Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,715)

Search Parameters:
Keywords = hepatic protein expression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7389 KB  
Article
Mangosteen Pericarp Extract Mitigates Diquat-Induced Hepatic Oxidative Stress by NRF2/HO-1 Activation, Intestinal Barrier Integrity Restoration, and Gut Microbiota Modulation
by Weichen Huang, Yujie Lv, Chenhao Zou, Chaoyue Ge, Shenao Zhan, Xinyu Shen, Lianchi Wu, Xiaoxu Wang, Hongmeng Yuan, Gang Lin, Dongyou Yu and Bing Liu
Antioxidants 2025, 14(9), 1045; https://doi.org/10.3390/antiox14091045 (registering DOI) - 25 Aug 2025
Abstract
Poultry production exposes birds to diverse environmental and physiological stressors that disrupt redox balance, impair gut–liver axis function, and undermine health and productivity. This study investigated the hepatoprotective and antioxidative effects of mangosteen pericarp extract (MPE) in an experimental model of diquat-induced oxidative [...] Read more.
Poultry production exposes birds to diverse environmental and physiological stressors that disrupt redox balance, impair gut–liver axis function, and undermine health and productivity. This study investigated the hepatoprotective and antioxidative effects of mangosteen pericarp extract (MPE) in an experimental model of diquat-induced oxidative stress in laying hens. A total of 270 Hy-Line White laying hens were randomly assigned to three groups: control group (CON), diquat-challenged group (DQ), and MEP intervention with diquat-challenged group (MQ), with six replicates of 15 birds each. The results showed that MPE supplementation effectively mitigated the hepatic oxidative damage caused by diquat, as evidenced by the increased ALT and AST activity, improved lipid metabolism, and reduced hepatic fibrosis. Mechanistically, MPE activated the NRF2/HO-1 antioxidant pathway, thus enhancing the liver’s ability to counteract ROS-induced damage and reducing lipid droplet accumulation in liver tissue. MPE supplementation restored intestinal barrier integrity by upregulating tight junction protein expression (Occludin-1 and ZO-1), enhancing MUC-2 expression, and thereby decreasing gut microbiota-derived LPS transferring from the intestine. Additionally, MPE also modulated gut microbiota composition by enriching beneficial bacterial genera such as Lactobacillus and Ruminococcus while suppressing the growth of potentially harmful taxa (e.g., Bacteroidales and UCG-010). Fecal microbiota transplantation (FMT) from MPE-treated donors into diquat-exposed recipients reproduced these beneficial effects, further highlighting the role of gut microbiota modulation in mediating MPE’s systemic protective actions. Together, these findings demonstrated that MPE alleviated DQ-induced liver injury and oxidative stress through a combination of antioxidant activity, protection of intestinal barrier function, and modulation of gut microbiota, positioning MPE as a promising natural strategy for mitigating oxidative stress-related liver damage by regulating the gut microbiota and gut–liver axis in poultry. Full article
(This article belongs to the Special Issue Oxidative Stress in Animal Reproduction and Nutrition)
Show Figures

