Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = half wave potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2142 KB  
Article
Nitrogen-Doped Biocarbon Derived from Alginate-Extraction Residues of Sargassum spp.: Towards Low-Cost Electrocatalysts for Alkaline ORR
by Aurora Caldera, Beatriz Escobar, Juan Briceño, José M. Baas-López, Romeli Barbosa and Jorge Uribe
Chemistry 2025, 7(5), 144; https://doi.org/10.3390/chemistry7050144 - 3 Sep 2025
Viewed by 91
Abstract
Extraction processes of alginates from Sargassum spp. generate a substantial number of solid residues that are commonly discarded. This study explores the sustainable transformation of these residues into nitrogen-doped biocarbon through chemical activation with KOH and nitrogen doping using urea. XRD, FTIR, SEM-EDX, [...] Read more.
Extraction processes of alginates from Sargassum spp. generate a substantial number of solid residues that are commonly discarded. This study explores the sustainable transformation of these residues into nitrogen-doped biocarbon through chemical activation with KOH and nitrogen doping using urea. XRD, FTIR, SEM-EDX, Raman spectroscopy, BET surface area analysis, XPS, and CHNS elemental analysis were used to characterize the materials. The doped and activated biocarbon (BDA) demonstrated excellent physicochemical properties, including a specific surface area of 1790 m2 g−1 and a mesoporous structure. Electrochemical evaluation in alkaline media revealed a current density of −4.37 mA cm−2, an onset potential of 0.922 E vs. RHE, and a half-wave potential of 0.775 E vs. RHE. Koutecky–Levich analysis indicated a two-electron reduction pathway. The superior performance was attributed to the synergistic effects of high surface area, nitrogen functionalities (pyridinic-N and pyrrolic-N), and enhanced accessibility of active sites. These results highlight the potential of waste-derived, nitrogen-doped biocarbon as a sustainable and low-cost alternative for ORR electrocatalysis in alkaline fuel cells. Full article
(This article belongs to the Section Catalysis)
32 pages, 15679 KB  
Article
New Optical Voltage Sensor Based on Closed-Loop Pockels Cell and Sliding Mode Observer: Theory and Experiments
by Luis Miguel Quispe-Valencia, Ricardo Tokio Higuti, Marcelo Carvalho M. Teixeira and Claudio Kitano
Sensors 2025, 25(17), 5319; https://doi.org/10.3390/s25175319 - 27 Aug 2025
Viewed by 571
Abstract
The increasing power demand in substations and the advancement of smart-grid technology point to optical voltage sensors (OVSs) based on the Pockels effect as an attractive solution to replace traditional coil instrument transformers, due to their advantageous characteristics of lower cost and installation [...] Read more.
The increasing power demand in substations and the advancement of smart-grid technology point to optical voltage sensors (OVSs) based on the Pockels effect as an attractive solution to replace traditional coil instrument transformers, due to their advantageous characteristics of lower cost and installation space, absence of explosion risks, as well as nonlinear effects such as magnetic hysteresis. Regarding the measurement, our OVS presents excellent linearity, 3 kHz bandwidth, and high input impedance. The primary contribution of this paper is to demonstrate, for the first time, the efficiency of a versatile nonlinear digital controller, based on sliding mode theory, for the optical phase demodulation of an OVS. A simple proportional-integral feedback control is employed to prevent signal fading and generate the two quadrature signals required by the observer, which includes the nonlinear digital controller. Experimental results, for 60 Hz sinusoidal voltages with amplitudes exceeding the half-wave voltage of the OVS, prove that peak-to-peak relative errors remain below 0.8%, while total harmonic distortion (THD) relative errors are under 1.5% when compared to a commercial high-voltage probe used as a reference. These results confirm compliance with Class 1.0 of the UNE-EN 60044-7 standard and show strong potential for applications in power quality measurements. Full article
(This article belongs to the Special Issue Advanced Sensing and Measurement Control Applications)
Show Figures

