Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = ground electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2098 KiB  
Article
Numerical Investigation of the Impact of Variation of Negative Electrode Porosity upon the Cycle Life of Lithium-Ion Batteries
by Shuangchao Li, Peichao Li and Runzhou Yu
Energies 2025, 18(11), 2883; https://doi.org/10.3390/en18112883 - 30 May 2025
Viewed by 116
Abstract
Lithium-ion batteries (LIBs), crucial in modern advanced energy storage systems, inherently experience several side reactions during operation, with the formation of a solid electrolyte interface (SEI) and lithium plating being the most significant. These side reactions, which deplete lithium ions and lead to [...] Read more.
Lithium-ion batteries (LIBs), crucial in modern advanced energy storage systems, inherently experience several side reactions during operation, with the formation of a solid electrolyte interface (SEI) and lithium plating being the most significant. These side reactions, which deplete lithium ions and lead to the clogging of negative electrode pores, considerably impair the battery’s cycle life and overall performance. This study introduces a numerical model for the battery aging process, grounded in existing research on SEI formation and its temperature-dependent aging kinetics. The model aims to elucidate how variations in the porosity of the negative electrode impact the battery’s cycle life. The study initially focuses on analyzing the principal mechanisms behind pore clogging in LIBs’ negative electrodes following extensive charge/discharge cycles. Subsequently, the study conducts numerical simulations to thoroughly investigate the effects of various non-uniform porosity structures in the negative electrode, encompassing both linear and gradient configurations, on the battery’s cycle life. Additionally, the investigation conducts a comparative analysis to determine how different gradients in porosity structures influence pore clogging. It also delves into a detailed exploration of heat generation associated with the linear porosity structure of the negative electrode. The results indicate that the accumulation of the SEI layer significantly reduces porosity. This reduction, in turn, affects the conductivity and alters the current density during the SEI reaction. Notably, the linear porosity structure exhibits a significant advantage over traditional structures, especially in terms of reducing pore clogging and minimizing irreversible heat generation. In summary, this study presents a multi-physics and detailed numerical model to evaluate the impact of variations in negative electrode porosity on the cycle life of LIBs. Furthermore, it provides essential theoretical support for battery design and performance optimization, particularly in the determination of pore structures and material selection. Full article
Show Figures

Figure 1

13 pages, 1550 KiB  
Article
The Effect of Trap Design on the Scalability of Trapped-Ion Quantum Technologies
by Le Minh Anh Nguyen, Brant Bowers and Sara Mouradian
Entropy 2025, 27(6), 576; https://doi.org/10.3390/e27060576 - 29 May 2025
Viewed by 240
Abstract
To increase the power of a trapped-ion quantum information processor, the qubit number, gate speed, and gate fidelity must all increase. All three of these parameters are influenced by the trapping field, which, in turn, depends on the electrode geometry. Here, we consider [...] Read more.
To increase the power of a trapped-ion quantum information processor, the qubit number, gate speed, and gate fidelity must all increase. All three of these parameters are influenced by the trapping field, which, in turn, depends on the electrode geometry. Here, we consider how the electrode geometry affects the following radial trapping parameters: trap height, harmonicity, depth, and trap frequency. We introduce a simple multi-wafer geometry comprising a ground plane above a surface trap and compare the performance of this trap to a surface trap and a multi-wafer trap that is a miniaturized version of a linear Paul trap. We compare the voltage and frequency requirements needed to reach a desired radial trap frequency and find that the two multi-wafer trap designs provide significant improvements in expected power dissipation over the surface trap design in large part due to increased harmonicity. Finally, we consider the fabrication requirements and the path towards the integration of the necessary optical control. This work provides a basis to optimize future trap designs with scalability in mind. Full article
(This article belongs to the Special Issue Quantum Computing with Trapped Ions)
Show Figures