Figure 1

20 pages, 5044 KB  
Article
FGF21–MAPK1 Imbalance Disrupts Hepatic Lipid Metabolism in Dairy Cow Ketosis
by Jun-Jie Xu, Fan Yang, Zhi-Xi Chen, Zhi-Peng Wang, Zi-Xuan Wang, Zi-Han Deng, Chen-Jie Xu, Fang-Hui Chen, Wei Zhang, Yang Liu and Ya-Fei Cai
Life 2025, 15(9), 1339; https://doi.org/10.3390/life15091339 - 24 Aug 2025
Abstract
Background: Aberrant hepatic lipid metabolism is a key predisposing factor for dairy cow ketosis, with genetic factors playing a pivotal role in disease pathogenesis. However, systematic screening and functional validation of candidate genes for bovine ketosis remain limited. In this study, we aimed [...] Read more.
Background: Aberrant hepatic lipid metabolism is a key predisposing factor for dairy cow ketosis, with genetic factors playing a pivotal role in disease pathogenesis. However, systematic screening and functional validation of candidate genes for bovine ketosis remain limited. In this study, we aimed to identify genetic markers associated with clinical ketosis and explore their potential functional mechanisms underlying disease susceptibility. Methods: We conducted simplified genome sequencing (SuperGBS), genome-wide association studies (GWAS), and Sanger sequencing on Chinese Holstein cows, both healthy and with ketosis. Results: We reported that mitogen-activated protein kinase 1 (MAPK1) was significantly associated with clinical ketosis. Further investigation revealed concurrent upregulation of MAPK1 protein and disrupted hepatic lipid homeostasis in hepatocytes from in vivo and in vitro models. Critically, siRNA-mediated knockdown of MAPK1 reversed lipid metabolism processes and reduced lipid accumulation in β-Hydroxybutyric acid (BHB)-exposed bovine hepatocytes, thereby establishing MAPK1 activation as a driver of lipotoxicity in dairy cow ketosis. Additionally, we identified that supplementation of fibroblast growth factor 21 (FGF21) fusion protein not only reduced MAPK1 expression but also normalized hepatic lipid metabolism in BHB-exposed bovine hepatocytes. Conclusions: FGF21–MAPK1 imbalance is a reason for hepatic lipid metabolic dysfunction, providing a potential intervention approach to mitigate dairy cows’ ketosis. Full article
Show Figures

Figure 1

15 pages, 1126 KB  
Review
Maturity-Onset Diabetes of the Young 10 (MODY10): A Comprehensive Review of Genetics, Clinical Features, and Therapeutic Advances
by Ali Mazloum, Sofya G. Feoktistova, Anna Gubaeva, Almaqdad Alsalloum, Olga N. Mityaeva, Alexander Kim, Natalia A. Bodunova, Mary V. Woroncow and Pavel Yu Volchkov
Int. J. Mol. Sci. 2025, 26(16), 8110; https://doi.org/10.3390/ijms26168110 - 21 Aug 2025
Viewed by 217
Abstract
Maturity-onset diabetes of the young type 10 (MODY10) is a monogenic diabetes subtype caused by heterozygous mutations in the insulin gene (INS), leading to defective proinsulin processing, endoplasmic reticulum (ER) stress, and β-cell dysfunction. Current management relies on sulfonylureas or insulin [...] Read more.
Maturity-onset diabetes of the young type 10 (MODY10) is a monogenic diabetes subtype caused by heterozygous mutations in the insulin gene (INS), leading to defective proinsulin processing, endoplasmic reticulum (ER) stress, and β-cell dysfunction. Current management relies on sulfonylureas or insulin therapy, but these fail to address the underlying genetic defect. Recent research has elucidated the molecular mechanisms of MODY10, including ER stress induced by proinsulin misfolding, activation of the unfolded protein response (UPR), and β-cell apoptosis. Emerging therapies such as Adeno-Associated Virus (AAV)-mediated gene delivery to induce the glucose-responsive hepatic insulin expression, plasmid-based single-chain insulin analogs, and cell-based therapies show promise in preclinical studies. However, critical challenges remain, including immune responses to AAV vectors, incomplete correction of dominant-negative mutant effects, and the need for long-term safety data. This review summarizes current knowledge on MODY10 genetics, pathophysiology, and therapeutic innovations, while identifying key gaps for future research to enable precision medicine approaches. Full article
(This article belongs to the Special Issue Type 1 Diabetes: Molecular Mechanisms and Therapeutic Approach)
Show Figures