Figure 1

17 pages, 1934 KB  
Article
Transition of Natural Convection in Liquid Metal Within an Annular Enclosure with Various Angular Partitions
by Takuya Masuda and Toshio Tagawa
Symmetry 2025, 17(8), 1278; https://doi.org/10.3390/sym17081278 - 9 Aug 2025
Viewed by 349
Abstract
This study investigates natural convection of liquid metal in an annular enclosure with a square cross-section using three-dimensional numerical simulations. Liquid metals, with low Prandtl numbers, exhibit oscillatory transitions at lower Rayleigh numbers than conventional fluids. While previous studies focused on full-circle domains [...] Read more.
This study investigates natural convection of liquid metal in an annular enclosure with a square cross-section using three-dimensional numerical simulations. Liquid metals, with low Prandtl numbers, exhibit oscillatory transitions at lower Rayleigh numbers than conventional fluids. While previous studies focused on full-circle domains where steady or irregular flows were observed, this work examines the effect of angular partitions on flow dynamics. The results reveal that periodic three-dimensional oscillatory flows arise in domains with specific angular sizes, such as quarter circles, whereas full-circle domains produce irregular or steady flows. Angular wave numbers vary spatially and temporally during transitional growth. The emergence of half-symmetric oscillatory modes highlights the role of symmetry constraints imposed by the geometry and boundary conditions. These transitions are closely tied to symmetry breaking and mode selection. A linear stability perspective helps clarify the critical factors that determine the transition type. These findings underscore that angular segmentation and periodic boundary conditions are essential for sustaining regular oscillatory convection. This study contributes to the understanding of symmetry-governed convection transitions in low-Prandtl-number fluids and has potential implications for industrial processes, such as semiconductor crystal growth, where flow uniformity and thermal stability are crucial. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

13 pages, 10178 KB  
Article
Luffa-like Interconnective Porous Nanofiber with Anchored Co/CoCr2O4 Hybrid Nanoparticles for Zinc–Air Batteries
by Guoqiang Jin, Bin Liu, Yan Liu, Xueting Zhang, Dapeng Cao and Xiuling Zhang
Batteries 2025, 11(8), 306; https://doi.org/10.3390/batteries11080306 - 8 Aug 2025
Viewed by 606
Abstract
The development of robust oxygen reduction reaction (ORR) catalyst with fast kinetics and good durability is significant for rechargeable zinc–air batteries (ZABs) but still remains a great challenge. Herein, inspired by the chain-like interconnective porous structure of plant luffa, an ORR catalyst of [...] Read more.
The development of robust oxygen reduction reaction (ORR) catalyst with fast kinetics and good durability is significant for rechargeable zinc–air batteries (ZABs) but still remains a great challenge. Herein, inspired by the chain-like interconnective porous structure of plant luffa, an ORR catalyst of Co/CoCr2O4@ IPCF is fabricated, with Co and CoCr2O4 hybrid nanoparticles (NPs) embedding into interconnective porous carbon nanofibers (IPCF). Contributing to CoCr2O4 NPs stabilized Co active sites, the resulting ZABs assembled with Co/CoCr2O4@IPCF as an air cathode catalyst delivering sustainable cycling stability of 550 h, surpassing that of Co@IPCF based on ZABs (215 h). Also, the Co/CoCr2O4@IPCF has a high ORR performance with a half-wave potential (E1/2) of 0.866 V in alkaline medium. The cycling stability originates from the IPCF carrier and the synergistic effect of Co NPs and CoCr2O4 NPs. The chain-like interconnective porous structure of the fibers provides more active sites and facilitates mass transfer to avoid the accumulation of OH and the exposure of H2O2, while the CoCr2O4 NPs can serve as a regulator for stabilizing the Co NPs electrochemical performance. Full article
(This article belongs to the Special Issue Novel Materials for Rechargeable Batteries)
Show Figures

