Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,519)

Search Parameters:
Keywords = growth recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 973 KB  
Article
Population Dynamics and Reintroduction Strategies for the Alpine Marmot in Romania
by Alexandru Gridan, George Sîrbu, Iulia Baciu, Georgeta Ionescu, Ovidiu Ionescu and Darius Hardalau
Animals 2025, 15(17), 2496; https://doi.org/10.3390/ani15172496 (registering DOI) - 25 Aug 2025
Abstract
The alpine marmot (Marmota marmota) once vanished from Romania’s Carpathian Mountains, but a reintroduction initiative launched in 1973 has since fostered population recovery. This study evaluates the long-term success of those efforts and explores the feasibility of further reintroductions. Population data [...] Read more.
The alpine marmot (Marmota marmota) once vanished from Romania’s Carpathian Mountains, but a reintroduction initiative launched in 1973 has since fostered population recovery. This study evaluates the long-term success of those efforts and explores the feasibility of further reintroductions. Population data from 2004 to 2025 across the Rodna, Retezat, and Făgăraș Mountains show a steady growth trend, culminating in a national population of approximately 815 individuals by 2025. Habitat quality was assessed using a Habitat Suitability Index, identifying robust colonies that could serve as donor populations. Additionally, an Ecological Diagnostic Key was developed to evaluate 27 potential reintroduction sites in the Țarcu, Ciucaș, and Bucegi Mountains. Findings reveal that 61 ha are suitable for reintroduction, with 40.5 ha rated as highly suitable. The study proposes a phased reintroduction strategy, combining individuals from established Romanian colonies with genetically diverse founders from Western Europe. It emphasizes soft-release protocols and calls for mitigation of anthropogenic pressures. This research supports a broader conservation framework that integrates habitat evaluation, demographic stability, and genetic health to enhance the alpine marmot’s persistence and expansion in Romania. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

22 pages, 4063 KB  
Article
Assessing Ecological Restoration of Père David’s Deer Habitat Using Soil Quality Index and Bacterial Community Structure
by Yi Zhu, Yuting An, Libo Wang, Jianhui Xue, Kozma Naka and Yongbo Wu
Diversity 2025, 17(9), 594; https://doi.org/10.3390/d17090594 - 24 Aug 2025
Abstract
Although significant progress has been made in the conservation of Père David’s deer (Elaphurus davidianus) populations, rapid population growth in coastal wetlands has caused severe habitat degradation. This highlights the urgent challenge of balancing ungulate population dynamics with wetland restoration efforts, [...] Read more.
Although significant progress has been made in the conservation of Père David’s deer (Elaphurus davidianus) populations, rapid population growth in coastal wetlands has caused severe habitat degradation. This highlights the urgent challenge of balancing ungulate population dynamics with wetland restoration efforts, particularly considering the limited data available on post-disturbance ecosystem recovery in these environments. In this study, we evaluated soil quality and bacterial community dynamics at an abandoned feeding site and a nearby control site within the Dafeng Milu National Nature Reserve during 2020–2021. The goal was to provide a theoretical basis for the ecological restoration of Père David’s deer habitat in coastal wetlands. The main findings are as follows: among the measured indicators, bulk density (BD), soil water content (SWC), sodium (Na+), total carbon (TC), total nitrogen (TN), total phosphorus (TP), available potassium (AK), microbial biomass nitrogen (MBN), and the Chao index were selected to form the minimum data set (MDS) for calculating the soil quality index (SQI), effectively reflecting the actual condition of soil quality. Overall, the SQI at the feeding site was lower than that of the control site. Based on the composition of bacterial communities and the functional prediction analysis of bacterial communities in the FAPROTAX database, it is shown that feeding sites are experiencing sustained soil carbon loss, which is clearly caused by the gathering of Père David’s deer. Co-occurring network analyses demonstrated the structure of the bacterial community at the feeding site was decomplexed, and with a lower intensity than the control. In RDA, Na+ is the main soil property that affects bacterial communities. These findings suggest that the control of soil salinity is a primary consideration in the development of Père David’s deer habitat restoration programmes, followed by addressing nitrogen supplementation and carbon sequestration. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

