Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,364)

Search Parameters:
Keywords = hardening behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3049 KB  
Article
Effects of Ar Ion Irradiation on Mechanical Properties and Microstructure of SA508 Grade 3 Class 1 and Class 2 Reactor Pressure Vessel Steels
by Ho-A Kim, Mincheol Kim, Sungjun Choi and Sangtae Kim
Materials 2025, 18(19), 4601; https://doi.org/10.3390/ma18194601 - 3 Oct 2025
Abstract
This study investigates the effects of Ar ion irradiation on the mechanical properties and microstructure of SA508 Grade 3 Class 1 and Class 2 reactor pressure vessel steels. Three different fluence levels of Ar ion irradiation were applied to simulate accelerated irradiation damage [...] Read more.
This study investigates the effects of Ar ion irradiation on the mechanical properties and microstructure of SA508 Grade 3 Class 1 and Class 2 reactor pressure vessel steels. Three different fluence levels of Ar ion irradiation were applied to simulate accelerated irradiation damage conditions. Charpy impact and tensile tests conducted before and after irradiation showed no significant changes in bulk mechanical properties. Stopping and Range of Ions in Matter (SRIM) and Transport of Ions in Matter (TRIM) simulations revealed that Ar ion irradiation produces a shallow penetration depth of approximately 2.5 µm, highlighting the limitations of conventional macro-mechanical testing for evaluating irradiation effects in such a thin surface layer. To overcome this limitation, nano-indentation tests were performed, revealing a clear increase in indentation hardness after irradiation. Transmission electron microscopy (TEM) analysis using STEM–BF imaging confirmed a higher density of irradiation-induced defects in the irradiated specimens. The findings demonstrate that while macro-mechanical properties remain largely unaffected, micro-scale testing methods such as nano-indentation are essential for assessing irradiation-induced hardening in shallowly damaged layers, providing insight into the behavior of SA508 reactor pressure vessel steels under accelerated irradiation conditions. Full article
(This article belongs to the Section Metals and Alloys)
17 pages, 5087 KB  
Article
Study on the Strength Characteristics of Ion-Adsorbed Rare Earth Ore Under Chemical Leaching and the Duncan–Chang Model Parameters
by Zhongqun Guo, Xiaoming Lin, Haoxuan Wang, Qiqi Liu and Jianqi Wu
Metals 2025, 15(10), 1104; https://doi.org/10.3390/met15101104 - 3 Oct 2025
Abstract
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO [...] Read more.
Ionic rare earths are extracted from primary sources by the in situ chemical leaching method, where the type and concentration of leaching agents significantly affect the mechanical properties and microstructure of the ore body. In this study, MgSO4 and Al2(SO4)3 solutions of varying concentrations were used as leaching agents to investigate the evolution of shear strength, the characteristics of Duncan–Chang hyperbolic model parameters, and the changes in microstructural pore characteristics of rare earth samples under different leaching conditions. The results show that the stress–strain curves of all samples consistently exhibit strain-hardening behavior under all leaching conditions, and shear strength is jointly influenced by confining pressure and the chemical interaction between the leaching solution and the soil. The samples leached with MgSO4 exhibited higher shear strength than those treated with water. The samples leached with 3% and 6% Al2(SO4)3 showed increased strength, while 9% Al2(SO4)3 caused a slight decrease. With increasing leaching agent concentration, the cohesion of the samples significantly declined, whereas the internal friction angle remained relatively stable. The Duncan–Chang model accurately described the nonlinear deformation behavior of the rare earth samples, with the model parameter b markedly decreasing as confining pressure increased, indicating that confining stress plays a dominant role in governing the nonlinear response. Under the coupled effects of chemical leaching and mechanical stress, the number and size distribution of pores of the rare earth samples underwent a complex multiscale co-evolution. These results provide theoretical support for the green, efficient, and safe exploitation of ionic rare earth ores. Full article
(This article belongs to the Special Issue Metal Leaching and Recovery)
Show Figures

