicals for mining the next generation of green food preservatives. Herein, we evaluated antibacterial activities of 55–95% ethanol extracts from the edible rhizome of Rumex madaio (RmEEs). The 75% ethanol extract [...] Read more.
Edible and medicinal plants provide a treasure trove of natural phytochemicals for mining the next generation of green food preservatives. Herein, we evaluated antibacterial activities of 55–95% ethanol extracts from the edible rhizome of Rumex madaio (RmEEs). The 75% ethanol extract displayed the strongest antibacterial activity, and its purified fraction 2 (RmEE-F2) blocked the proliferation of common pathogens Staphylococcus aureus and Vibrio cholerae, with minimum inhibitory concentrations (MICs) of 391 μg/mL. RmEE-F2 (1 × MIC) altered the bacterial cell surface biophysical parameters and impaired cell structure, resulting in intracellular nucleic acid and protein leakage. It manifested bacteriostatic rates of 88.21–91.17% against S. aureus and V. cholerae in spiked fish (Carassius auratus) and shrimp (Penaeus vannamei) during storage at 4 °C for 24 h. Meanwhile, RmEE-F2 effectively rendered the pH rising and reduced lipid oxidation and protein degradation of C. auratus and P. vannamei meat samples at 4 °C for 6 days. Additionally, RmEE-F2 (< 781 µg/mL) showed non-cytotoxicity to human colon Caco-2, liver HepG-2, and lung A549 cell lines, and rescued V. cholerae and S. aureus-infected Caco-2 cellcells with enhanced viability of 14.31–16.60% (1 × MIC). Comparative transcriptomic analysis revealed down-regulated protein synthesis, cell wall and cell membrane synthesis, and or DNA replication and repair in the tested bacteria triggered by RmEE-F2. The major antibacterial compounds in RmEE-F2 included melibiose (9.86%), 3-(N, N-dimethylaminomethyl) indole (7.12%), and citric acid (6.07%). Overall, this study underscores the promising potential of RmEE-F2 for aquatic product green preservation. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plant Food: Discovering Their Health Benefits)
Show Figures

Figure 1

22 pages, 4157 KB  
Article
Fabrication and Characterization of Electrospun Keratin Mats with Echinacea purpurea L. and Biosynthesized Silver Nanoparticles
by Akvilė Andziukevičiūtė-Jankūnienė, Erika Adomavičiūtė, Carmen Gaidau, Virgilijus Valeika, Aistė Balčiūnaitienė, Jonas Viškelis, Maria Rapa and Virginija Jankauskaitė
Int. J. Mol. Sci. 2025, 26(20), 9919; https://doi.org/10.3390/ijms26209919 (registering DOI) - 12 Oct 2025
Abstract
This study presents the development of antibacterial electrospun nanofibrous mats composed of keratin and polyethylene oxide, incorporating Echinacea purpurea L. (EchP) and green-synthesized silver nanoparticles (bioAgNPs) produced using EchP extract. The successful synthesis of bioAgNPs was confirmed by [...] Read more.
This study presents the development of antibacterial electrospun nanofibrous mats composed of keratin and polyethylene oxide, incorporating Echinacea purpurea L. (EchP) and green-synthesized silver nanoparticles (bioAgNPs) produced using EchP extract. The successful synthesis of bioAgNPs was confirmed by colorimetric analysis, FTIR, XRD, and TEM. In vitro assays demonstrated antibacterial activity against both Gram-positive and Gram-negative bacteria at ~0.6 µg/mL. Keratin, extracted from sheep wool, retained partial native structure, supporting biocompatibility and cellular regeneration. Incorporation of EchP or bioAgNPs reduced solution viscosity by 25–45%, significantly affecting mat morphology and shifting fiber diameters toward the 50–100 nm range. Quantitative phytochemical analysis, conducted via UV-Vis spectrophotometry, showed 2–3 times higher release of tannins and phenolic compounds compared to hydroxycinnamic acid derivatives and flavonoids. Keratin electrospun mats with bioAgNPs exhibited about 1.5-fold lower polyphenol release, confirming the dual role of polyphenols as electron donors in Ag+ bioreduction and as stabilizers. Full article
Show Figures