21 pages, 2417 KB  
Article
Ethylene-Mediated Drought Tolerance in the Critically Endangered Artocarpus nanchuanensis: Insights from Physiological and Transcriptomic Analyses
by Zhe Zhang, Yunli Chen, Fang Yang, Kunjian Yang, Wenqiao Li, Xiao Zhang, Wanhong Liu and Hongping Deng
Plants 2025, 14(17), 2636; https://doi.org/10.3390/plants14172636 - 24 Aug 2025
Abstract
Drought stress limits seedling growth, hindering morphological development and population establishment. Artocarpus nanchuanensis, a critically endangered species endemic to the karst regions of southwest China, exhibits poor population structure and limited natural regeneration in the wild, with water deficit during the seedling [...] Read more.
Drought stress limits seedling growth, hindering morphological development and population establishment. Artocarpus nanchuanensis, a critically endangered species endemic to the karst regions of southwest China, exhibits poor population structure and limited natural regeneration in the wild, with water deficit during the seedling stage identified as a major factor contributing to its endangered status. Elucidating the physiological and molecular mechanisms underlying drought tolerance in A. nanchuanensis seedlings is essential for improving their drought adaptability and facilitating population recovery. In this study, 72 two-year-old seedlings were divided into two groups: drought (PEG) and ethephon (PEG + Ethephon), and subjected to drought-rehydration experiments. The results showed that exogenous application of 100 mg·L−1 ethephon significantly improved stomatal conductance and photosynthetic pigment content in A. nanchuanensis seedlings. Under drought stress, the PEG + Ethephon group exhibited rapid stomatal closure, maintaining water balance and higher photosynthetic pigment levels. After rehydration, the PEG + Ethephon group significantly outperformed the PEG group in terms of photosynthetic rate. Ethephon treatment reduced H2O2 and MDA levels, enhanced antioxidant enzyme activity (SOD, CAT, POD, GR), and increased osmotic regulator activity (soluble sugars, soluble proteins, and proline), improving ROS-scavenging capacity and reducing oxidative damage. Ethephon application significantly enhanced ethylene accumulation in seedlings, while drought stress stimulated the concentrations of key ethylene biosynthetic enzymes (SAMS, ACS, and ACO), thereby further contributing to improved drought resistance. Transcriptomic data revealed that drought stress significantly upregulated key ethylene biosynthesis genes, with expression levels increasing with stress duration and rapidly decreasing after rehydration. WGCNA analysis identified eight key drought-resistance genes, providing valuable targets for future research. This study provides the first mechanistic insight into the physiological and molecular responses of A. nanchuanensis seedlings to drought and rehydration, underscoring the central role of endogenous ethylene in drought tolerance. Ethephon treatment effectively enhanced ethylene accumulation and biosynthetic enzyme activity, thereby improving drought adaptability. These findings lay a theoretical foundation for subsequent molecular functional studies and the conservation biology of this endangered species. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

37 pages, 1200 KB  
Article
Assessing the Effectiveness of 3D-Printed Ceramic Structures for Coral Restoration: Growth, Survivorship, and Biodiversity Using Visual Surveys and eDNA
by Vriko Yu, Alison D. Corley, Horace Lau, Philip D. Thompson, Zhongyue Wilson Wan, Jane C. Y. Wong, Zoe Kwan Ting Wong, Louise Wai Hung Li, Shelby E. McIlroy and David M. Baker
J. Mar. Sci. Eng. 2025, 13(9), 1605; https://doi.org/10.3390/jmse13091605 - 22 Aug 2025
Viewed by 85
Abstract
Coral reef degradation has spurred the development of artificial structures to mitigate losses in coral cover. These structures serve as substrates for coral transplantation, with the expectation that growing corals will attract reef-associated taxa—while the substrate’s ability to directly support biodiversity is often [...] Read more.
Coral reef degradation has spurred the development of artificial structures to mitigate losses in coral cover. These structures serve as substrates for coral transplantation, with the expectation that growing corals will attract reef-associated taxa—while the substrate’s ability to directly support biodiversity is often neglected. We evaluated a novel 3D-printed modular tile made of porous terra cotta, designed with complex surface structures to enhance micro- and cryptic biodiversity, through a restoration project in Hong Kong. Over four years, we monitored 378 outplanted coral fragments using diver assessments and photography, while biodiversity changes were assessed through visual surveys and eDNA metabarcoding. Coral survivorship was high, with 88% survival after four years. Visual surveys recorded seven times more fish and almost 60% more invertebrates at the restoration site compared to a nearby unrestored area. eDNA analyses revealed a 23.5% higher eukaryote ASV richness at the restoration site than the unrestored site and 13.3% greater richness relative to a natural reference coral community. This study highlights the tiles’ dual functionality: (1) supporting coral growth and (2) enhancing cryptic biodiversity, an aspect often neglected in traditional reef restoration efforts. Our findings underscore the potential of 3D-printed ceramic structures to improve both coral restoration outcomes and broader reef ecosystem recovery. Full article
(This article belongs to the Section Marine Ecology)
17 pages, 5184 KB  
Article
Preparation and Applications of Silver Nanowire-Polyurethane Flexible Sensor
by Jiangyin Shan, Jianhua Qian, Ling Lin, Mengrong Wei, Jingyue Xia and Lin Fu
Sensors 2025, 25(16), 5191; https://doi.org/10.3390/s25165191 - 21 Aug 2025
Viewed by 338
Abstract
To expand the application of silver nanowires (AgNWs) in the field of flexible sensors, this study developed a stretchable flexible sensor based on thermoplastic polyurethane (TPU). Initially, the TPU nanofiber membrane was prepared by electrospinning. Subsequently, high-aspect-ratio AgNWs were synthesized via a one-step [...] Read more.
To expand the application of silver nanowires (AgNWs) in the field of flexible sensors, this study developed a stretchable flexible sensor based on thermoplastic polyurethane (TPU). Initially, the TPU nanofiber membrane was prepared by electrospinning. Subsequently, high-aspect-ratio AgNWs were synthesized via a one-step polyol reduction method. The AgNWs with the optimal aspect ratio were selected for the conductive layer and spray-coated onto the surface of the TPU nanofiber membrane. Another layer of TPU nanofiber membrane was then laminated on top, resulting in a flexible thin-film sensor with a “sandwich” structure. Through morphological, chemical structure, and crystallinity analyses, the primary factors influencing AgNWs’ growth were investigated. Performance tests revealed that the prepared AgNWs had an average length of approximately 130 μm, a diameter of about 80 nm, and an average aspect ratio exceeding 1500, with the highest being 1921. The obtained sensor exhibited a low initial resistance (26.7 Ω), high strain range (sensing, ε = 0–150%), high sensitivity (GF, over 19.21), fast response and recovery time (112 ms), and excellent conductivity (428 S/cm). Additionally, the sensor maintained stable resistance after 3000 stretching cycles at a strain range of 0–10%. The sensor could output stable and recognizable electrical signals, demonstrating significant potential for applications in motion monitoring, human–computer interaction, and healthcare fields. Full article
Show Figures

Graphical abstract

13 pages, 431 KB  
Article
Interest Rates and Economic Growth: Evidence from Southeast Asia Countries
by Tan Huu Nguyen
Economies 2025, 13(8), 244; https://doi.org/10.3390/economies13080244 - 21 Aug 2025
Viewed by 318
Abstract
This study examines the dynamic interplay between interest rates, inflation, and GDP growth in Southeast Asian economies from 2000 to 2023, employing the Panel ARDL framework with the Pooled Mean Group (PMG) model. The findings confirm a robust long-term relationship among the Deposit [...] Read more.
This study examines the dynamic interplay between interest rates, inflation, and GDP growth in Southeast Asian economies from 2000 to 2023, employing the Panel ARDL framework with the Pooled Mean Group (PMG) model. The findings confirm a robust long-term relationship among the Deposit Interest Rate (DIR), Lending Interest Rate (LIR), Consumer Price Index (CPI), and GDP growth. Higher deposit rates consistently promote economic expansion by encouraging savings and investment, while lending rates support long-term growth but limit short-term activity due to higher borrowing costs. Inflation adversely affects long-term growth by reducing purchasing power but boosts short-term demand. Historical GDP trends highlight the region’s susceptibility to global shocks, such as the 2008–2010 financial crisis and the 2020 COVID-19 pandemic, with forecasts indicating a gradual recovery from 2021 to 2025. The study emphasizes the importance of balanced monetary policies to enhance growth and stability in Southeast Asia, providing practical insights for policymakers addressing global and regional economic challenges. Full article
Show Figures

Figure 1

28 pages, 4385 KB  
Review
Sustainable Recycling of Lithium-Ion Battery Cathodes: Life Cycle Assessment, Technologies, and Economic Insights
by Dongjie Pang, Haoyu Wang, Yimin Zeng, Xue Han and Ying Zheng
Nanomaterials 2025, 15(16), 1283; https://doi.org/10.3390/nano15161283 - 20 Aug 2025
Viewed by 496
Abstract
Rapid growth of electric vehicles has increased demand for lithium-ion batteries (LIBs), raising concerns regarding their end-of-life management. This study comprehensively evaluates the closed-loop recycling of cathode materials from spent LIBs by integrating life cycle assessment (LCA), technoeconomic analysis, and technological comparison. Typical [...] Read more.
Rapid growth of electric vehicles has increased demand for lithium-ion batteries (LIBs), raising concerns regarding their end-of-life management. This study comprehensively evaluates the closed-loop recycling of cathode materials from spent LIBs by integrating life cycle assessment (LCA), technoeconomic analysis, and technological comparison. Typical approaches—including pyrometallurgy, hydrometallurgy, and other processes such as organic acid leaching and in situ reduction roasting—are systematically reviewed. While pyrometallurgy offers scalability, it is hindered by high energy consumption and excessive greenhouse gas emissions. Hydrometallurgy achieves higher metal recovery rates with better environmental performance but requires complex chemical and wastewater management. Emerging methods and regeneration techniques such as co-precipitation and sol–gel synthesis demonstrate potential for high-purity material recovery and circular manufacturing. LCA results confirm that recycling significantly reduces GHG emissions, especially for high-nickel cathode chemistry. However, the environmental benefits are affected by upstream factors such as collection, disassembly, and logistics. Technoeconomic simulations show that profitability is strongly influenced by battery composition, regional cost structures, and collection rates. The study highlights the necessity of harmonized LCA boundaries, process optimization, and supportive policy frameworks to scale environmentally and economically sustainable LIB recycling, ensuring long-term supply security for critical battery materials. Full article
Show Figures

Graphical abstract

29 pages, 5577 KB  
Article
Institutional Quality, Macroeconomic Policy, and Sustainable Growth in Thailand
by Pathairat Pastpipatkul and Htwe Ko
Sustainability 2025, 17(16), 7524; https://doi.org/10.3390/su17167524 - 20 Aug 2025
Viewed by 197
Abstract
The effectiveness of fiscal and monetary policy in sustaining growth and facilitating recovery from economic crises is increasingly considered to be significantly influenced by the quality of a country’s institutions. Strong institutions may determine how well macroeconomic policies perform under both stable and [...] Read more.
The effectiveness of fiscal and monetary policy in sustaining growth and facilitating recovery from economic crises is increasingly considered to be significantly influenced by the quality of a country’s institutions. Strong institutions may determine how well macroeconomic policies perform under both stable and turbulent circumstances. This study examines how institutional quality (IQ) moderates the effects of fiscal and monetary policies on economic growth in Thailand from Q1:2003 to Q4:2023. Using a combination of BART and BASAD models, we find that voice and accountability and control of corruption are key institutional factors. Among macroeconomic indicators, exports, household debt, gold prices, and electricity generation emerge as the most important drivers of growth during the study period. The findings showed that IQ stabilizes and enhances the impact of policy interest rates and export growth while mitigating negative shocks from household debt and energy infrastructure challenges. Monetary policy effectiveness varies and depends on governmental institutions. Fiscal policy remains mostly neutral but shifts with institutional conditions. These results highlight that strong institutions improve the efficacy of macroeconomic policies and support sustainable growth. This study empirically examines the moderating role of IQ in economic resilience and policy design in an emerging economy using microdata from Thailand as a focus and the Time-varying Seemingly Unrelated Regression Equation (tvSURE) model. Full article
Show Figures