Figure 1

15 pages, 2372 KB  
Article
Geniposide Mitigates Insulin Resistance and Hepatic Fibrosis via Insulin Signaling Pathway
by Seung-Hyun Oh, Min-Seong Lee and Byung-Cheol Lee
Int. J. Mol. Sci. 2025, 26(16), 8079; https://doi.org/10.3390/ijms26168079 - 21 Aug 2025
Viewed by 256
Abstract
Insulin resistance is a key driver of metabolic disorders, including type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), progressing to non-alcoholic steatohepatitis (NASH). This study investigated the effects of geniposide (GP) on insulin sensitivity and hepatic fibrosis in a high-fat diet (HFD)-induced [...] Read more.
Insulin resistance is a key driver of metabolic disorders, including type 2 diabetes and non-alcoholic fatty liver disease (NAFLD), progressing to non-alcoholic steatohepatitis (NASH). This study investigated the effects of geniposide (GP) on insulin sensitivity and hepatic fibrosis in a high-fat diet (HFD)-induced NASH model. C57BL/6 mice were fed an HFD for five weeks and subsequently divided into normal chow (NC), HFD, HFD with GP 50 mg/kg (GP50), and HFD with GP 100 mg/kg (GP100) groups. The treatments were administered orally for 12 weeks. GP treatment significantly reduced body weight as well as epididymal fat and liver weights, while no differences were observed in food intake. Improvements in glucose and lipid metabolism were observed in oral glucose tolerance tests, homeostatic model assessment of insulin resistance (HOMA-IR), and blood lipid profiles. Histological analyses revealed that GP suppressed adipocyte hypertrophy and hepatic lipid accumulation and hepatic fibrosis. To further elucidate molecular mechanisms of GP, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was conducted in the liver tissue. GP downregulated expression of inflammatory markers, including F4/80, tumor necrosis factor (TNF)-α, and interleukin (IL)-6. GP treatment modulated genes involved in insulin signaling including Janus kinase 2 (JAK2), insulin receptor (INSR), insulin receptor substrate 2 (IRS-2), and protein kinase B (AKT1) gene expression levels. This suggests GP suppresses inflammation and mitigates insulin resistance by activating the INSR–IRS2–Akt pathway. Additionally, GP enhanced adenosine monophosphate-activated protein kinase (AMPK) expression, suggesting its potential role in improving glucose and lipid metabolism. In conclusion, GP improves insulin resistance, inflammation, and hepatic fibrosis, highlighting its therapeutic potential for NASH and related metabolic disorders. Full article
Show Figures

Figure 1

19 pages, 7031 KB  
Article
Integrated Multi-Omics Investigation of Gypenosides’ Mechanisms in Lowering Hepatic Cholesterol
by Qin Jiang, Tao Yang, Hao Yang, Yi Chen, Yuan Xiong, Lin Qin, Qianru Zhang, Daopeng Tan, Xingdong Wu, Yongxia Zhao, Jian Xie and Yuqi He
Biomolecules 2025, 15(8), 1205; https://doi.org/10.3390/biom15081205 - 21 Aug 2025
Viewed by 198
Abstract
(1) Objective: This study aimed to systematically elucidate the molecular mechanisms by which gypenosides (GP), a major active component of Gynostemma pentaphyllum, ameliorate hypercholesterolemia by modulating the hepatic steroidogenesis pathway, and to identify key therapeutic targets. (2) Methods: We established a high-fat [...] Read more.
(1) Objective: This study aimed to systematically elucidate the molecular mechanisms by which gypenosides (GP), a major active component of Gynostemma pentaphyllum, ameliorate hypercholesterolemia by modulating the hepatic steroidogenesis pathway, and to identify key therapeutic targets. (2) Methods: We established a high-fat diet (HFD)-induced hypercholesterolemia (HC) mouse model and performed GP intervention. An integrated multi-omics approach, combining transcriptomics and proteomics, was utilized to comprehensively analyze GP’s effects on the expression of genes and proteins associated with hepatic cholesterol synthesis, transport, and steroid hormone metabolism. (3) Results: HFD induced significant dysregulation, with 48 steroidogenesis pathway-related genes and 35 corresponding proteins exhibiting altered expression in HC mouse livers. GP treatment remarkably reversed these HFD-induced abnormalities, significantly restoring the expression levels of 42 genes and 14 proteins. Multi-omics integration identified seven critical genes/proteins—Cyp3a25, Fdft1, Tm7sf2, Hmgcs1, Fdps, Mvd, and Pmvk—that were consistently and significantly regulated by GP at both transcriptional and translational levels. Furthermore, correlation analyses demonstrated that Cyp3a25 was significantly negatively correlated with serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), whereas Fdft1, Tm7sf2, Hmgcs1, Fdps, Mvd, and Pmvk showed significant positive correlations. (4) Conclusions: GP effectively ameliorates cholesterol dyshomeostasis through a multi-targeted mechanism in the liver. It inhibits endogenous cholesterol synthesis by downregulating key enzymes (Hmgcs1, Fdft1, Pmvk, Mvd, Fdps, Tm7sf2), promotes cholesterol efflux and transport (upregulating Abca1, ApoB), and accelerates steroid hormone metabolism (upregulating Cyp3a11, Cyp3a25). These findings provide robust scientific evidence for the development of GP as a safe and effective novel therapeutic agent for hypercholesterolemia. Full article
(This article belongs to the Special Issue Lipid Signaling in Human Disease)
Show Figures