Figure 1

18 pages, 1916 KB  
Article
Differential Modulation of Maize Silage Odor: Lactiplantibacillus plantarum vs. Lactiplantibacillus buchneri Drive Volatile Compound Change via Strain-Specific Fermentation
by Shuyuan Xue, Jianfeng Wang, Jing Yang, Yunjie Li, Jian He, Jiyu Han, Hongyan Xu, Xun Zhu and Nasi Ai
Agriculture 2025, 15(20), 2109; https://doi.org/10.3390/agriculture15202109 - 10 Oct 2025
Viewed by 148
Abstract
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus [...] Read more.
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus plantarum and Lentilactobacillus buchneri modulates the VOC profile and odor of WPMS after 90 days. VOCs were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry (HS-SPME-GC-MS). Key VOCs were screened using the variable importance in projection (VIP) and substantiated by relative odor activity values (rOAV) and odor descriptions. A total of 82 compounds were identified, including 22 esters, 19 alcohols, 3 acids, 9 aldehydes, 2 ethers, 6 hydrocarbons, 4 ketones, 10 phenols, and 8 terpenoids. L. plantarum enhanced green/fruity odors while strain L. buchneri significantly reduced undesirable phenolic and aldehydic compounds. Six key VOCs influencing the odor of WPMS were selected: 4-ethyl-2-methoxyphenol and benzaldehyde, which contribute smoky, bacon, and bitter almond aromas, and (E)-3-hexen-1-ol, benzyl alcohol, (E, E)-2,4-heptadienal and methyl salicylate, which impart green, fruity, and nutty aromas. These findings highlight the effects and contributions of various strain additives on VOCs in WPMS, providing new theoretical insights for regulating the flavor profile of WPMS. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

24 pages, 3291 KB  
Article
SVMobileNetV2: A Hybrid and Hierarchical CNN-SVM Network Architecture Utilising UAV-Based Multispectral Images and IoT Nodes for the Precise Classification of Crop Diseases
by Rafael Linero-Ramos, Carlos Parra-Rodríguez and Mario Gongora
AgriEngineering 2025, 7(10), 341; https://doi.org/10.3390/agriengineering7100341 - 10 Oct 2025
Viewed by 71
Abstract
This paper presents a novel hybrid and hierarchical architecture of a Convolutional Neural Network (CNN), based on MobileNetV2 and Support Vector Machines (SVM) for the classification of crop diseases (SVMobileNetV2). The system feeds from multispectral images captured by Unmanned Aerial Vehicles (UAVs) alongside [...] Read more.
This paper presents a novel hybrid and hierarchical architecture of a Convolutional Neural Network (CNN), based on MobileNetV2 and Support Vector Machines (SVM) for the classification of crop diseases (SVMobileNetV2). The system feeds from multispectral images captured by Unmanned Aerial Vehicles (UAVs) alongside data from IoT nodes. The primary objective is to improve classification performance in terms of both accuracy and precision. This is achieved by integrating contemporary Deep Learning techniques, specifically different CNN models, a prevalent type of artificial neural network composed of multiple interconnected layers, tailored for the analysis of agricultural imagery. The initial layers are responsible for identifying basic visual features such as edges and contours, while deeper layers progressively extract more abstract and complex patterns, enabling the recognition of intricate shapes. In this study, different datasets of tropical crop images, in this case banana crops, were constructed to evaluate the performance and accuracy of CNNs in detecting diseases in the crops, supported by transfer learning. For this, multispectral images are used to create false-color images to discriminate disease through spectra related to the blue, green and red colors in addition to red edge and near-infrared. Moreover, we used IoT nodes to include environmental data related to the temperature and humidity of the environment and the soil. Machine Learning models were evaluated and fine-tuned using standard evaluation metrics. For classification, we used fundamental metrics such as accuracy, precision, and the confusion matrix; in this study was obtained a performance of up to 86.5% using current deep learning models and up to 98.5% accuracy using the proposed hybrid and hierarchical architecture (SVMobileNetV2). This represents a new paradigm to significantly improve classification using the proposed hybrid CNN-SVM architecture and UAV-based multispectral images. Full article
18 pages, 2036 KB  
Article
Broccoli to the Lab: Green-Synthesized N-CQDs for Ultrasensitive “Turn-On” Detection of Norfloxacin in Food
by Zubair Akram, Anam Arshad, Sajida Noureen, Muhammad Mehdi, Ali Raza, Nan Wang and Feng Yu
Sensors 2025, 25(20), 6284; https://doi.org/10.3390/s25206284 - 10 Oct 2025
Viewed by 122
Abstract
The widespread presence of antibiotic residues, particularly norfloxacin (NFX), in food products and the environment has raised concern, underscoring the need for sensitive and selective detection methods. In this study, a novel broccoli-derived nitrogen-doped carbon quantum dots (N-CQDs) was synthesized via a green [...] Read more.
The widespread presence of antibiotic residues, particularly norfloxacin (NFX), in food products and the environment has raised concern, underscoring the need for sensitive and selective detection methods. In this study, a novel broccoli-derived nitrogen-doped carbon quantum dots (N-CQDs) was synthesized via a green hydrothermal approach, 4-dimethylaminopyridine (DMAP) as both a nitrogen dopant and a functionalizing agent. The synthesized N-CQDs exhibit an average diameter of approximately ~4.2 nm and emit bright blue fluorescence, with a maximum emission at 445 nm upon excitation at 360 nm. A “Turn-ON” response toward NFX was achieved with a detection limit of 0.30 nM, attributed to hydrogen bonding and π–π stacking interactions that suppressed non-radiative decay. Moreover, the sensor demonstrates high selectivity for NFX, effectively distinguishing it from common interfering substances, including other antibiotics, organic acids, and biomolecules. The N-CQDs also exhibit excellent stability under diverse conditions, such as varying pH levels, high ionic strength, and prolonged irradiation. Finally, the practical applicability of the developed sensor was validated by detecting NFX in spiked broccoli extract and milk samples, with recovery rates ranging from 98.2% to 100.1% and relative standard deviations of less than 2.0%. This work presents a sustainable and efficient N-CQD-based fluorescent sensing platform, offering significant potential for rapid and reliable detection of NFX in food safety and environmental monitoring. Full article
Show Figures