Figure 1

16 pages, 5686 KB  
Article
Study on Erosion Wear Resistance of 18Ni300 Maraging Steel Remanufactured by Underwater Laser Direct Metal Deposition
by Zhandong Wang, Linzhong Wu, Shibin Wang and Chunke Wang
Materials 2025, 18(19), 4583; https://doi.org/10.3390/ma18194583 - 2 Oct 2025
Abstract
Erosion wear is a major cause of surface degradation in metallic materials exposed to harsh marine environments. In this study, the erosion wear resistance of the 18Ni300 maraging steel repaired by underwater direct metal deposition (UDMD) is investigated. Results show that UDMD is [...] Read more.
Erosion wear is a major cause of surface degradation in metallic materials exposed to harsh marine environments. In this study, the erosion wear resistance of the 18Ni300 maraging steel repaired by underwater direct metal deposition (UDMD) is investigated. Results show that UDMD is successfully applied to repair the 18Ni300 samples in underwater environment. Full groove filling and sound metallurgical bonding without cracks are achieved, demonstrating its potential for underwater structural repair. Microstructural analyses reveal good forming quality with fine cellular structures and dense lath martensite in the deposited layer, attributed to rapid solidification under water cooling. Compared to in-air DMD, the UDMD sample exhibits higher surface microhardness due to increased dislocation density and microstructural refinement. Erosion wear behavior is evaluated at 30° and 90° impingement angles, showing that wear mechanisms shift from micro-cutting and plowing at 30° to indentation, crack propagation, and spallation at 90°. The UDMD samples demonstrate superior erosion wear resistance with lower mass loss, particularly at 30°, benefiting from surface work hardening and microstructural advantages. Progressive surface hardening occurs during erosion due to severe plastic deformation, reducing wear rates over time. The combination of refined microstructure, high dislocation density, and enhanced work hardening capability makes UDMD-repaired steel highly resistant to erosive degradation. These findings confirm that UDMD is a promising technique for repairing marine steel structures, offering enhanced durability and long-term performance in harsh offshore environments. Full article
Show Figures

Figure 1

12 pages, 2558 KB  
Article
Degradation and Damage Effects in GaN HEMTs Induced by Low-Duty-Cycle High-Power Microwave Pulses
by Dong Xing, Hongxia Liu, Mengwei Su, Xingjun Liu and Chang Liu
Micromachines 2025, 16(10), 1137; https://doi.org/10.3390/mi16101137 - 1 Oct 2025
Abstract
This study investigates the effects and mechanisms of high-power microwave on GaN HEMTs. By injecting high-power microwave from the gate into the device and employing techniques such as DC characteristics, gate-lag effect analysis, low-frequency noise measurement, and focused ion beam (FIB) cross-sectional inspection, [...] Read more.
This study investigates the effects and mechanisms of high-power microwave on GaN HEMTs. By injecting high-power microwave from the gate into the device and employing techniques such as DC characteristics, gate-lag effect analysis, low-frequency noise measurement, and focused ion beam (FIB) cross-sectional inspection, a systematic investigation was conducted on GaN HEMT degradation and failure behaviors under conditions of a low duty cycle and narrow pulse width. Experimental results indicate that under relatively low-power HPM stress, GaN HEMT exhibits only a slight threshold voltage shift and a modest increase in transconductance, attributed to the passivation of donor-like defects near the gate. However, when the injected power exceeds 43 dBm, the electric field beneath the gate triggers avalanche breakdown, forming a leakage path and causing localized heat accumulation, which ultimately leads to permanent device failure. This study reveals the physical failure mechanisms of GaN HEMTs under low-duty-cycle HPM stress and provides important guidance for the reliability design and hardening protection of RF devices. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