Figure 1

13 pages, 4326 KB  
Article
MBE Growth of High-Quality HgCdSe for Infrared Detector Applications
by Zekai Zhang, Wenwu Pan, Gilberto A. Umana Membreno, Shuo Ma, Lorenzo Faraone and Wen Lei
Materials 2025, 18(15), 3676; https://doi.org/10.3390/ma18153676 - 5 Aug 2025
Viewed by 234
Abstract
HgCdSe has recently been proposed as a potential alternative material to HgCdTe for fabricating high-performance infrared detectors. This work presents a study on the growth of high-crystalline-quality HgCdSe materials on GaSb (211)B substrates via molecular beam epitaxy and demonstration of the first prototype [...] Read more.
HgCdSe has recently been proposed as a potential alternative material to HgCdTe for fabricating high-performance infrared detectors. This work presents a study on the growth of high-crystalline-quality HgCdSe materials on GaSb (211)B substrates via molecular beam epitaxy and demonstration of the first prototype HgCdSe-based mid-wave infrared detectors. By optimizing the MBE growth parameters, and especially the thermal cleaning process of the GaSb substrate surface prior to epitaxial growth, high-quality HgCdSe material was achieved with a record XRD full width at half maximum of ~65 arcsec. At a temperature of 77 K, the mid-wave infrared HgCdSe n-type material demonstrated a minority carrier lifetime of ~1.19 µs, background electron concentration of ~2.2 × 1017 cm−3, and electron mobility of ~1.6 × 104 cm2/Vs. The fabricated mid-wave infrared HgCdSe photoconductor presented a cut-off wavelength of 4.2 µm, a peak responsivity of ~40 V/W, and a peak detectivity of ~1.2 × 109 cmHz1/2/W at 77 K. Due to the relatively high background electron concentration, the detector performance is lower than that of state-of-the-art low-doped HgCdTe counterparts. However, these preliminary results indicate the great potential of HgCdSe materials for achieving next-generation IR detectors on large-area substrates with features of lower cost and larger array format size. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

13 pages, 2812 KB  
Article
Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions?
by Olga Morozova, Maria Khlupova, Irina Vasil’eva, Alexander Yaropolov and Tatyana Fedorova
Int. J. Mol. Sci. 2025, 26(15), 7488; https://doi.org/10.3390/ijms26157488 - 2 Aug 2025
Viewed by 384
Abstract
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation [...] Read more.
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation and in a heterogeneous reaction of dioxygen electroreduction. The ThL and CcL laccases belong to high-redox-potential enzymes (E0T1 = 780 mV), while the AfL and SmL laccases are medium-redox-potential enzymes (E0T1 = 620 and 650 mV). We evaluated the efficiency of laccases in mediatorless bioelectrocatalytic dioxygen reduction by the steady-state potential (Ess), onset potential (Eonset), half-wave potential (E1/2), and the slope of the linear segment of the polarization curve. A good correlation was observed between the T1 center potential of the laccases and their electrocatalytic characteristics; however, no correlation with the homogeneous reactions of electron donor substrates’ oxidation was detected. The results obtained are discussed in the light of the known data on the three-dimensional structures of the laccases studied. Full article
(This article belongs to the Special Issue Advanced Research on Enzymes in Biocatalysis)
Show Figures

Graphical abstract

28 pages, 3834 KB  
Article
An Exact 3D Shell Model for Free Vibration Analysis of Magneto-Electro-Elastic Composite Structures
by Salvatore Brischetto, Domenico Cesare and Tommaso Mondino
J. Compos. Sci. 2025, 9(8), 399; https://doi.org/10.3390/jcs9080399 - 1 Aug 2025
Viewed by 343
Abstract
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and [...] Read more.
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and spherical shells. The closed-form solution of the problem is performed considering Navier harmonic forms in the in-plane directions and the exponential matrix method in the thickness direction. A layerwise approach is possible, considering the interlaminar continuity conditions for displacements, electric and magnetic potentials, transverse shear/normal stresses, transverse normal magnetic induction and transverse normal electric displacement. Some preliminary cases are proposed to validate the present 3D MEE free vibration model for several curvatures, materials, thickness values and vibration modes. Then, new benchmarks are proposed in order to discuss possible effects in multilayered MEE curved smart structures. In the new benchmarks, first, three circular frequencies for several half-wave number couples and for different thickness ratios are proposed. Thickness vibration modes are shown in terms of displacements, stresses, electric displacement and magnetic induction along the thickness direction. These new benchmarks are useful to understand the free vibration behavior of MEE curved smart structures, and they can be used as reference for researchers interested in the development of of 2D/3D MEE models. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