Figure 1

15 pages, 24794 KB  
Article
CDK5RAP3 Deficiency Is Associated with Hepatic Inflammation and Increased Expression of NLRP3 Inflammasome Components
by Xinjin Chen, Yaqi Huang, Yilin Wu, Le Sheng, Hongchen Yan, Fanghui Chen, Fengwei Li, Hirpha Ketema and Yafei Cai
Biomedicines 2025, 13(8), 2030; https://doi.org/10.3390/biomedicines13082030 - 21 Aug 2025
Viewed by 331
Abstract
Background/Objectives: CDK5RAP3 (CDK5 regulatory subunit-associated protein 3), is a ubiquitously expressed protein in mammalian tissues, with emerging evidence suggesting its critical role in liver hypoplasia. CDK5RAP3 knockout results in liver hypoplasia and liver injury in mice, and most liver injuries are associated [...] Read more.
Background/Objectives: CDK5RAP3 (CDK5 regulatory subunit-associated protein 3), is a ubiquitously expressed protein in mammalian tissues, with emerging evidence suggesting its critical role in liver hypoplasia. CDK5RAP3 knockout results in liver hypoplasia and liver injury in mice, and most liver injuries are associated with inflammation. However, the connection between its deficiency and liver inflammation remains unclear. The NLRP3 inflammasome is a ubiquitously expressed inflammatory pathway, and growing evidence links it to liver diseases. Therefore, we aim to investigate the relationship between CDK5RAP3 deficiency in the liver and the NLRP3 inflammasome. Methods: To clarify the pathological link between CDK5RAP3 deficiency and liver inflammation, we developed liver-specific CDK5RAP3 knockout mouse models and mouse embryonic fibroblasts (MEFs) from conditional knockout mice. Results: CDK5RAP3 deficiency induces hepatic injury and inflammation in mice, with increased expression of NLRP3 inflammasome components (NLRP3, ASC, Caspase-1) and GSDMD, all of which promote pyroptosis. Notably, CDK5RAP3-deficient MEFs exhibit compromised proliferative capacity and elevated apoptotic rates. Conclusions: Our findings demonstrate that CDK5RAP3 is indispensable for maintaining hepatic homeostasis. Its deficiency can induce liver damage and inflammatory cell death in mice. Therefore, CDK5RAP3 may be a candidate for further investigation in inflammatory liver disease models. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 3702 KB  
Article
Kisspeptin Mitigates Hepatic De Novo Lipogenesis in Metabolic Dysfunction-Associated Steatotic Liver Disease
by Kimberly Izarraras, Ankit Shah, Kavita Prasad, Helena Tan, Zhongren Zhou and Moshmi Bhattacharya
Cells 2025, 14(16), 1289; https://doi.org/10.3390/cells14161289 - 20 Aug 2025
Viewed by 462
Abstract
The peptide hormone kisspeptin, signaling via its receptor, KISS1R, decreases hepatic steatosis and protects against metabolic dysfunction-associated steatotic liver disease (MASLD). Enhanced de novo lipogenesis (DNL) contributes to MASLD. Here, we investigated whether kisspeptin treatment in obese, diabetic mice directly attenuates DNL. DNL [...] Read more.
The peptide hormone kisspeptin, signaling via its receptor, KISS1R, decreases hepatic steatosis and protects against metabolic dysfunction-associated steatotic liver disease (MASLD). Enhanced de novo lipogenesis (DNL) contributes to MASLD. Here, we investigated whether kisspeptin treatment in obese, diabetic mice directly attenuates DNL. DNL was assessed in kisspeptin-treated mouse livers, using a mouse model of MASLD, (DIAMOND mice), employing 2H2O-enriched water, mass spectrometry analysis, and transcriptomic profiling. Gene and protein expression were evaluated in primary hepatocytes and livers. Additionally, hepatic Kiss1r expression was increased in DIAMOND mice, following which various biochemical and metabolic assessments were employed. Metabolic tracing in kisspeptin-treated steatotic livers demonstrated a decrease in the DNL of free fatty acids (FFAs), known to be associated with diabetes, steatosis, and hepatocellular carcinoma. Transcriptomic profiling of kisspeptin-treated livers identified disruption of key metabolic pathways, the most prominent being a decrease in fatty acid metabolism, and downregulation of Cidea, a key regulator of lipid droplet formation. Kisspeptin treatment of FFA-loaded primary mouse hepatocytes significantly decreased Cidea expression. Mechanistically, we found that kisspeptin administration decreased levels of transcription factor SREBP-1c, a crucial regulator of DNL, and CIDEA. Thus, enhanced KISS1R signaling limits hepatic DNL, suggesting a crucial role in restricting MASLD. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