25 pages, 4181 KB  
Article
Mechanical Properties Quantification of Steel Fiber-Reinforced Geopolymer Concrete with Slag and Fly Ash
by Reem Adam, Haya Zuaiter, Doha ElMaoued, Adil Tamimi and Mohammad AlHamaydeh
Buildings 2025, 15(19), 3533; https://doi.org/10.3390/buildings15193533 - 1 Oct 2025
Abstract
This study examines the influence of steel fiber reinforcement on the mechanical properties of geopolymer concrete incorporating different slag to fly ash binder ratios (75:25, 50:50, and 25:75). Three fiber contents (0%, 1%, and 2%) by volume were used to assess their impact [...] Read more.
This study examines the influence of steel fiber reinforcement on the mechanical properties of geopolymer concrete incorporating different slag to fly ash binder ratios (75:25, 50:50, and 25:75). Three fiber contents (0%, 1%, and 2%) by volume were used to assess their impact on compressive strength, flexural strength, initial stiffness, and toughness. Compressive tests were conducted at 1, 7, and 28 days, while flexural behavior was evaluated through a four-point bending test at 28 days. The results showed that geopolymer concrete with 75% slag and 25% fly ash experienced the highest compressive strength and modulus of elasticity, regardless of the steel fiber content. The addition of 1% and 2% steel fiber content enhanced the compressive strength by 17.49% and 28.8%, respectively, compared to the control sample. The binder composition of geopolymer concrete plays a crucial role in determining its compressive strength. Reducing the slag content from 75% to 50% and then to 25% resulted in a 15.1% and 33% decrease in compressive strength, respectively. The load–displacement curves of the 2% fiber-reinforced beams display strain-hardening behavior. On the other hand, after the initial crack, a constant increase in load causes the specimen to experience progressive strain until it reaches its maximum load capacity. When the peak load is attained, the curve gradually drops due to a loss in load-carrying capacity known as post-peak softening. This behavior is attributed to steel’s ductility and is evident in specimens 75S25FA2 and 50S50FA2. Concrete with 75% slag and 25% fly ash demonstrated the highest peak load but the lowest ultimate displacement, indicating high strength but brittle behavior. In contrast, concrete with 75% fly ash and 25% slag showed the lowest peak load but the highest displacement. Across all binder ratios, the addition of steel fibers enhanced the flexural strength, initial stiffness, and toughness. This is attributed to the bridging action of steel fibers in concrete. Additionally, steel fiber-reinforced beams exhibited a ductile failure mode, characterized by multiple fine cracks throughout the midspan, whereas the control beams displayed a single vertical crack in the midspan, indicating a brittle failure mode. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 5587 KB  
Article
Analysis of Radiation Hardening Effect of Ferritic Martensitic Steel Based on Bayesian Optimization
by Yue He, Jiaming Bao, Shi Wu, Bing Bai, Xinfu He and Wen Yang
Crystals 2025, 15(10), 864; https://doi.org/10.3390/cryst15100864 - 30 Sep 2025
Abstract
Ferritic/martensitic (F/M) steel is a candidate material for key structures in fourth-generation nuclear energy systems (such as fusion reactors and fast reactors). Irradiation hardening behavior is a core index to evaluate the material’s stable performance in a high-neutron-irradiation environment. In this study, based [...] Read more.
Ferritic/martensitic (F/M) steel is a candidate material for key structures in fourth-generation nuclear energy systems (such as fusion reactors and fast reactors). Irradiation hardening behavior is a core index to evaluate the material’s stable performance in a high-neutron-irradiation environment. In this study, based on 2048 composition and property data, a correlation model between key elements and their interactions and irradiation hardening in F/M steel was constructed using a Bayesian optimization neural network, which realized quantitative prediction of the effect of composition on hardening behavior. Studies have shown that the addition of about 9.0% Cr, about 0.8% Si, Mo content higher than about 0.25%, and the addition of Ti, Mn can effectively suppress the irradiation hardening of F/M steel, while the addition of N, Ta, and C will aggravate its irradiation hardening, and the addition of W and V has little effect on the irradiation hardening of F/M steel. There is an interaction between the two elements. C-Cr has a strong synergistic mechanism, which will cause serious hardening when the content is higher than 0.05% and the Cr content is higher than 10%. Cr-Si has a strong antagonistic mechanism, which can achieve the comprehensive irradiation hardening effect in the 9Cr-0.8Si combination. N-Mn needs N controlled lower than 0.01%. Mo-W needs to control Mo content higher than 0.5% to alleviate irradiation hardening. There is a weak synergistic effect in Si-V; when the content is between 0.3% and 0.8% and the V content is between 0.2% and 0.3%, it can assist in optimizing the composition of F/M steel. Through the optimization of multi-element combination, the composition of F/M steel with lower irradiation hardening can be designed. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