17 pages, 4685 KB  
Article
Development of an Automated Phase-Shifting Interferometer Using a Homemade Liquid-Crystal Phase Shifter
by Zhenghao Song, Lin Xu, Jing Wang, Xitong Liang and Jun Dai
Photonics 2025, 12(7), 722; https://doi.org/10.3390/photonics12070722 - 16 Jul 2025
Viewed by 453
Abstract
In this paper, an automatic phase-shifting interferometer has been developed using a homemade liquid-crystal phase shifter, which demonstrates a low-cost, fully automated technical solution for measuring the phase information of optical waves in devices. Conventional phase-shifting interferometers usually rely on PZT piezoelectric phase [...] Read more.
In this paper, an automatic phase-shifting interferometer has been developed using a homemade liquid-crystal phase shifter, which demonstrates a low-cost, fully automated technical solution for measuring the phase information of optical waves in devices. Conventional phase-shifting interferometers usually rely on PZT piezoelectric phase shifters, which are complex, require additional half-inverse and half-transparent optics to build the optical path, and are expensive. To overcome these limitations, we used a laboratory-made liquid-crystal waveplate as a phase shifter and integrated it into a Mach–Zehnder phase-shifting interferometer. The system is controlled by an STM32 microcontroller and self-developed measurement software, and it utilizes a four-step phase-shift interferometry algorithm and the CPULSI phase-unwrapping algorithm to achieve automatic phase measurements. Phase test experiments using a standard plano-convex lens and a homemade liquid-crystal grating as test objects demonstrate the feasibility and accuracy of the device by the fact that the measured focal lengths are in good agreement with the nominal values, and the phase distributions of the gratings are also in good agreement with the predefined values. This study validates the potential of liquid-crystal-based phase shifters for low-cost, fully automated optical phase measurements, providing a simpler and cheaper alternative to conventional methods. Full article
Show Figures

Figure 1

53 pages, 915 KB  
Review
Neural Correlates of Huntington’s Disease Based on Electroencephalography (EEG): A Mechanistic Review and Discussion of Excitation and Inhibition (E/I) Imbalance
by James Chmiel, Jarosław Nadobnik, Szymon Smerdel and Mirela Niedzielska
J. Clin. Med. 2025, 14(14), 5010; https://doi.org/10.3390/jcm14145010 - 15 Jul 2025
Viewed by 836
Abstract
Introduction: Huntington’s disease (HD) disrupts cortico-striato-thalamocortical circuits decades before clinical onset. Electroencephalography (EEG) offers millisecond temporal resolution, low cost, and broad accessibility, yet its mechanistic and biomarker potential in HD remains underexplored. We conducted a mechanistic review to synthesize half a century [...] Read more.
Introduction: Huntington’s disease (HD) disrupts cortico-striato-thalamocortical circuits decades before clinical onset. Electroencephalography (EEG) offers millisecond temporal resolution, low cost, and broad accessibility, yet its mechanistic and biomarker potential in HD remains underexplored. We conducted a mechanistic review to synthesize half a century of EEG findings, identify reproducible electrophysiological signatures, and outline translational next steps. Methods: Two independent reviewers searched PubMed, Scopus, Google Scholar, ResearchGate, and the Cochrane Library (January 1970–April 2025) using the terms “EEG” OR “electroencephalography” AND “Huntington’s disease”. Clinical trials published in English that reported raw EEG (not ERP-only) in human HD gene carriers were eligible. Abstract/title screening, full-text appraisal, and cross-reference mining yielded 22 studies (~700 HD recordings, ~600 controls). We extracted sample characteristics, acquisition protocols, spectral/connectivity metrics, and neuroclinical correlations. Results: Across diverse platforms, a consistent spectral trajectory emerged: (i) presymptomatic carriers show a focal 7–9 Hz (low-alpha) power loss that scales with CAG repeat length; (ii) early-manifest patients exhibit widespread alpha attenuation, delta–theta excess, and a flattened anterior-posterior gradient; (iii) advanced disease is characterized by global slow-wave dominance and low-voltage tracings. Source-resolved studies reveal early alpha hypocoherence and progressive delta/high-beta hypersynchrony, microstate shifts (A/B ↑, C/D ↓), and rising omega complexity. These electrophysiological changes correlate with motor burden, cognitive slowing, sleep fragmentation, and neurovascular uncoupling, and achieve 80–90% diagnostic accuracy in shallow machine-learning pipelines. Conclusions: EEG offers a coherent, stage-sensitive window on HD pathophysiology—from early thalamocortical disinhibition to late network fragmentation—and fulfills key biomarker criteria. Translation now depends on large, longitudinal, multi-center cohorts with harmonized high-density protocols, rigorous artifact control, and linkage to clinical milestones. Such infrastructure will enable the qualification of alpha-band restoration, delta-band hypersynchrony, and neurovascular coupling as pharmacodynamic readouts, fostering precision monitoring and network-targeted therapy in Huntington’s disease. Full article
Show Figures