13 pages, 848 KB  
Article
Hepatic Expression of ACBP Is a Prognostic Marker for Weight Loss After Bariatric Surgery
by Moritz Meyer, Paul Gruber, Christina Plattner, Barbara Enrich, Andreas Zollner, Almina Jukic, Maria Effenberger, Christoph Grander, Herbert Tilg and Felix Grabherr
Biomolecules 2025, 15(8), 1173; https://doi.org/10.3390/biom15081173 - 16 Aug 2025
Viewed by 354
Abstract
The incidence and prevalence of obesity and related cardio-metabolic diseases are on the rise, posing a critical health care challenge to systems across the globe. Bariatric surgery is a therapeutic cornerstone for morbidly obese patients, besides novel medical treatments, partly by ameliorating metabolic [...] Read more.
The incidence and prevalence of obesity and related cardio-metabolic diseases are on the rise, posing a critical health care challenge to systems across the globe. Bariatric surgery is a therapeutic cornerstone for morbidly obese patients, besides novel medical treatments, partly by ameliorating metabolic inflammation, a hallmark of metabolic diseases. Acyl-CoA Binding Protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a regulator of autophagy and metabolism, and has recently been shown to increase in individuals undergoing voluntary fasting and in patients with cancer cachexia-induced malnutrition. By analyzing a prospectively collected study with matched serum and liver samples from patients undergoing laparoscopic adjustable gastric banding at baseline and six months after surgery, we here demonstrate that ACBP serum levels significantly increase following bariatric surgery. Hepatic ACBP expression at baseline predicted weight loss six months after the procedure. The predictive value of ACBP warrants further study, as it could identify patients who benefit most from metabolic surgery in the future. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