21 pages, 16877 KB  
Article
Preliminary Study on the Heat Treatment Optimization of ZnAl15Cu1Mg (ZEP1510) for Enhanced Mechanical Performance
by Marie Zöller, Abdulkerim Karaman, Melanie Frieling and Michael Marré
Processes 2025, 13(10), 3138; https://doi.org/10.3390/pr13103138 - 30 Sep 2025
Abstract
This preliminary study investigates the optimization of the mechanical properties of the zinc wrought alloy ZEP1510 with the objective of assessing its potential to approach the hardness, strength, and toughness of the brass alloy, CuZn21Si3P. Enhancing both toughness and hardness was targeted to [...] Read more.
This preliminary study investigates the optimization of the mechanical properties of the zinc wrought alloy ZEP1510 with the objective of assessing its potential to approach the hardness, strength, and toughness of the brass alloy, CuZn21Si3P. Enhancing both toughness and hardness was targeted to improve the durability of potential replacement components. Heat treatment was the primary method, applying annealing, air cooling, water quenching, and artificial aging to modify material properties. Mechanical characterization was performed through Brinell hardness, as well as tensile and Charpy impact testing, complemented by metallographic analysis. Air cooling from temperatures near the transformation point at 275 °C produced a visually refined and homogeneous microstructure (qualitative assessment by OM/SEM), resulting in simultaneous increases in hardness and toughness. Water quenching from this range yielded a metastable state with high toughness but low hardness, while subsequent natural aging significantly increased strength and reduced toughness. Artificial aging indicated precipitation hardening behavior similar to that of aluminum alloys. Although property improvements were achieved, the targeted combination of high toughness and high strength was not fully realized. The findings suggest that controlled artificial aging, alternative quenching media and grain refinement strategies could further enhance performance, providing a basis for tailoring ZEP1510 for demanding engineering applications. Full article
(This article belongs to the Section Chemical Processes and Systems)
23 pages, 24609 KB  
Article
Effect of Initial Solid Solution Microstructure on the Hot Deformation Behavior of Mg-Er-Sm-Zn-Zr Alloy
by Guiyang Shao, Zhongyi Cai, Chaojie Che, Liren Cheng, Minqiang Shi, Tingzhuang Han, Xiaobo Liang and Hongjie Zhang
Crystals 2025, 15(10), 855; https://doi.org/10.3390/cryst15100855 - 30 Sep 2025
Abstract
The hot deformation behavior of a Mg-9.2Er-4.9Sm-2.2Zn-0.6Zr (wt.%) alloy, with emphasis on the role of grain size and long-period stacking-ordered (LPSO) phases, was examined via comparison experiments. Two types of samples were obtained through distinct heat treatment schedules: sample A had a smaller [...] Read more.
The hot deformation behavior of a Mg-9.2Er-4.9Sm-2.2Zn-0.6Zr (wt.%) alloy, with emphasis on the role of grain size and long-period stacking-ordered (LPSO) phases, was examined via comparison experiments. Two types of samples were obtained through distinct heat treatment schedules: sample A had a smaller grain size, featuring block-shaped LPSO phases at grain boundaries and lamellar LPSO phases within grains, while sample B had a larger grain size and few LPSO phases. The hot deformation behavior was characterized by the true stress–strain curve within the processing window of 300–450 °C and 0.001–1 s−1. The block-shaped LPSO phases contributed more significantly to strain hardening, leading to elevated flow stress in sample A, particularly under low-temperature and high-strain-rate conditions. Through the particle-stimulated nucleation (PSN) mechanism, block-shaped LPSO phases demonstrated greater efficiency in promoting Dynamic recrystallization (DRX) compared to lamellar LPSO phases; additionally, the synergistic effect between LPSO phases and grain boundary density further improved DRX efficiency. During hot deformation, dynamic precipitation of both block-shaped and lamellar LPSO phases occurred. The formation of block-shaped phases required a longer duration than that of lamellar ones. The presence of the LPSO kink exerted an influence on DRX, while a significant angle kink can promote DRX. Full article
(This article belongs to the Special Issue Mechanical Properties and Structure of Metal Materials)
Show Figures