Graphical abstract

17 pages, 3945 KB  
Article
Banana Pseudostem By-Product: A Sustainable Source of Prebiotics and Protection for Probiotic Lactic Acid Bacteria Under Gastrointestinal Conditions
by Márcia Maria de Souza Moretti, Tais Fernanda Borgonovi, Svetoslav Dimitrov Todorov and Ana Lúcia Barretto Penna
Fermentation 2025, 11(8), 476; https://doi.org/10.3390/fermentation11080476 (registering DOI) - 20 Aug 2025
Viewed by 235
Abstract
Agricultural by-products, such as banana pseudostems (BPS), present a sustainable solution for waste reduction and the recovery of valuable metabolites with biotechnological applications. This study investigated the potential of BPS as a substrate for bio-fermentation, specifically for the cultivation of lactic acid bacteria [...] Read more.
Agricultural by-products, such as banana pseudostems (BPS), present a sustainable solution for waste reduction and the recovery of valuable metabolites with biotechnological applications. This study investigated the potential of BPS as a substrate for bio-fermentation, specifically for the cultivation of lactic acid bacteria (LAB). Maçã cultivar BPSs (MBPS) and Nanica cultivar BPSs (NBPS) flour samples showed differences in carbohydrate composition, especially in resistant starch (16.7 and 2.7%), cellulose (27.0 and 52.4%), and hemicellulose (25.4 and 33.8%), respectively. Phenolic compound content in NBPS was higher than in MBPS (193.9 and 153.5 GAE/100 g, respectively). The BPS starches and flour were well assimilated by the probiotic LAB cultures. Limosilactobacillus fermentum SJRP30 and SJRP43 showed significant growth in media with gelatinized Maçã flour (GMF) and non-gelatinized Nanica flour (NGNF) BPS by-products (Log 9.18 and 9.75 CFU/mL, respectively), while Lacticaseibacillus rhamnosus GG exhibited the highest growth (Log 11.31 CFU/mL) in the medium with NGNF BPS by-products. The probiotic Lbs. casei SJRP146 and Lmb. fermentum SJRP30 and SJRP43 presented high enzymatic activity and the ability to assimilate D-xylose. Only Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and SJRP49 were able to assimilate starch. Their prebiotic potential under in vitro gastrointestinal digestion was evidenced by promoting the selected probiotic bacteria’s protection and maintaining their viable cells after challenging conditions, likely associated with the BPS composition. Lab. delbrueckii subsp. bulgaricus SJRP57, Lacticaseibacillus casei SJRP145, and Lmb. fermentum SJRP43 performed similarly to the commercial strain Lbs. rhamnosus GG. These results demonstrate the feasibility of using cost-effective and abundant agricultural waste as a promising sustainable ingredient with potential prebiotic activity, via eco-friendly production methods that do not require chemical or enzymatic extraction. Full article
(This article belongs to the Special Issue Fermentation of Organic Waste for High-Value-Added Product Production)
Show Figures

Figure 1

16 pages, 4212 KB  
Article
Comparative Effects of Clump-Based and Traditional Selective Harvesting on Understory Biodiversity in Sympodial Bamboo Forests
by Ying Zhang, Chaohang Zhang, Zuming Wang, Haoting Li, Haofeng Bao, Fengying Guan, Chaomao Hui and Weiyi Liu
Plants 2025, 14(16), 2578; https://doi.org/10.3390/plants14162578 - 19 Aug 2025
Viewed by 164
Abstract
To improve the efficiency and reduce the cost of traditional sympodial bamboo harvesting, this study evaluated the effects of four harvesting intensities—selective harvesting, one-third clump, one-half clump, and complete clump harvesting—on understory plant diversity in pure Dendrocalamus giganteus stands over a five-year recovery [...] Read more.
To improve the efficiency and reduce the cost of traditional sympodial bamboo harvesting, this study evaluated the effects of four harvesting intensities—selective harvesting, one-third clump, one-half clump, and complete clump harvesting—on understory plant diversity in pure Dendrocalamus giganteus stands over a five-year recovery period. A total of 36 species were recorded in the first year, increasing to 71 in the third year and stabilizing at 74 species by year five. Understory α-diversity showed an increasing trend followed by a decline. In the early recovery stage, species diversity was significantly correlated with soil chemical properties (p < 0.05), but no significant correlation was observed in the later stage. Fuzzy membership function analysis indicated that the 1/2 clump harvesting treatment outperformed others, ranking as follows: 1/2 clump > 1/3 clump > selective > complete clump harvesting. These results suggest that 1/2 clump harvesting is optimal for promoting understory vegetation growth, but its positive effects on biodiversity are time-limited, with the plant community showing a trend toward simplification over time. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Graphical abstract

22 pages, 1973 KB  
Article
Research on the Coupling Coordination Between the Development Level of China’s Construction Industry and Carbon Emissions
by Jiaqiang Ren, Yizhuo Wang and Chanyu Xu
Sustainability 2025, 17(16), 7501; https://doi.org/10.3390/su17167501 - 19 Aug 2025
Viewed by 407
Abstract
In the framework of global efforts to mitigate climate change and in alignment with the “Dual Carbon” objectives, the construction sector, a fundamental cornerstone of the national economy, has garnered significant attention concerning its development and carbon emissions. This study collected data from [...] Read more.
In the framework of global efforts to mitigate climate change and in alignment with the “Dual Carbon” objectives, the construction sector, a fundamental cornerstone of the national economy, has garnered significant attention concerning its development and carbon emissions. This study collected data from the construction sector across 30 Chinese provinces (including autonomous regions and municipalities) to develop an evaluation index system for assessing high-quality development. The random forest algorithm was utilized to assess the levels of high-quality development, whereas the carbon emission factor approach was used to quantify emissions at the provincial level. Subsequently, a coupling coordination model was employed to analyze the interrelationship between development levels and carbon emissions. Key findings indicate the following: (1) China’s construction sector has shown sustained improvement in high-quality development; however, significant regional disparities persist, with eastern provinces (e.g., Beijing, Jiangsu) outperforming their central and western counterparts (e.g., Guangxi, Guizhou). (2) Carbon emissions from the construction sector exhibited an M-shaped fluctuation pattern, characterized by an increase from 2013 to 2014, followed by a decline in 2015, a subsequent recovery from 2016 to 2019, a transient decrease in 2020, and an eventual rebound in 2021 and 2022. Spatially, the developed coastal provinces of Jiangsu and Zhejiang exhibited significantly higher carbon emissions compared to regions such as Hainan and Ningxia. (3) The coupling coordination degree indicated a gradual increase from 0.50 to 0.55 (mean values); however, 78% of provinces remained at the “barely coordinated” level (0.5 ≤ D < 0.6), leading to a notable spatial distribution that is marked by elevated values in the eastern and southern regions, while exhibiting reduced values in the western and northern areas. Regional divergence was observed through four characteristic evolutionary trajectories: eastern China exhibited a U-shaped recovery, western China maintained linear growth, central China experienced inverted V-shaped fluctuations, and northeast China displayed W-shaped oscillations. Full article
Show Figures

Figure 1

11 pages, 480 KB  
Article
Effect of Harvest Age on Forage Production and Silage Quality of Pearl Millet Hybrid in Cerrado Biome
by Amarildo Pedro da Silva, Alexandre Menezes Dias, Anderson Ramires Candido, Eva Nara Oliveira Gomes, Juliana Oliveira Batistoti, Luís Carlos Vinhas Ítavo, Geraldo Tadeu dos Santos, Gelson dos Santos Difante and Elson Martins Coelho
Grasses 2025, 4(3), 34; https://doi.org/10.3390/grasses4030034 - 18 Aug 2025
Viewed by 190
Abstract
Pearl millet (Pennisetum glaucum L.) is a promising crop for silage production in the Cerrado biome, but its use is still limited, and the ideal age for ensiling has not been well defined. This study aimed to evaluate the ADRf 6010 pearl [...] Read more.
Pearl millet (Pennisetum glaucum L.) is a promising crop for silage production in the Cerrado biome, but its use is still limited, and the ideal age for ensiling has not been well defined. This study aimed to evaluate the ADRf 6010 pearl millet hybrid at four harvest ages for ensiling: 75, 85, 95, and 105 days after planting (DAP). Forage production (green and dry forage mass), chemical composition, and fermentation parameters were analyzed. Harvested forage was chopped into 2.0 cm particles and treated with a concentration of 1 × 105 CFU/g (Colony Forming Units; Lactobacillus plantarum CNCM I-3736 and Pediococcus acidilactici CNCM I-4622) of fresh forage. Forage mass increased linearly with harvest age. At 105 days of growth, the crop yielded 65,980 kg/ha of fresh forage and 15,569 kg/ha of dry matter. The dry matter (DM) and neutral detergent fiber (NDF) concentrations also increased with advancing harvest age. The concentrations of crude protein (CP), non-fibrous carbohydrates (NFC), and in vitro dry matter digestibility (IVDMD) decreased with increasing harvest age before ensiling. In the silages, pH, ammoniacal nitrogen (NH3-N), effluent loss, gas losses, and silage density decreased linearly, while DM recovery increased. With advancing harvest age, there was a positive linear increase in the concentrations of DM, NDF, and acid detergent fiber (ADF). On the other hand, CP, NFC, and IVDMD showed a negative linear trend. Based on the results, the ADRf 6010 pearl millet hybrid demonstrated high forage yield and favorable fermentative characteristics when harvested at different growth stages during the summer season. Advancing harvest age resulted in increased forage mass, dry matter content, and dry matter recovery, along with reduced fermentation losses such as effluents and gases. Although later harvests led to reductions in crude protein concentration and in vitro digestibility, these effects were compensated for by the higher dry matter yield per hectare and better preservation conditions. Thus, ADRf 6010 pearl millet is a promising crop for silage production under tropical conditions. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 3177 KB  
Review
Immunological and Inflammatory Biomarkers in the Prognosis, Prevention, and Treatment of Ischemic Stroke: A Review of a Decade of Advancement
by Marius P. Iordache, Anca Buliman, Carmen Costea-Firan, Teodor Claudiu Ion Gligore, Ioana Simona Cazacu, Marius Stoian, Doroteea Teoibaș-Şerban, Corneliu-Dan Blendea, Mirela Gabriela-Irina Protosevici, Cristiana Tanase and Maria-Linda Popa
Int. J. Mol. Sci. 2025, 26(16), 7928; https://doi.org/10.3390/ijms26167928 - 16 Aug 2025
Viewed by 422
Abstract
Ischemic stroke triggers a dynamic immune response that influences both acute damage and long-term recovery. This review synthesizes a decade of evidence on immunological and inflammatory biomarkers in ischemic stroke, emphasizing their prognostic and therapeutic significance. Following ischemic insult, levels of pro-inflammatory cytokines, [...] Read more.
Ischemic stroke triggers a dynamic immune response that influences both acute damage and long-term recovery. This review synthesizes a decade of evidence on immunological and inflammatory biomarkers in ischemic stroke, emphasizing their prognostic and therapeutic significance. Following ischemic insult, levels of pro-inflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and chemokines like interleukin-8 (IL-8) rapidly rise, promoting blood–brain barrier disruption, leukocyte infiltration, and neuronal death. Conversely, anti-inflammatory mediators such as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) facilitate repair, neurogenesis, and immune regulation in later phases. The balance between these pathways determines outcomes and is reflected in circulating biomarkers. Composite hematological indices including the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII) offer accessible and cost-effective prognostic tools. Several biomarkers correlate with infarct size, neurological deterioration, and mortality, and may predict complications like hemorrhagic transformation or infection. Therapeutic strategies targeting cytokines, especially IL-1 and IL-6, have shown promise in modulating inflammation and improving outcomes. Future directions include personalized immune profiling, real-time cytokine monitoring, and combining immunotherapy with neurorestorative approaches. By integrating immune biomarkers into stroke care, clinicians may enhance risk stratification, optimize treatment timing, and identify candidates for novel interventions. This review underscores inflammation’s dual role and evolving therapeutic and prognostic relevance in ischemic stroke. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