Figure 1

18 pages, 16950 KiB  
Article
A Near-Ground Shielding Structure for Grounded Capacitive Proximity Sensors to Mitigate Performance Discrepancies Between Flush and Non-Flush Mounting
by Yong Ye, Xiaotong Li, Qi Zhang, Yuting Liu, Haimin Qian and Jiahao Deng
Electronics 2025, 14(11), 2166; https://doi.org/10.3390/electronics14112166 - 27 May 2025
Viewed by 195
Abstract
The interference of metal working surfaces on the electric field can lead to performance variations between the flush mounting and non-flush mounting of capacitive proximity sensors in industrial applications. Traditional active shielding circuit designs are complex, while grounding shields not only reduce the [...] Read more.
The interference of metal working surfaces on the electric field can lead to performance variations between the flush mounting and non-flush mounting of capacitive proximity sensors in industrial applications. Traditional active shielding circuit designs are complex, while grounding shields not only reduce the sensor sensitivity but are also unsuitable for grounded sensors. To address this issue, this paper proposes an innovative near-ground (NG) shielding structure. This structure effectively concentrates the electric field between the sensing electrode and ground by adding a common ground electrode around the sensing electrode, thereby reducing the electrical coupling between the metal working surface and the sensing electrode and achieving the desired shielding effect. Through finite element analysis and experimental verification, this study performed an in-depth investigation of the capacitance difference Cd and the rate of change of capacitance with the target distance of sensors under the two mounting methods. The proposed structure achieved a performance comparable with active shielding (17 fF Cd) while operating passively, which addressed a critical cost–adaptability trade-off in industrial CPS designs. The results show that although the performance of the NG shielding was slightly inferior to active shielding, it was significantly better than traditional grounding shielding, and its structure was simple and low cost, showing great potential in practical applications. Full article
Show Figures

Graphical abstract

22 pages, 5233 KiB  
Article
Research on Centroid Localization Method of Underground Space Ground Electrode Current Field Based on RSSI
by Sirui Chu, Hui Zhao, Zhong Su, Xiangxian Yao, Xibing Gu, Yanke Wang and Zhongao Ling
Sensors 2025, 25(9), 2889; https://doi.org/10.3390/s25092889 - 3 May 2025
Viewed by 258
Abstract
Aiming to solve the problems of communication interruption caused by the collapse of underground space, this study constructs a strong penetration information transmission system and proposes a centroid localization method based on the received signal strength indication (RSSI) in an underground space ground [...] Read more.
Aiming to solve the problems of communication interruption caused by the collapse of underground space, this study constructs a strong penetration information transmission system and proposes a centroid localization method based on the received signal strength indication (RSSI) in an underground space ground electrode current field. This is applicable to localization in underground space such as subways, mines, tunnels, etc., as well as under the environment of collapse. First, the propagation characteristics of the ground current field signal in underground space are analyzed, and the attenuation model of the ground current field signal is constructed by combining the RSSI ranging method. On this basis, an improved weighted centroid localization algorithm is introduced to improve the localization accuracy and reliability by optimizing the algorithm parameters to cope with the fluctuations and instabilities generated in the signal propagation process. The experimental results show that the proposed localization method achieves an average positioning error of 7.47 m in an underground environment of 10,000 square meters, which is 32.32% less compared with the weighted centroid localization algorithm, and 62.74% less compared with the traditional centroid localization algorithm. This method presents a positioning technology that operates independently in underground spaces, overcoming the limitation of traditional wireless positioning systems, which rely on external transmission links. Its application will provide crucial technical support for life-saving operations in underground environments, acting as the ‘last line of defense’ in rescue missions. By completing the emergency response chain, it will enhance disaster rescue capabilities, offering substantial practical value and promising prospects. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

20 pages, 2079 KiB  
Article
On-Ground Testing of Dual-Sided Release Mechanism of TianQin Test Mass Using a Pendulum
by Ji Wang, Diwen Shi, Chao Xue, Biao Yang, Bingwei Cai, Jie Chang, Zefan Zhou, Wenhai Tan and Shanqing Yang
Sensors 2025, 25(9), 2878; https://doi.org/10.3390/s25092878 - 2 May 2025
Viewed by 275
Abstract
The high-precision gravitational reference sensor, which hosts a heavy test mass (TM) surrounded by electrodes with a relatively large gap, is crucial in all high-sensitivity drag-free sensors. Consequently, a dedicated locking mechanism is needed to securely hold the TM during the launch phase. [...] Read more.
The high-precision gravitational reference sensor, which hosts a heavy test mass (TM) surrounded by electrodes with a relatively large gap, is crucial in all high-sensitivity drag-free sensors. Consequently, a dedicated locking mechanism is needed to securely hold the TM during the launch phase. After reaching the intended orbit, the TM is released to a free-falling state and subsequently captured by electrostatic actuation, which demands that the transferred momentum and angular momentum to the TM do not exceed 105kgm/s and 107kgm2/s, respectively. This paper introduces a three-level structural design of the locking-and-release mechanism. In order to investigate the release requirement, a pendulum system has been developed for on-ground testing. The mock-up of the TM is entirely consistent with the size and mass of TianQin TM, and the dual-sided release tips constrain the TM and then rapidly retract simultaneously, after which the transferred momentum and angular momentum are estimated from the free oscillations as 0.38(21)×105kgm/s and 0.15(14)×107kgm2/s with a preload force of 0.3 N. This proposes a feasible scheme for validating the release mechanism conducting impulse testing for the TianQin project. Full article
(This article belongs to the Special Issue Advanced Inertial Sensors: Advances, Challenges and Applications)
Show Figures

Figure 1

19 pages, 14110 KiB  
Article
A 3D DC Electric Field Meter Based on Sensor Chips Packaged Using a Highly Sensitive Scheme
by Pengfei Yang, Xiaolong Wen, Xiaonan Li, Zhaozhi Chu, Chunrong Peng and Shuang Wu
Micromachines 2025, 16(4), 484; https://doi.org/10.3390/mi16040484 - 20 Apr 2025
Viewed by 1368
Abstract
This study presents a 3D DC electric field meter (EFM) that uses three identical 1D MEMS chips. The shielding electrodes and sensing electrodes of the MEMS chips employ a combination of rigid frames and short strip-type beams to improve vibrational stability. To enhance [...] Read more.
This study presents a 3D DC electric field meter (EFM) that uses three identical 1D MEMS chips. The shielding electrodes and sensing electrodes of the MEMS chips employ a combination of rigid frames and short strip-type beams to improve vibrational stability. To enhance sensitivity, our MEMS chips feature inner convex packaging covers. Moreover, the integrated design and wireless transmission efficiently eradicate the impact of ground potential on detection results. Detailed simulations have been conducted to analyze the electric field distribution within the chip package and the electric field distribution on the EFM’s surface. A prototype was then developed, calibrated, and validated. The test results indicate that the sensitivity of our proposed 3D EFM is at least 4.64 times higher than the highest sensitivity observed in previously reported MEMS 3D EFMs. The maximum relative deviation is a mere 2.2% for any rotation attitude. Remarkably, even in high humidity conditions, the EFM’s linearity remains within 1%. Additionally, the resolution of any single axis is less than 10 V/m. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

25 pages, 13668 KiB  
Article
Reliability of High-Frequency Earth Meters in Measuring Tower-Footing Resistance: Simulations and Experimental Validation
by Renan Segantini, Rafael Alipio and José O. S. Paulino
Energies 2025, 18(8), 1959; https://doi.org/10.3390/en18081959 - 11 Apr 2025
Viewed by 320
Abstract
This paper presents a comprehensive assessment of the accuracy of high-frequency (HF) earth meters in measuring the tower-footing ground resistance of transmission line structures, combining simulation and experimental results. The findings demonstrate that HF earth meters reliably estimate the harmonic grounding impedance ( [...] Read more.
This paper presents a comprehensive assessment of the accuracy of high-frequency (HF) earth meters in measuring the tower-footing ground resistance of transmission line structures, combining simulation and experimental results. The findings demonstrate that HF earth meters reliably estimate the harmonic grounding impedance (R25kHz) at their operating frequency, typically 25 kHz, for a wide range of soil resistivities and typical span lengths. For the analyzed tower geometries, the simulations indicate that accurate measurements are obtained for adjacent span lengths of approximately 300 m and 400 m, corresponding to configurations with one and two shield wires, respectively. Acceptable errors below 10% are observed for span lengths exceeding 200 m and 300 m under the same conditions. While the measured R25kHz does not directly represent the resistance at the industrial frequency, it provides a meaningful measure of the grounding system’s impedance, enabling condition monitoring and the evaluation of seasonal or event-related impacts, such as damage after outages. Furthermore, the industrial frequency resistance can be estimated through an inversion process using an electromagnetic model and knowing the geometry of the grounding electrodes. Overall, the results suggest that HF earth meters, when correctly applied with the fall-of-potential method, offer a reliable means to assess the grounding response of high-voltage transmission line structures in most practical scenarios. Full article
Show Figures

Figure 1

16 pages, 8803 KiB  
Article
Time-Dependent Tap Density Modeling of Graphite Milled by Vibrating Disc Mill
by Gülşah Güven, Ugur Ulusoy, Fırat Burat, Behrad Mojtahedi and Guler Bayar
Minerals 2025, 15(4), 403; https://doi.org/10.3390/min15040403 - 11 Apr 2025
Viewed by 358
Abstract
Graphite, which is a key anode material for LIB, needs to have a high tap density (dt) to reach a high volumetric energy density. Since dt is directly correlated with particle size, particle size distribution, and particle shape, it [...] Read more.
Graphite, which is a key anode material for LIB, needs to have a high tap density (dt) to reach a high volumetric energy density. Since dt is directly correlated with particle size, particle size distribution, and particle shape, it can usually be improved by optimized grinding. So, determining the ideal grinding time by modeling the change in dt over grinding time can yield substantial benefits like time, energy, and economy. However, the grinding time-dependent dt modeling of graphite has never been reported before. Therefore, in this study, the relationship between the measured dt values and grinding times of graphite particles by a vibrating disc mill (VDM) was investigated. Then, the empirical time-dependent dt models were established with high R2 values. The experimental and predicted dt values were found to be close to each other. Among all tested fitting models, the exponential model (dt = ae−bt) was found to be the best-fitting model, having the highest R2 and lowest error values. This approach provides guidance in the powder flow and processing of ground mineral materials, in the preparation processes of high-density graphite LIB anode material, as well as in graphite grinding in other mills in the industry, as well as in different electrode materials. Full article
(This article belongs to the Special Issue Comminution and Comminution Circuits Optimisation: 3rd Edition)
Show Figures

Figure 1

19 pages, 4581 KiB  
Article
Reduction of Spike-like Noise in Clinical Practice for Thoracic Electrical Impedance Tomography Using Robust Principal Component Analysis
by Meng Dai, Xiaopeng Li, Zhanqi Zhao and Lin Yang
Bioengineering 2025, 12(4), 402; https://doi.org/10.3390/bioengineering12040402 - 9 Apr 2025
Viewed by 277
Abstract
Thoracic electrical impedance tomography (EIT) provides real-time, bedside imaging of pulmonary function and has demonstrated significant clinical value in guiding treatment strategies for critically ill patients. However, the practical application of EIT remains challenging due to its susceptibility to measurement disturbances, such as [...] Read more.
Thoracic electrical impedance tomography (EIT) provides real-time, bedside imaging of pulmonary function and has demonstrated significant clinical value in guiding treatment strategies for critically ill patients. However, the practical application of EIT remains challenging due to its susceptibility to measurement disturbances, such as electrode contact problems and patient movement. These disturbances often manifest as spike-like noise that can severely degrade EIT image quality. To address this issue, we propose a robust Principal Component Analysis (RPCA)-based approach that models EIT data as the sum of a low-rank matrix and a sparse matrix. The low-rank matrix captures the underlying physiological signals, while the sparse matrix contains spike-like noise components. In simulation studies considering different spike magnitudes, widths and channels, all the image correlation coefficients between RPCA-processed images and the ground truth exceeded 0.99, and the image error of the original fEIT image with spike-like noise was much larger than that after RPCA processing. In eight patient cases, RPCA significantly improved the image quality (image error: p < 0.001; image correlation coefficient: p < 0.001) and enhanced the clinical EIT-based indexes accuracy (p < 0.001). Therefore, we conclude that RPCA is a promising technique for reducing spike-like noise in clinical EIT data, thereby improving data quality and potentially facilitating broader clinical application of EIT. Full article
Show Figures

Figure 1

57 pages, 13207 KiB  
Review
Multifunctional Cementitious Composites from Fabrication to Their Application in Pavement: A Comprehensive Review
by Mohammad Jawed Roshan and António Gomes Correia
Appl. Sci. 2025, 15(7), 3451; https://doi.org/10.3390/app15073451 - 21 Mar 2025
Viewed by 430
Abstract
Multifunctional cementitious composites have been widely recommended for transportation infrastructure due to their versatile applications. These advanced materials can serve multiple functions, including structural health monitoring (SHM), traffic management, de-icing and snow melting, cathodic protection, grounding, energy harvesting, and shielding against electromagnetic interference [...] Read more.
Multifunctional cementitious composites have been widely recommended for transportation infrastructure due to their versatile applications. These advanced materials can serve multiple functions, including structural health monitoring (SHM), traffic management, de-icing and snow melting, cathodic protection, grounding, energy harvesting, and shielding against electromagnetic interference (EMI). Given their effectiveness in transportation infrastructure, the authors of this paper, as part of the In2Track2 and In2Track3 projects funded by the European Union, have conducted extensive research in this field. Complementary to the objectives of these projects, this review paper provides a comprehensive analysis of the key components of conductive pavements, including conductive fillers, matrix materials, electrode configurations, conductive mechanisms, and factors influencing the electrical properties of these systems. Additionally, it discusses the practical applications of conductive pavements. By integrating insights from various aspects of this advanced pavement technology, this paper serves as a valuable resource for researchers and practitioners seeking to advance the development and implementation of conductive pavements. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

12 pages, 5694 KiB  
Article
Constructing of Ni-Nx Active Sites in Self-Supported Ni Single-Atom Catalysts for Efficient Reduction of CO2 to CO
by Xuemei Zhou, Chunxia Meng, Wanqiang Yu, Yijie Wang, Luyun Cui, Tong Li and Jingang Wang
Nanomaterials 2025, 15(6), 473; https://doi.org/10.3390/nano15060473 - 20 Mar 2025
Viewed by 394
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) represents a promising approach for achieving CO2 resource utilization. Carbon-based materials featuring single-atom transition metal-nitrogen coordination (M-Nx) have attracted considerable research attention due to their ability to maximize catalytic efficiency while [...] Read more.
The electrochemical carbon dioxide reduction reaction (CO2RR) represents a promising approach for achieving CO2 resource utilization. Carbon-based materials featuring single-atom transition metal-nitrogen coordination (M-Nx) have attracted considerable research attention due to their ability to maximize catalytic efficiency while minimizing metal atom usage. However, conventional synthesis methods often encounter challenges with metal particle agglomeration. In this study, we developed a Ni-doped polyvinylidene fluoride (PVDF) fiber membrane via electrospinning, subsequently transformed into a nitrogen-doped three-dimensional self-supporting single-atom Ni catalyst (Ni-N-CF) through controlled carbonization. PVDF was partially defluorinated and crosslinked, and the single carbon chain is changed into a reticulated structure, which ensured that the structure did not collapse during carbonization and effectively solved the problem of runaway M-Nx composite in the high-temperature pyrolysis process. Grounded in X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS), nitrogen coordinates with nickel atoms to form a Ni-N structure, which keeps nickel in a low oxidation state, thereby facilitating CO2RR. When applied to CO2RR, the Ni-N-CF catalyst demonstrated exceptional CO selectivity with a Faradaic efficiency (FE) of 92%. The unique self-supporting architecture effectively addressed traditional electrode instability issues caused by catalyst detachment. These results indicate that by tuning the local coordination structure of atomically dispersed Ni, the original inert reaction sites can be activated into efficient catalytic centers. This work can provide a new strategy for designing high-performance single-atom catalysts and structurally stable electrodes. Full article
(This article belongs to the Special Issue Recent Progress on Single-Atom and Nanocluster Materials)
Show Figures