Figure 1

24 pages, 11426 KB  
Article
Structural Behaviour of Slab-on-Grade Constructed Using High-Ductility Fiber-Reinforced Cement Composite: Experimental and Analytical Investigation
by Su-Tae Kang, Nilam Adsul and Bang Yeon Lee
Fibers 2025, 13(10), 133; https://doi.org/10.3390/fib13100133 - 29 Sep 2025
Abstract
This study investigated the structural behavior of slab-on-grade (SOG) specimens constructed using two materials: conventional concrete reinforced with steel mesh and high-ductility fiber-reinforced cement composites (HDFRCC) containing 1.2% polyethylene (PE) fiber without steel reinforcement. The compressive strengths of conventional concrete and HDFRCC were [...] Read more.
This study investigated the structural behavior of slab-on-grade (SOG) specimens constructed using two materials: conventional concrete reinforced with steel mesh and high-ductility fiber-reinforced cement composites (HDFRCC) containing 1.2% polyethylene (PE) fiber without steel reinforcement. The compressive strengths of conventional concrete and HDFRCC were 37 MPa and 54 MPa, respectively. The average flexural tensile strength of HDFRCC was 3.9 MPa at first cracking and 9.7 MPa at peak load. Punching shear tests were performed under three loading configurations: internal (center), edge, and corner loading. Crack patterns and load–displacement responses were analyzed for both material types. Under center loading, the experimentally measured load-bearing capacities were 174.52 kN for conventional concrete and 380.82 kN for HDFRCC, with both materials exhibiting reduced capacities under edge and corner loading. Analytical predictions demonstrated close agreement with the experimental results for conventional concrete but significantly underestimated the load capacity of HDFRCC SOG. This discrepancy is attributed to the strain-hardening and crack-bridging mechanisms inherent in HDFRCC, which contribute to enhanced strength beyond conventional analytical predictions. In terms of failure mode, the conventional concrete SOG exhibited the expected flexural failure. In contrast, the HDFRCC SOG experienced either flexural failure or a combination of flexural and punching failure, in contradiction to the analytical prediction of exclusive punching shear failure. These findings indicate that the punching shear resistance of the HDFRCC SOG is substantially higher than predicted. Full article
Show Figures

Figure 1

18 pages, 4932 KB  
Article
An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining
by Ülke Şimşek and Can Çoğun
Crystals 2025, 15(10), 849; https://doi.org/10.3390/cryst15100849 - 29 Sep 2025
Abstract
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is [...] Read more.
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is employed to model anisotropic slip behavior and microscale deformation mechanisms. The primary objective is to elucidate how initial crystallographic orientation influences hardness, thermal conductivity, and electrical conductivity. Simulations are performed on single-crystal copper for three representative Face Centered Cubic (FCC) orientations. Using an explicit CPFEM model, the study examines texture evolution and deformation heterogeneity during the ECAP process of single-crystal copper. The results indicate that the <100> single-crystal orientation exhibits the highest Taylor factor and the most homogeneous distribution of plastic equivalent strain (PEEQ), suggesting enhanced resistance to plastic flow. In contrast, the <111> single-crystal orientation displays localized deformation and reduced hardening. A decreasing Taylor factor correlates with more uniform slip, which improves both electrical and thermal conductivity, as well as machinability, by minimizing dislocation-related resistance. These findings make a novel contribution to the field by highlighting the critical role of crystallographic orientation in governing slip activity and deformation pathways, which directly impact thermal wear resistance and the fabrication efficiency of ECAP-processed copper electrodes in EDM. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

15 pages, 5070 KB  
Article
The Effects of Deep Cryogenic Treatment with Regard to the Mechanical Properties and Microstructural Evolution of Al-Mg Alloys with Different Grain Sizes
by Wei Liu, Luxiang Zhang, Erli Xia, Jing Luo, Yiran Tian, Wentao Cai and Yuqing Gong
Materials 2025, 18(19), 4518; https://doi.org/10.3390/ma18194518 - 28 Sep 2025
Abstract
The tension behaviors of Al-Mg alloys were tested, and the influences of deep cryogenic treatment (DCT) and grain size on their tensile properties were explored. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the evolution [...] Read more.
The tension behaviors of Al-Mg alloys were tested, and the influences of deep cryogenic treatment (DCT) and grain size on their tensile properties were explored. Optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the evolution of the microstructure. It was concluded that the alloys with fine grain (FG) had a higher strain hardening capacity and strength, however, the alloys with coarse grain (CG) exhibited better plasticity. This can be explained by the alloy with fine grains having a higher density of grain boundary, which can hinder the motion of the dislocation; therefore, the deformation resistance was improved. For alloys with coarse grains, the dislocation has more freedom to move and is easier to rearrange, which is beneficial to the plasticity. Moreover, when given deep cryogenic treatment, the strength and plasticity of the alloys can be slightly improved, which can be attributed to the microplastic deformation that occurs during cryogenic treatment that can induce internal stress, as cold-induced internal stress is conductive in achieving a finer grain and higher density of dislocation. Full article
Show Figures