26 pages, 2922 KB  
Article
Investigation and Distinction of Energy Metabolism in Proliferating Hepatocytes and Hepatocellular Carcinoma Cells
by Julia Nerusch, Gerda Schicht, Natalie Herzog, Jan-Heiner Küpper, Daniel Seehofer and Georg Damm
Cells 2025, 14(16), 1254; https://doi.org/10.3390/cells14161254 - 14 Aug 2025
Viewed by 397
Abstract
Metabolic rewiring is a hallmark of both hepatic regeneration and malignant transformation, complicating the identification of cancer-specific traits. This study aimed to distinguish the metabolic profiles of proliferating hepatocytes and hepatocellular carcinoma (HCC) cells through integrated analyses of mRNA and protein expression, along [...] Read more.
Metabolic rewiring is a hallmark of both hepatic regeneration and malignant transformation, complicating the identification of cancer-specific traits. This study aimed to distinguish the metabolic profiles of proliferating hepatocytes and hepatocellular carcinoma (HCC) cells through integrated analyses of mRNA and protein expression, along with functional characterization. We compared non-malignant Upcyte® hepatocytes (HepaFH3) cultured under proliferative and confluent conditions with primary human hepatocytes, primary human hepatoma cells, and hepatoma cell lines. Proliferating HepaFH3 cells exhibited features of metabolic reprogramming, including elevated glycolysis, increased HIF1A expression, and ketone body accumulation, while maintaining low c-MYC expression and reduced BDH1 levels, distinguishing them from malignant models. In contrast, HCC cells showed upregulation of HK2, c-MYC, and BDH1, reflecting a shift toward aggressive glycolytic and ketolytic metabolism. Functional assays supported the transcript and protein expression data, demonstrating increased glucose uptake, elevated lactate secretion, and reduced glycogen storage in both proliferating and malignant cells. These findings reveal that cancer-like metabolic changes also occur during hepatic regeneration, limiting the diagnostic utility of individual metabolic markers. HepaFH3 cells thus provide a physiologically relevant in vitro model to study regeneration-associated metabolic adaptation and may offer insights that contribute to distinguishing regenerative from malignant processes. Our findings highlight the potential of integrated metabolic profiling in differentiating proliferation from tumorigenesis. Full article
Show Figures

Figure 1

22 pages, 5010 KB  
Article
Comprehensive Genetic and Molecular Characterization Confirms Hepatic Stellate Cell Origin of the Immortal Col-GFP HSC Line
by Larissa F. Buitkamp, Thomas Liehr, Stefanie Kankel, Eva M. Buhl, Katharina S. Hardt, Diandra T. Keller, Sarah K. Schröder-Lange and Ralf Weiskirchen
Int. J. Mol. Sci. 2025, 26(16), 7764; https://doi.org/10.3390/ijms26167764 - 11 Aug 2025
Viewed by 268
Abstract
The immortal murine hepatic stellate cell line Col-GFP HSC was comprehensively characterized using genetic and molecular approaches. Short tandem repeat (STR) profiling and karyotyping combined with multiplex fluorescence in situ hybridization (M-FISH) confirmed the identity of the cell line and revealed no contamination. [...] Read more.
The immortal murine hepatic stellate cell line Col-GFP HSC was comprehensively characterized using genetic and molecular approaches. Short tandem repeat (STR) profiling and karyotyping combined with multiplex fluorescence in situ hybridization (M-FISH) confirmed the identity of the cell line and revealed no contamination. Col-GFP HSCs showed a near tetraploid karyotype. Additionally, next-generation sequencing (NGS) data, quantitative reverse transcription PCR, and Western blot analyses demonstrated robust expression of genes and proteins associated with hepatic stellate cells, including those involved in extracellular matrix remodeling and fibrogenic pathways. Phalloidin staining revealed filamentous actin patterns characteristic of stellate cells, providing additional support for their cytoskeletal organization and functional status. These findings provide strong evidence that the Col-GFP HSC cell line originates from hepatic stellate cells and can serve as a reliable in vitro model to study stellate cell biology and related pathophysiological processes. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

18 pages, 3705 KB  
Article
Pharmacologic Inhibition of Erythrocyte Ferroportin Expression Exacerbates Plasmodium Infection
by Sareh Zeydabadinejad, Benjamin Frederick Theis, Jun Sung Park, Amira F. Gohara, Matam Vijay-Kumar, Beng San Yeoh and Piu Saha
Microorganisms 2025, 13(8), 1859; https://doi.org/10.3390/microorganisms13081859 - 8 Aug 2025
Viewed by 269
Abstract
Plasmodium parasites rely on host iron for survival and replication, making host iron availability a critical determinant of malaria pathogenesis. Central to iron homeostasis is the hepcidin–ferroportin regulatory axis, where hepcidin suppresses iron export by inducing ferroportin degradation, thus modulating systemic and cellular [...] Read more.
Plasmodium parasites rely on host iron for survival and replication, making host iron availability a critical determinant of malaria pathogenesis. Central to iron homeostasis is the hepcidin–ferroportin regulatory axis, where hepcidin suppresses iron export by inducing ferroportin degradation, thus modulating systemic and cellular iron availability. In the Plasmodium infection model (P. yoelii), we observed a significant downregulation of hepatic hepcidin expression, accompanied by an increase in hepatic ferroportin expression. On the contrary, RBC-ferroportin protein level was notably suppressed upon P. yoelii infection. Given these findings, we aim to investigate the role of a ferroportin inhibitor in Plasmodium infection. In a P. yoelii mouse model, treatment with an oral ferroportin inhibitor, VIT-2763 (Vamifeport) increased parasitemia, accompanied by increased levels of pro-inflammatory cytokines, erythropoietin, and liver injury markers. In P. yoelii infected mice, VIT-2763 treatment suppressed hepcidin expression and increased ferroportin expression in hepatocytes, while reducing ferroportin protein levels in RBCs. VIT-2763 mediated exacerbation of P. yoelii infection reveals the tissue-specific regulation of ferroportin in hepatocytes and RBCs, underscoring the therapeutic potential of modulating the hepcidin–ferroportin axis as an intervention strategy in malaria. Full article
Show Figures

Figure 1

17 pages, 6121 KB  
Article
The Gut Microbiota Metabolite Urolithin B Mitigates Cholestatic Liver Injury in Mice via Modulating the Crosstalk Between PPARα, Nrf2, and NF-κB Signaling Pathways
by Hani M. Alrawili, Mahmoud Elshal, Marwa S. Serrya and Dina S. El-Agamy
J. Xenobiot. 2025, 15(4), 128; https://doi.org/10.3390/jox15040128 - 8 Aug 2025
Viewed by 398
Abstract
Urolithin (Uro)-B, a gut microbiota metabolite of ellagic acid, has recently gained considerable attention due to its beneficial bioactivities. This study investigated the potential hepatoprotective effect of Uro-B against alpha-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury (CLI) in mice and explored the possible involved [...] Read more.
Urolithin (Uro)-B, a gut microbiota metabolite of ellagic acid, has recently gained considerable attention due to its beneficial bioactivities. This study investigated the potential hepatoprotective effect of Uro-B against alpha-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury (CLI) in mice and explored the possible involved mechanisms. Mice were treated with Uro-B (50 and 100 mg/kg) for four days and received ANIT (75 mg/kg) once on the second day. Our data revealed that Uro-B reduced elevated serum transaminases, alkaline phosphatase, lactate dehydrogenase, and total bilirubin levels associated with ANIT injection. Histopathologically, Uro-B effectively ameliorated ANIT-induced disruption of the hepatic architecture as represented by repressed necro-inflammation and bile duct proliferation. Uro-B also maintained oxidant/antioxidant status that was dysregulated by ANIT. Mechanistically, Uro-B markedly activated Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling with subsequent upregulation of hepatic heme oxygenase-1 expression. On the other hand, Uro-B suppressed the ANIT-induced expression of nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Interestingly, Uro-B repressed peroxisome proliferator-activated receptor alpha (PPARα) expression in the liver. These findings indicate a promising hepatoprotective effect of Uro-B against ANIT-induced CLI in mice. Uro-B modulated the interplay between Keap1/Nrf2, NF-κB/TNF-α, and PPARα signaling pathways, resulting in powerful antioxidant and anti-inflammatory effects. Full article
(This article belongs to the Section Drug Therapeutics)
Show Figures

Graphical abstract

20 pages, 4870 KB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 - 5 Aug 2025
Viewed by 365
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

20 pages, 1376 KB  
Review
Molecular Mechanisms of Cadmium-Induced Toxicity and Its Modification
by Jin-Yong Lee, Maki Tokumoto and Masahiko Satoh
Int. J. Mol. Sci. 2025, 26(15), 7515; https://doi.org/10.3390/ijms26157515 - 4 Aug 2025
Viewed by 510
Abstract
Cadmium (Cd) is a toxic environmental heavy metal that exerts harmful effects on multiple tissues, including the kidney, liver, lung, and bone, and is also associated with the development of anemia. However, the precise molecular mechanisms underlying Cd-induced toxicity remain incompletely understood. In [...] Read more.
Cadmium (Cd) is a toxic environmental heavy metal that exerts harmful effects on multiple tissues, including the kidney, liver, lung, and bone, and is also associated with the development of anemia. However, the precise molecular mechanisms underlying Cd-induced toxicity remain incompletely understood. In this paper, we review the recent molecular mechanisms of Cd-induced toxicity and its modification, with a particular emphasis on our recent findings. Using a combination of DNA microarray analysis, protein–DNA binding assays, and siRNA-mediated gene silencing, we identified several transcription factors, YY1, FOXF1, ARNT, and MEF2A, as novel molecular targets of Cd. The downregulation of their downstream genes, including UBE2D2, UBE2D4, BIRC3, and SLC2A4, was directly associated with the expression of cytotoxicity. In addition, PPARδ plays a pivotal role in modulating cellular susceptibility to Cd-induced renal toxicity, potentially by regulating apoptosis-related signaling pathways. In addition to apoptosis pathways, Cd toxicity through ROS generation, ferroptosis and pyroptosis were summarized. Furthermore, it has been revealed that Cd suppresses the expression of iron transport-related genes in duodenal epithelial cells leading to impaired intestinal iron absorption as well as decreased hepatic iron levels. These findings provide a mechanistic basis for Cd-induced iron deficiency anemia, implicating disrupted iron homeostasis as a contributing factor. Full article
(This article belongs to the Special Issue Mechanisms of Heavy Metal Toxicity: 3rd Edition)
Show Figures

Figure 1

17 pages, 972 KB  
Article
SARS-CoV-2 Main Protease Dysregulates Hepatic Insulin Signaling and Glucose Uptake: Implications for Post-COVID-19 Diabetogenesis
by Praise Tatenda Nhau, Mlindeli Gamede, Andile Khathi and Ntethelelo Sibiya
Pathophysiology 2025, 32(3), 39; https://doi.org/10.3390/pathophysiology32030039 - 4 Aug 2025
Viewed by 448
Abstract
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, [...] Read more.
Background: There is growing evidence suggesting that SARS-CoV-2 may contribute to metabolic dysfunction. SARS-CoV-2 infection is associated with systemic inflammation, oxidative stress, and metabolic dysregulation, all of which may impair liver function and promote glucose intolerance. This study investigated the role of SARS-CoV-2, specifically its Main Protease (Mpro), in accelerating insulin resistance and metabolic dysfunction in HepG2 cells in vitro. Methods: HepG2 cells were treated with varying concentrations of Mpro (2.5, 5, 10, 20, 40, 80, and 160 nmol/mL) for 24 h to assess cytotoxicity and glucose uptake. Based on initial findings, subsequent assays focused on higher concentrations (40, 80, and 160 nmol/mL). The effects of Mpro on cell viability, protein kinase B (AKT) expression, matrix metallopeptidase-1 (MMP1), dipeptidyl peptidase 4 (DPP4), interleukin-6 (IL-6) expression, and lipid peroxidation were investigated. Results: Our findings reveal that the SARS-CoV-2 Mpro treatment led to a concentration-dependent reduction in glucose uptake in HepG2 cells. Additionally, the Mpro treatment was associated with reduced insulin-stimulated AKT activation, particularly at higher concentrations. Inflammatory markers such as IL-6 were elevated in the extracellular medium, while DPP4 expression was decreased. However, extracellular soluble DPP4 (sDPP4) levels did not show a significant change. Despite these changes, cell viability remained relatively unaffected, suggesting that the HepG2 cells were able to maintain overall metabolic functions under Mpro exposure. Conclusions: This study demonstrated the concentration-dependent impairment of hepatic glucose metabolism, insulin signaling, and inflammatory pathways in HepG2 cells acutely exposed to the SARS-CoV-2 Mpro. These findings warrant further investigation to explore the long-term metabolic effects of SARS-CoV-2 and its proteases in the liver and to develop potential therapeutic approaches for post-viral metabolic complications. Full article
Show Figures

Graphical abstract

Back to TopTop