Figure 1

21 pages, 4750 KB  
Article
Estimation of Kcb for Irrigated Melon Using NDVI Obtained Through UAV Imaging in the Brazilian Semiarid Region
by Jeones Marinho Siqueira, Gertrudes Macário de Oliveira, Pedro Rogerio Giongo, Jose Henrique da Silva Taveira, Edgo Jackson Pinto Santiago, Mário de Miranda Vilas Boas Ramos Leitão, Ligia Borges Marinho, Wagner Martins dos Santos, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marcos Vinícius da Silva
AgriEngineering 2025, 7(10), 340; https://doi.org/10.3390/agriengineering7100340 - 10 Oct 2025
Viewed by 84
Abstract
In Northeast Brazil, climatic factors and technology synergistically enhance melon productivity and fruit quality. However, the region requires further research on the efficient use of water resources, particularly in determining the crop coefficient (Kc), which comprises the evaporation coefficient (Ke) and the transpiration [...] Read more.
In Northeast Brazil, climatic factors and technology synergistically enhance melon productivity and fruit quality. However, the region requires further research on the efficient use of water resources, particularly in determining the crop coefficient (Kc), which comprises the evaporation coefficient (Ke) and the transpiration coefficient (Kcb). Air temperature affects crop growth and development, altering the spectral response and the Kcb. However, the direct influence of air temperature on Kcb and spectral response remains underemphasized. This study employed unmanned aerial vehicle (UAV) with RGB and Red-Green-NIR sensors imagery to extract biophysical parameters for improved water management in melon cultivation in semiarid northern Bahia. Field experiments were conducted during two distinct periods: warm (October–December 2019) and cool (June–August 2020). The ‘Gladial’ and ‘Cantaloupe’ cultivars exhibited higher Kcb values during the warm season (2.753–3.450 and 3.087–3.856, respectively) and lower during the cool season (0.815–0.993 and 1.118–1.317). NDVI-based estimates of Kcb showed strong correlations with field data (r > 0.80), confirming its predictive potential. The results demonstrate that UAV-derived NDVI enables reliable estimation of melon Kcb across seasons, supporting its application for evapotranspiration modeling and precision irrigation in the Brazilian semiarid context. Full article
Show Figures