25 pages, 2355 KB  
Article
Economic Evolution in Euro-Adopting States vs. Future Adopters: A Comparative Analysis
by Nicoleta Georgeta Panait and Madalina Antoaneta Radoi
Economies 2025, 13(8), 239; https://doi.org/10.3390/economies13080239 - 16 Aug 2025
Viewed by 396
Abstract
This paper analyzes the macroeconomic evolution of the European Union member states that have adopted the Euro, compared to those that continue to use national currencies, with a specific focus on the Central and Eastern European countries during the period 2018–2024. Using a [...] Read more.
This paper analyzes the macroeconomic evolution of the European Union member states that have adopted the Euro, compared to those that continue to use national currencies, with a specific focus on the Central and Eastern European countries during the period 2018–2024. Using a quantitative and exploratory approach and data provided by Eurostat, the European Central Bank, and the International Monetary Fund, we examined a series of key indicators: interest rates, inflation, GDP per capita, public debt, and foreign direct investment. The results highlight several macroeconomic advantages for Eurozone countries, including lower interest rate volatility and a quicker recovery from inflation, largely due to access to monetary tools such as PEPP and TPI. Non-Euro countries have experienced more severe inflationary episodes and higher financing costs, which have negatively impacted FDI inflows. Although some of these countries, such as Romania and Poland, have recorded solid GDP growth, they remain exposed to structural vulnerabilities and political and economic uncertainties. Correlation analyses confirm significant negative relationships between interest rates, inflation, and FDI levels. Full article
Show Figures

Figure 1

30 pages, 3896 KB  
Article
Recovery Rates of Black Spruce and Tamarack on Lowland Seismic Lines in Alberta, Canada
by Dani Degenhardt, Angeline Van Dongen, Caitlin Mader, Brooke Bourbeau, Caren Jones and Aaron Petty
Forests 2025, 16(8), 1330; https://doi.org/10.3390/f16081330 - 15 Aug 2025
Viewed by 334
Abstract
The cumulative impact of decades of oil and gas exploration has left Alberta’s boreal forests densely fragmented by seismic lines, which are expected to naturally regenerate; however, recovery is often highly variable and generally poor in peatlands due to increased wetness and reduced [...] Read more.
The cumulative impact of decades of oil and gas exploration has left Alberta’s boreal forests densely fragmented by seismic lines, which are expected to naturally regenerate; however, recovery is often highly variable and generally poor in peatlands due to increased wetness and reduced microtopography. In this study, we evaluated seismic lines in lowland ecosites with some degree of successful natural regeneration to gain a better understanding of the natural recovery process in these areas. We compared stand characteristics between the seismic line (23 to 48 years post-disturbance) and the adjacent undisturbed forest. We found that soil properties were similar, but seedling (height < 1.3 m) density was significantly higher on the seismic line, with 252% more tamarack and 65% more black spruce than in the adjacent forest. Relative to the adjacent forest, there were significantly fewer trees (height > 1.3 m) on the seismic line, with an 84% and 50% reduction in black spruce and tamarack, respectively. By analyzing tree ring data from seismic lines, we found that the length of time before tree establishment was 10 years for black spruce and 8 years for tamarack. On average, it took 12 years for tree density to reach 2000 stems per hectare (sph). We modeled growth rates for black spruce and tamarack and found that they were growing faster than their adjacent forest counterparts, reaching 3 m after an average of 38 and 33 years, respectively. Stands on seismic lines were projected to a final stand age of 61 years using the Mixedwood Growth Model (MGM) to evaluate future stand characteristics. Full article
(This article belongs to the Special Issue Forest Growth and Regeneration Dynamics)
Show Figures

Figure 1

Back to TopTop