Figure 1

30 pages, 11101 KB  
Article
Influence of Processing and Stabilizer Selection on Microstructure, Stability and Rheology of Emulsion-Based Semisolid Formulations
by Ruochen Yang, Xin Yi Tee, Sendhil Kumar Poornachary, Elena Simone and Pui Shan Chow
Pharmaceutics 2025, 17(9), 1221; https://doi.org/10.3390/pharmaceutics17091221 - 20 Sep 2025
Viewed by 197
Abstract
Background/Objectives: Emulsion-based semisolid formulations are important delivery systems for many applications, including pharmaceuticals, cosmetics and food. The manufacturing process for such formulations typically involves a series of heating, cooling, mixing and emulsification steps. Stabilizing agents are usually included in such formulations, as [...] Read more.
Background/Objectives: Emulsion-based semisolid formulations are important delivery systems for many applications, including pharmaceuticals, cosmetics and food. The manufacturing process for such formulations typically involves a series of heating, cooling, mixing and emulsification steps. Stabilizing agents are usually included in such formulations, as emulsions are intrinsically unstable and are prone to various destabilization mechanisms. Precise control of each processing parameter and the selection of an appropriate stabilizing agent are essential for delivering products with long-term stability and the desired properties. In this study, the effects of emulsification temperature and the selection of the stabilizing agent on key product attributes were investigated to enable improved design and optimization of both the formulation and manufacturing process. Methods: Model emulsion systems containing propylene glycol (PG) as the dispersed phase and mineral oil as the continuous phase were prepared at different emulsification temperatures to cover both pre-crystallization and post-crystallization regimes. Three stabilizing agents, namely mono-and-diglyceride (MDG), neat monoglyceride (MG) and neat diglyceride (DG), were studied. Their crystallization behavior was first examined to determine crystallization temperatures and crystal morphologies. The resulting emulsion samples were then characterized in terms of their microstructure, physical stability and rheological properties. Results: The emulsions prepared under post-crystallization conditions exhibited better physical stability, higher rheological parameters (crossover stress and viscosity) and a more rigid microstructure compared to those formed under pre-crystallization conditions, regardless of the stabilizer used. Rheological properties were found to corelate well with physical stability. In the pre-crystallization regime, poor stability could partially be mitigated by lowering the emulsification temperature. MG was generally more effective than DG in stabilizing the emulsions and led to higher rheological properties, despite both crystallizing into the same polymorph within the system. This difference in performance was attributed to variations in the crystal morphology and spatial distribution within the emulsion. Notably, the MG-stabilized emulsions also displayed a self-hardening effect during storage. Conclusions: The selection of the appropriate stabilizing agents and processing conditions tailored to the specific system is critical for the successful manufacture of emulsion-based semisolid products with an optimized performance. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

22 pages, 7700 KB  
Article
Towards a Global Constitutive Formulation for Modeling the Hot Working Behavior of Low-Carbon Steels
by Unai Mayo, Sergio Fernandez-Sanchez, Isabel Gutierrez, Denis Jorge-Badiola and Amaia Iza-Mendia
Metals 2025, 15(9), 1044; https://doi.org/10.3390/met15091044 - 19 Sep 2025
Viewed by 248
Abstract
The current study explores the applicability of a single constitutive equation, based on the Arrhenius hyperbolic sine model, to a wide range of chemical compositions and test conditions by using a unique approximation. To address this challenge, a mixed model is proposed, integrating [...] Read more.
The current study explores the applicability of a single constitutive equation, based on the Arrhenius hyperbolic sine model, to a wide range of chemical compositions and test conditions by using a unique approximation. To address this challenge, a mixed model is proposed, integrating a physical model with phenomenological expressions to capture the strain and strain rate hardening, forming temperature, dynamic recovery (DRV) and dynamic recrystallization (DRX). The investigation combines high-temperature mechanical testing with modeling in order to understand the hot deformation mechanisms. Hot torsion tests were conducted on ten different low-carbon steels with distinct microalloying additions to capture their responses under diverse initial austenite grain sizes, deformation temperatures and strain rate conditions (d0 = 22–850 µm, T = 800–1200 °C and ε˙= 0.1–10 s−1). The developed constitutive equation has resulted in a robust expression that effectively simulates the hot behavior of various alloys across a wide range of conditions. The application of an optimization tool has significantly reduced the need for adjustments across different alloys, temperatures and strain rates, showcasing its versatility and effectiveness in predicting the flow behavior in a variety of scenarios with excellent accuracy. Moreover, the model has been validated with experimental torsion data from the literature, enhancing the applicability of the developed expression to a broader spectrum of chemical compositions. Full article
Show Figures