Figure 1

12 pages, 2721 KB  
Article
Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries
by Wanting Xiong, Yifan Kong, Jiangrong Xiao, Tingting Wang and Xiaoli Chen
Catalysts 2025, 15(7), 683; https://doi.org/10.3390/catal15070683 - 14 Jul 2025
Viewed by 494
Abstract
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In [...] Read more.
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In this work, we report the synthesis of a three-dimensional (3D) N and P co-doped porous carbon (PA@pDC-1000), derived from a conjugated polyaniline–phytic acid polymer. The cross-linked, rigid conjugated polymeric framework plays a crucial role in maintaining the integrity of micro- and mesoporous structures and promoting graphitization during carbonization. As a result, the material exhibits a hierarchical pore structure, a high specific surface area (1045 m2 g−1), and a large pore volume (1.02 cm3 g−1). The 3D N, P co-doped PA@pDC-1000 catalyst delivers a half-wave potential of 0.80 V (vs. RHE) and demonstrates a higher current density compared to commercial Pt/C. A primary ZAB utilizing this material achieves an open-circuit voltage of 1.51 V and a peak power density of 217 mW cm−2. This metal-free, self-templating presents a scalable route for the generating and producing of high-performance oxygen reduction reaction catalysts for ZABs. Full article
(This article belongs to the Special Issue Electrocatalysis and Photocatalysis in Redox Flow Batteries)
Show Figures

Figure 1

26 pages, 2204 KB  
Review
Recent Advances in Understanding R-Process Nucleosynthesis in Metal-Poor Stars and Stellar Systems
by Avrajit Bandyopadhyay and Timothy C. Beers
Universe 2025, 11(7), 229; https://doi.org/10.3390/universe11070229 - 11 Jul 2025
Viewed by 986
Abstract
The rapid neutron-capture process (r-process) is responsible for the creation of roughly half of the elements heavier than iron, including precious metals like silver, gold, and platinum, as well as radioactive elements such as thorium and uranium. Despite its importance, the [...] Read more.
The rapid neutron-capture process (r-process) is responsible for the creation of roughly half of the elements heavier than iron, including precious metals like silver, gold, and platinum, as well as radioactive elements such as thorium and uranium. Despite its importance, the nature of the astrophysical sites where the r-process occurs, and the detailed mechanisms of its formation, remain elusive. The key to resolving these mysteries lies in the study of chemical signatures preserved in ancient, metal-poor stars. These stars, which formed in the early Universe, retain the chemical fingerprints of early nucleosynthetic events and offer a unique opportunity to trace the origins of r-process elements in the early Galaxy. In this review, we explore the state-of-the-art understanding of r-process nucleosynthesis, focusing on the sites, progenitors, and formation mechanisms. We discuss the role of potential astrophysical sites such as neutron star mergers, core-collapse supernovae, magneto-rotational supernovae, and collapsars, that can play a key role in producing the heavy elements. We also highlight the importance of studying these signatures through high-resolution spectroscopic surveys, stellar archaeology, and multi-messenger astronomy. Recent advancements, such as the gravitational wave event GW170817 and detection of the r-process in the ejecta of its associated kilonovae, have established neutron star mergers as one of the confirmed sites. However, questions remain regarding whether they are the only sites that could have contributed in early epochs or if additional sources are needed to explain the signatures of r-process found in the oldest stars. Additionally, there are strong indications pointing towards additional sources of r-process-rich nuclei in the context of Galactic evolutionary timescales. These are several of the outstanding questions that led to the formation of collaborative efforts such as the R-Process Alliance, which aims to consolidate observational data, modeling techniques, and theoretical frameworks to derive better constraints on deciphering the astrophysical sites and timescales of r-process enrichment in the Galaxy. This review summarizes what has been learned so far, the challenges that remain, and the exciting prospects for future discoveries. The increasing synergy between observational facilities, computational models, and large-scale surveys is poised to transform our understanding of r-process nucleosynthesis in the coming years. Full article
(This article belongs to the Special Issue Advances in Nuclear Astrophysics)
Show Figures