Figure 1

15 pages, 2812 KB  
Article
Influence of pH and Temperature on the Synthesis and Stability of Biologically Synthesized AgNPs
by Oksana Velgosova, Lívia Mačák, Maksym Lisnichuk and Peter Varga
Appl. Nano 2025, 6(4), 22; https://doi.org/10.3390/applnano6040022 - 10 Oct 2025
Viewed by 159
Abstract
The synthesis of silver nanoparticles (AgNPs) using sustainable and non-toxic methods has become an important research focus due to the limitations of conventional chemical approaches, which often involve hazardous reagents and produce unstable products. In particular, the effects of reaction conditions on the [...] Read more.
The synthesis of silver nanoparticles (AgNPs) using sustainable and non-toxic methods has become an important research focus due to the limitations of conventional chemical approaches, which often involve hazardous reagents and produce unstable products. In particular, the effects of reaction conditions on the quality and stability of AgNPs obtained via green synthesis remain insufficiently understood. This study addresses this gap by examining the influence of pH and temperature on the synthesis of AgNPs using Rosmarinus officinalis extract as both reducing and stabilizing agents. UV-vis spectroscopy and TEM analysis revealed that optimal conditions for producing uniform, stable, and spherical AgNPs were achieved at pH 8, with a narrow size distribution (~17.5 nm). At extreme pH values (≤3 or ≥13), nanoparticle formation was hindered by aggregation or precipitation, while elevated temperatures mainly accelerated reaction without altering particle morphology. HRTEM and SAED confirmed the crystalline face-centered cubic structure, and colloids synthesized at pH 8 showed excellent stability over 30 days. Overall, the results demonstrate that precise pH control is critical for obtaining high-quality AgNPs via a simple, scalable, and environmentally friendly approach. Their stability and homogeneous size highlight potential applications in biomedicine, food packaging, and sensing, where reproducibility and long-term functionality are essential. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Graphical abstract

35 pages, 2483 KB  
Review
Fungal and Microalgal Chitin: Structural Differences, Functional Properties, and Biomedical Applications
by Lijing Yin, Hang Li, Ronge Xing, Rongfeng Li, Kun Gao, Guantian Li and Song Liu
Polymers 2025, 17(20), 2722; https://doi.org/10.3390/polym17202722 - 10 Oct 2025
Viewed by 208
Abstract
Chitin, one of the most abundant natural polysaccharides, has gained increasing attention for its structural diversity and potential in biomedicine, agriculture, food packaging, and advanced materials. Conventional chitin production from crustacean shell waste faces limitations, including seasonal availability, allergenic protein contamination, heavy metal [...] Read more.
Chitin, one of the most abundant natural polysaccharides, has gained increasing attention for its structural diversity and potential in biomedicine, agriculture, food packaging, and advanced materials. Conventional chitin production from crustacean shell waste faces limitations, including seasonal availability, allergenic protein contamination, heavy metal residues, and environmentally harmful demineralization processes. Chitin from fungi and microalgae provides a sustainable and chemically versatile alternative. Fungal chitin, generally present in the α-polymorph, is embedded in a chitin–glucan–protein matrix that ensures high crystallinity, mechanical stability, and compatibility for biomedical applications. Microalgal β-chitin, particularly from diatoms, is secreted as high-aspect-ratio microrods and nanofibrils with parallel chain packing, providing enhanced reactivity and structural integrity that are highly attractive for functional materials. Recent progress in green extraction technologies, including enzymatic treatments, ionic liquids, and deep eutectic solvents, enables the recovery of chitin with reduced environmental burden while preserving its native morphology. By integrating sustainable sources with environmentally friendly processing methods, fungal and microalgal chitin offer unique structural polymorphs and tunable properties, positioning them as a promising alternative to crustacean-derived chitin. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

28 pages, 1232 KB  
Review
Marine Macroalgal Polysaccharides as Precision Tools for Health and Nutrition
by José A. M. Prates, Mohamed Ezzaitouni and José L. Guil-Guerrero
Phycology 2025, 5(4), 58; https://doi.org/10.3390/phycology5040058 - 10 Oct 2025
Viewed by 70
Abstract
Macroalgal polysaccharides represent a diverse group of structurally complex biopolymers with significant potential in biomedicine and functional food applications. This review provides a comprehensive examination of their structural features, biological activities, and molecular targets, with an emphasis on precision applications. Key polysaccharides such [...] Read more.
Macroalgal polysaccharides represent a diverse group of structurally complex biopolymers with significant potential in biomedicine and functional food applications. This review provides a comprehensive examination of their structural features, biological activities, and molecular targets, with an emphasis on precision applications. Key polysaccharides such as alginates, carrageenans, fucoidans, ulvans, and laminarans are highlighted, focusing on their unique chemical backbones, degrees of sulfation, and branching patterns that underlie their bioactivity. Special attention is given to their roles in modulating inflammation, oxidative stress, apoptosis, gut microbiota, and metabolic pathways. Comparative assessment of extraction strategies, structure–function relationships, and bioactivity data highlights the importance of tailoring polysaccharide processing methods to preserve bioefficacy. Emerging insights from computational modelling and receptor-binding studies reveal promising interactions with immune and apoptotic signalling cascades, suggesting new therapeutic opportunities. Finally, the review outlines challenges related to standardisation, scalability, and regulatory approval, while proposing avenues for future research toward clinical translation and industrial innovation. By integrating structural biology, pharmacology, and nutraceutical sciences, this work underscores the potential of macroalgal polysaccharides as precision agents in health-promoting formulations and next-generation functional foods. Full article
Show Figures

Graphical abstract

30 pages, 4876 KB  
Article
China’s Rural Industrial Integration Under the “Triple Synergy of Production, Livelihood and Ecology” Philosophy: Internal Mechanisms, Level Measurement, and Sustainable Development Paths
by Jinsong Zhang, Mengru Ma, Jinglin Qian and Linmao Ma
Sustainability 2025, 17(20), 8972; https://doi.org/10.3390/su17208972 - 10 Oct 2025
Viewed by 159
Abstract
Against the backdrop of global agricultural transformation, rural China faces the critical challenge of reconciling economic development with environmental conservation and social well-being. This study, grounded in the rural revitalization strategy, investigates the internal mechanisms, level measurement, and sustainable development paths of rural [...] Read more.
Against the backdrop of global agricultural transformation, rural China faces the critical challenge of reconciling economic development with environmental conservation and social well-being. This study, grounded in the rural revitalization strategy, investigates the internal mechanisms, level measurement, and sustainable development paths of rural industrial integration based on the “Triple Integration of Production, Livelihood and Ecology” (PLE) philosophy. Firstly, we discussed the suitability and the mechanisms of this philosophy on China’s rural industrial integration. Secondly, based on a textual corpus extracted from academic journals and policy documents, we employed an LDA topic model to cluster the themes and construct an evaluation indicator system comprising 29 indicators. Then, utilizing data from the China Statistical Yearbook and the China Rural Statistical Yearbook (2013–2022), we measured the level of China’s rural industrial integration using the entropy method. The composite integration index displays a continuous upward trend over 2013–2022, accelerating markedly after the 2015 stimulus policy, yet a temporary erosion of “production–livelihood–ecology” synergy occurred in 2020 owing to an exogenous shock. Lastly, combining the system dynamics model, we simulated over the period 2023–2030 the three sustainable development scenarios: green ecological development priority, livelihood standard development priority and production level development priority. Research has shown that (1) the “Triple Synergy of Production, Livelihood and Ecology” philosophy and China’s rural industrial integration are endogenously unified, and they form a two-way mutual mechanism with the common goal of sustainable development. (2) China’s rural industrial integration under this philosophy is characterized by production-dominated development and driven mainly by processing innovation and service investment, but can be constrained by ecological fragility and external shocks. (3) System dynamics simulations reveal that the production-development priority scenario (Scenario 3) is the most effective pathway, suggesting that the production system is a vital engine driving the sustainable development of China’s rural industrial integration, with digitalization and technological innovation significantly improving integration efficiency. In the future, efforts should focus on transitioning towards a people-centered model by restructuring cooperative equity for farmer ownership, building community-based digital commons to bridge capability gaps, and creating market mechanisms to monetize and reward conservation practices. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

45 pages, 13482 KB  
Review
Evaluating the Sustainability of Emerging Extraction Technologies for Valorization of Food Waste: Microwave, Ultrasound, Enzyme-Assisted, and Supercritical Fluid Extraction
by Elixabet Díaz-de-Cerio and Esther Trigueros
Agriculture 2025, 15(19), 2100; https://doi.org/10.3390/agriculture15192100 - 9 Oct 2025
Viewed by 172
Abstract
Food industry generates substantial waste, raising economic and environmental concerns. Green Chemistry (GC) highlights the extraction of nutritional and bioactive compounds as a key strategy for waste valorization, driving interest in sustainable methods to recover valuable compounds efficiently. This review evaluates the sustainability [...] Read more.
Food industry generates substantial waste, raising economic and environmental concerns. Green Chemistry (GC) highlights the extraction of nutritional and bioactive compounds as a key strategy for waste valorization, driving interest in sustainable methods to recover valuable compounds efficiently. This review evaluates the sustainability of widely used emerging extraction technologies—Microwave-, Ultrasound- and Enzyme-Assisted, as well as Supercritical Fluid Extraction—and their alignment with GC principles for agri-food waste valorization. It first outlines the principles, key parameters, and main advantages and limitations of each technique. Subsequently, sustainability is then assessed in selected studies using the Analytical GREEnness Metric Approach (AGREEprep). By calculating the greenness score (GS), this metric quantifies the adherence of extraction processes to sustainability standards. The analysis reveals variations within the same extraction method, influenced by solvent choice and operating conditions, as well as differences across the techniques, highlighting the importance of process design in achieving green and efficient valorization. Full article
Show Figures

Figure 1

Back to TopTop