Figure 1

17 pages, 8633 KB  
Article
Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing
by Peng Zhang, Dehao Liu, Linfu Zhang, Kang Liu, Jie Zhang, Yuxiao Si, Gang Chen and Qiang Zhu
Metals 2025, 15(9), 1037; https://doi.org/10.3390/met15091037 - 19 Sep 2025
Viewed by 177
Abstract
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% [...] Read more.
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% thickness reduction) followed by annealing, combined with multiscale characterization techniques (EBSD/TEM) and mechanical tests. The results reveal that the as-rolled microstructure was characterized by the presence of strong Brass, Goss/Brass, and S textures, along with the formation of high-density dislocation walls (DDWs) and dislocation cells (DCs). As the annealing temperature increased, recrystallized grains preferentially nucleated at grain boundaries with higher stress concentrations and dislocation densities. The grain size decreased from 120.33 μm in the as-rolled state to 10.26 μm after annealing at 1000 °C. Low-angle grain boundaries (LAGBs) progressively transformed into high-angle grain boundaries (HAGBs), while the fraction of Σ3 twin boundaries initially decreased and subsequently increased, reaching a maximum of 43.7% after annealing at 1000 °C. At annealing temperatures exceeding 800 °C, deformed grains became equiaxed, with partial retention of primary texture components observed. After annealing at 1000 °C, the yield strength and tensile strength decreased compared to the as-rolled state, while the elongation significantly increased from 17.2% to 69.8% Simultaneously, the yield ratio decreased by 53%, and the strain-hardening capacity was enhanced. Ultimately, a constitutive model integrating the influences of dislocation mean free path and twin boundary obstruction was developed, providing microscopic explanations for the inverse relationship between strength and recrystallization fraction. Full article
(This article belongs to the Special Issue Sheet Metal Forming Processes)
Show Figures

Figure 1

21 pages, 2858 KB  
Article
Study on the Mechanical Properties and Fracture Mechanisms of Anchor Cable Specimen Materials
by Chenfei Wang, Guangming Fan, Kai Zhang, Yajun Zhang, Junyin Lian, Wenkai Huang, Shuqin Shi and Mincheng Zhang
J. Compos. Sci. 2025, 9(9), 508; https://doi.org/10.3390/jcs9090508 - 19 Sep 2025
Viewed by 250
Abstract
This study investigated the tensile behaviors of 12.70 mm and 15.20 mm diameter anchor cable specimens with ultimate tensile strengths of 1860 MPa and their material specimens through experiments and finite element (FE) simulations. Material specimens and anchor cable specimen tensile samples were [...] Read more.
This study investigated the tensile behaviors of 12.70 mm and 15.20 mm diameter anchor cable specimens with ultimate tensile strengths of 1860 MPa and their material specimens through experiments and finite element (FE) simulations. Material specimens and anchor cable specimen tensile samples were prepared, and the complete engineering stress–strain curves were obtained via uniaxial tensile tests. FE analysis was used to simulate the uniaxial tensile tests, and the applicability of different constitutive models for describing the true stress–strain relationships was evaluated by comparing the simulated and experimental engineering stress–strain curves. The results showed that the Ludwik, Hollomon, and Swift models, fitted using the pre-necking hardening stage, overestimated the post-necking true stress, while the Voce model underestimated it. In contrast, the Ling and Swift + Voce models provided accurate post-necking true stress predictions. Based on the Ling model and the Rice and Tracey fracture criterion, the load–displacement relationship and fracture behavior of the 12.7 mm anchor cable specimen were best described with W = −0.1 and a = 2, whereas W = −0.1 and a = 3 yielded optimal predictions for the 15.2 mm anchor cable specimen. Full article
Show Figures

Figure 1

Back to TopTop