Figure 1

18 pages, 3283 KB  
Article
AI-Driven Differentiation and Quantification of Metal Ions Using ITIES Electrochemical Sensors
by Muzammil M. N. Ahmed, Parth Ganeriwala, Anthi Savvidou, Nicholas Breen, Siddhartha Bhattacharyya and Pavithra Pathirathna
J. Sens. Actuator Netw. 2025, 14(4), 70; https://doi.org/10.3390/jsan14040070 - 9 Jul 2025
Viewed by 792
Abstract
Electrochemical sensors, particularly those based on ion transfer at the interface between two immiscible electrolyte solutions (ITIES), offer significant advantages such as high selectivity, ease of fabrication, and cost effectiveness for toxic metal ion detection. However, distinguishing between cyclic voltammograms (CVs) of analytes [...] Read more.
Electrochemical sensors, particularly those based on ion transfer at the interface between two immiscible electrolyte solutions (ITIES), offer significant advantages such as high selectivity, ease of fabrication, and cost effectiveness for toxic metal ion detection. However, distinguishing between cyclic voltammograms (CVs) of analytes with closely spaced half-wave potentials, such as Cd2+ and Cu2+, remains a challenge, especially for non-expert users. In this work, we present a novel methodology that integrates advanced artificial intelligence (AI) models with ITIES-based sensing to automate and enhance metal ion detection. Our approach first employed a convolutional neural network to classify CVs as either ideal or faulty with an accuracy exceeding 95 percent. Ideal CVs were then further analyzed for metal ion identification, achieving a classification accuracy of 99.15 percent between Cd2+ and Cu2+ responses. Following classification, an artificial neural network was used to quantitatively predict metal ion concentrations, yielding low mean absolute errors of 0.0158 for Cd2+ and 0.0127 for Cu2+. This integrated AI–ITIES system not only provides a scientific methodology for differentiating analyte responses based on electrochemical signatures but also substantially lowers the expertise barrier for sensor signal interpretation. To our knowledge, this is the first report of the AI-assisted differentiation and quantification of metal ions from ITIES-based CVs, establishing a robust framework for the future development of user-friendly, automated electrochemical sensing platforms for environmental and biological applications. Full article
Show Figures

Figure 1

13 pages, 6452 KB  
Article
Facile Synthesis of Non-Noble CuFeCo/C Catalysts with High Stability for ORR in PEMFC
by Ruixia Chu, Hongtao Zhang, Fangyuan Qiu, Wenjun Fu, Wanyou Huang, Runze Li, Zhenyu Li, Xiaoyue Jin and Yan Wang
Materials 2025, 18(12), 2826; https://doi.org/10.3390/ma18122826 - 16 Jun 2025
Viewed by 401
Abstract
Proton exchange membrane fuel cells (PEMFCs) have been widely studied as an efficient and environmentally friendly energy conversion technology in recent years. However, the high cost, easy poisoning and complex synthesis methods of noble metal catalysts have hindered their commercialization. Therefore, in this [...] Read more.
Proton exchange membrane fuel cells (PEMFCs) have been widely studied as an efficient and environmentally friendly energy conversion technology in recent years. However, the high cost, easy poisoning and complex synthesis methods of noble metal catalysts have hindered their commercialization. Therefore, in this paper, a non-noble metal composite catalyst CuFeCo/C for the oxygen reduction reaction (ORR) was prepared by using a facile liquid-phase reduction method. The ORR kinetic performance of CuFeCo/C was evaluated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) tests. The results show that the oxygen reduction peak of CuFeCo/C appears at about 0.64 V, the half-wave potential is about 0.73 V, the limiting current density is about −16.51 A·m−2, and the Tafel slope is about −0.08. The 10,800 s chronoamperometry test shows that the catalyst has a very good long-term cycle stability. This indicates that the CuFeCo/C composite catalyst has strong stability, good conductivity and ORR catalytic activity under alkaline conditions, which can promote the large-scale commercial application of PEMFCs. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