Figure 1

17 pages, 5534 KiB  
Article
The Pole-to-Ground Fault Current Calculation Method and Impact Factor Investigation for Monopole DC Grids
by Liang Chen, Wei Yi, Pan Deng, Shen Ma, Da Kuang and Hongyu Cai
Electronics 2025, 14(6), 1067; https://doi.org/10.3390/electronics14061067 - 7 Mar 2025
Viewed by 535
Abstract
Flexible DC grids are an important technological means for optimizing power supply structures and promoting energy transition. However, as a system with low inertia and weak damping, the flexible DC grid inherently faces challenges, such as rapid rising of fault currents, vulnerability to [...] Read more.
Flexible DC grids are an important technological means for optimizing power supply structures and promoting energy transition. However, as a system with low inertia and weak damping, the flexible DC grid inherently faces challenges, such as rapid rising of fault currents, vulnerability to significant damage, difficulty in fault interruption, and with regard to the poor overcurrent-withstanding capabilities of power electronic devices. To address these issues, this paper proposes a method for calculating the single-pole ground fault current in a symmetrical monopolar DC grid, and further introduces a matrix exponential calculation method. This method enables quantitative analysis of the influence of various component parameters on the fault current, taking into account the dynamic characteristics of both the faulted and healthy poles in the DC system. The results demonstrate the high accuracy of this calculation method. The analysis reveals that the inductance of the faulted branch has the greatest impact on the fault current, while the inductances of the adjacent outgoing lines also have a certain influence. In contrast, the inductances of lines not adjacent to the faulted branch have minimal impacts on the fault current. Furthermore, the grounding electrode parameters of the converter station connected to the faulted branch exert the most significant influence on the fault current, with the grounding electrode parameters of neighboring converter stations also showing a notable effect. This indicates that the fault current is impacted by the topology of the nearby DC grid, but is not affected by the fault currents at remote converter stations. Full article
Show Figures

Figure 1

18 pages, 28482 KiB  
Article
Forward Modeling Analysis in Advanced Exploration of Cross-Hole Grounded-Wire-Source Transient Electromagnetic Method
by Jiao Zhu, Zhihai Jiang, Maofei Li, Zhonghao Dou and Zhaofeng Gao
Appl. Sci. 2025, 15(5), 2672; https://doi.org/10.3390/app15052672 - 2 Mar 2025
Viewed by 724
Abstract
To address the challenge of accurately detecting hidden water inrush hazards ahead of working faces, a cross-hole transient electromagnetic (TEM) method utilizing a grounded-wire source is proposed. The technique positions a step-current-driven grounded-wire source within a working-face borehole, while electrode arrays in adjacent [...] Read more.
To address the challenge of accurately detecting hidden water inrush hazards ahead of working faces, a cross-hole transient electromagnetic (TEM) method utilizing a grounded-wire source is proposed. The technique positions a step-current-driven grounded-wire source within a working-face borehole, while electrode arrays in adjacent boreholes measure secondary electric field responses. This configuration minimizes interference from metal supports or machines, thereby enhancing the signal-to-noise ratio of the TEM signals. A theoretical analysis based on the unstructured finite-element (FE) method is used to investigate the configuration. The collected data are processed using differential techniques, and the results confirm the method’s effectiveness in detecting anomalies. This paper investigates the response of our cross-hole method to anomalies in terms of size, resistivity contrasts, and spatial location, with anomaly boundaries quantitatively delineated via first-order differential analysis. This significantly enhances the capability of TEM detection in identifying anomalies. A comparison between our cross-hole method and the traditional roadway–borehole TEM method, using the trapped column model, demonstrates that the proposed cross-hole device more effectively locates anomalies and improves accuracy. Furthermore, this technique enables the formation of a 3D observation framework by utilizing existing boreholes, presenting promising prospects for future applications. Full article
Show Figures

Figure 1

22 pages, 17254 KiB  
Article
An Operation State Detection Method of DC Grounding Electrodes Based on Surface Potential Distribution
by Yuan Jiang, Jing Zhou, Zhanlong Zhang, Yihua Dan and Hao Wu
Appl. Sci. 2025, 15(5), 2461; https://doi.org/10.3390/app15052461 - 25 Feb 2025
Viewed by 333
Abstract
During the long-term operation of the DC grounding electrode of the converter station, there are often hazards such as heating and aging of the coke layer, and burning and corrosion at the connection between the feed rod and the cable, resulting in break [...] Read more.
During the long-term operation of the DC grounding electrode of the converter station, there are often hazards such as heating and aging of the coke layer, and burning and corrosion at the connection between the feed rod and the cable, resulting in break problems at the connection between the cable and the feed rod. Currently, the operational status monitoring of grounding electrodes primarily relies on daily tracking of well temperature, humidity, and water level characteristics; periodic testing; and on-site excavation. However, the above methods cannot accurately obtain the breakage location information at the connection between the cable and the feed rod. To address these issues, this paper first analyzes the current distribution law in the feeder rod of the DC grounding electrode. Subsequently, it studies the impact of localized fractures in the DC grounding electrode on the surface potential distribution characteristics. Finally, an Operation State Detection Method (OSDM) based on potential distribution is proposed and validated through case studies, demonstrating high measurement accuracy. The results indicate that OSDM can effectively monitor the operational status of DC grounding electrodes, providing a reference for their maintenance and repair. Full article
Show Figures

Figure 1

22 pages, 1918 KiB  
Article
Data-Driven Dynamics Learning on Time Simulation of SF6 HVDC-GIS Conical Solid Insulators
by Kenji Urazaki Junior, Francesco Lucchini and Nicolò Marconato
Electronics 2025, 14(3), 616; https://doi.org/10.3390/electronics14030616 - 5 Feb 2025
Viewed by 593
Abstract
An HVDC-GIL system with a conical spacer in a radioactive environment is studied in this work using simulated data on COMSOL® Multiphysics. Electromagnetic simulations on a 2D model were performed with varying ion-pair generation rates and potential applied to the system. This [...] Read more.
An HVDC-GIL system with a conical spacer in a radioactive environment is studied in this work using simulated data on COMSOL® Multiphysics. Electromagnetic simulations on a 2D model were performed with varying ion-pair generation rates and potential applied to the system. This article explores machine learning methods to derive time to steady state, dark current, gas conductivity, and surface charge density expressions. The focus was on constructing symbolic representations, which could be interpretable and less prone to overfitting, using the symbolic regression (SR) and sparse identification of nonlinear dynamics (SINDy) algorithms. The study successfully derived the intended expressions, demonstrating the power of symbolic regression. Predictions of dark currents in the gas–ground electrode interface reported an absolute error and mean absolute percentage error (MAPE) of 1.04 × 104 pA and 0.01%, respectively. The solid–ground electrode interface reported an error of 8.99 × 105 pA and MAPE of 0.04%, showing strong agreement with simulation data. Expressions for time to steady state had a test error of approximately 110 h with MAPE of around 3%. Steady-state gas conductivity expression achieved an absolute error of 0.55 log(S/m) and MAPE of 1%. An interpretable equation was created with SINDy to model the time evolution of surface charge density, achieving a root mean squared error of 1.12 nC/m2/s across time-series data. These results demonstrate the capability of SR and SINDy to provide interpretable and computationally efficient alternatives to time-consuming numerical simulations of HVDC systems under radiation conditions. While the model provides useful insights, performance and practical applications of the expressions can improve with more diverse datasets, which might include experimental data in the future. Full article
Show Figures

Figure 1

Back to TopTop