15 pages, 5030 KB  
Article
Decorating Ti3C2 MXene Nanosheets with Fe-Nx-C Nanoparticles for Efficient Oxygen Reduction Reaction
by Han Zheng, Fagang Wang and Weimeng Si
Inorganics 2025, 13(6), 188; https://doi.org/10.3390/inorganics13060188 - 6 Jun 2025
Viewed by 738
Abstract
Finding alternatives to platinum that exhibit high activity, stability, and abundant reserves as oxygen reduction electrocatalysts is crucial for the advancement of fuel cells. In this study, we first mixed FeCl2·4H2O, 1,10-phenanthroline, and Vulcan XC-72, followed by pyrolysis in [...] Read more.
Finding alternatives to platinum that exhibit high activity, stability, and abundant reserves as oxygen reduction electrocatalysts is crucial for the advancement of fuel cells. In this study, we first mixed FeCl2·4H2O, 1,10-phenanthroline, and Vulcan XC-72, followed by pyrolysis in a nitrogen atmosphere, to obtain FeNC. Subsequently, we combined FeNC with MXene produce FeNC/MXene composites. The FeNC/MXene catalyst achieved a half-wave potential of 0.857 V in an alkaline medium, exhibiting better oxygen reduction reaction (ORR) activity and durability than commercial Pt/C catalysts. The layered structure of MXene endows the material with a high specific surface area and facilitates efficient electron transfer pathways, thereby promoting rapid charge transfer and material diffusion. The cleavage of Ti-C bonds in Ti3C2 at elevated temperatures results in the transformation of MXene into TiO2, where the coexistence of anatase and rutile phases generates a synergistic effect that enhances both the mass transfer rate and the electrical conductivity of the catalytic layer. Additionally, the unique electronic structure of the FeNx sites simultaneously optimizes electrocatalytic activity and stability. Leveraging these structural advantages, the FeNC/MXene composite catalysts demonstrate exceptional catalytic activity and long-term stability in oxygen reduction reactions. Full article
Show Figures

Figure 1

23 pages, 7867 KB  
Article
Compact Waveguide Antenna Design for 77 GHz High-Resolution Radar
by Chin-Hsien Wu, Tsun-Che Huang and Malcolm Ng Mou Kehn
Sensors 2025, 25(11), 3262; https://doi.org/10.3390/s25113262 - 22 May 2025
Viewed by 1079
Abstract
Millimeter-wave antennas have become more important recently due to the diversity of applications in 5G and upcoming 6G technologies, of which automotive systems constitute a significant part. Two crucial indices, detection range and angular resolution, are used to distinguish the performance of the [...] Read more.
Millimeter-wave antennas have become more important recently due to the diversity of applications in 5G and upcoming 6G technologies, of which automotive systems constitute a significant part. Two crucial indices, detection range and angular resolution, are used to distinguish the performance of the automotive antenna. Strong gains and narrow beamwidths of highly directive radiation beams afford longer detection range and finer spatial selectivity. Although conventionally used, patch antennas suffer from intrinsic path losses that are much higher when compared to the waveguide antenna. Designed at 77 GHz, presented in this article is an 8-element slot array on the narrow side wall of a rectangular waveguide, thus being readily extendable to planar arrays by adding others alongside while maintaining the element spacing requirement for grating lobe avoidance. Comprising tilted Z-shaped slots for higher gain while keeping constrained within the narrow wall, adjacent ones separated by half the guided wavelength are inclined with reversed tilt angles for cross-polar cancelation. An open-ended external waveguide is placed over each slot for polarization purification. Equivalent circuit models of slotted waveguides aid the design. An approach for sidelobe suppression using the Chebyshev distribution is adopted. Four types of arrays are proposed, all of which show potential for different demands and applications in automotive radar. Prototypes based on designs by simulations were fabricated and measured. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop