Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (555)

Search Parameters:
Keywords = heterojunction photocatalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3174 KB  
Article
Innovative Z-Scheme Heterojunction Photocatalyst ZnBiGdO4/SnS2 for Photocatalytic Degradation of Tinidazole Under Visible Light Irradiation
by Jingfei Luan, Boyang Liu, Liang Hao, Wenchen Han and Anan Liu
Int. J. Mol. Sci. 2025, 26(17), 8366; https://doi.org/10.3390/ijms26178366 - 28 Aug 2025
Viewed by 131
Abstract
A high-performance Z-scheme heterojunction photocatalytic compound, ZnBiGdO4/SnS2 (ZS), was prepared for the first time using a microwave-assisted solvothermal method. ZS significantly improved the separation efficiency of photoinduced carriers and effectively broadened the response range to visible light through the unique [...] Read more.
A high-performance Z-scheme heterojunction photocatalytic compound, ZnBiGdO4/SnS2 (ZS), was prepared for the first time using a microwave-assisted solvothermal method. ZS significantly improved the separation efficiency of photoinduced carriers and effectively broadened the response range to visible light through the unique mechanism of the Z-type heterojunction. Therefore, ZS exhibited an excellent photocatalytic performance during the degradation process of tinidazole (TNZ). Specifically, the removal rate of TNZ by ZS reached 99.63%, and the removal rate of total organic carbon (TOC) reached 98.37% with ZS as catalyst under visible light irradiation (VLIN). Compared to other photocatalysts, the photocatalytic performance of ZS was significantly better than that of ZnBiGdO4, SnS2, or N-doped TiO2 (N-T). The removal rate of TNZ by ZS was 1.12 times, 1.26 times, or 2.41 times higher than that by ZnBiGdO4, SnS2, or N-T, respectively. The mineralization efficiency of TNZ for TOC with ZS as a catalyst was 1.15 times, 1.28 times, or 2.57 times higher than that with ZnBiGdO4, SnS2, or N-T as a catalyst, respectively. Free radical scavenging experiments and the electron paramagnetic resonance experiments confirmed that ZS could generate multiple reactive species such as hydroxyl radicals (•OH), superoxide anions (•O2), and photoinduced holes (h+) during the photocatalytic degradation process of TNZ. The photocatalytic degradation performance of ZS on TNZ under VLIN was evaluated, concurrently, the reliability, reproducibility, and stability of ZS were verified by five cycle experiments. This study explored the degradation mechanism and degradation pathway of TNZ with ZS as a catalyst under VLIN. This study not only provides new ideas for the design and preparation of Z-type heterojunction photocatalysts but also lays an important foundation for the development of efficient environmental remediation technologies for TNZ pollution. Full article
(This article belongs to the Special Issue Latest Research in Photocatalysis)
Show Figures

Figure 1

18 pages, 4134 KB  
Article
Stirring-Assisted In Situ Construction of Highly Dispersed MoS2/g-C3N4 Heterojunctions with Enhanced Edge Exposure for Efficient Photocatalytic Hydrogen Evolution
by Shuai Liu, Yipei Chen, Honglei Zhang, Yang Meng, Tao Wu and Guangsuo Yu
Catalysts 2025, 15(9), 808; https://doi.org/10.3390/catal15090808 - 25 Aug 2025
Viewed by 357
Abstract
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during [...] Read more.
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during synthesis significantly enhanced the uniform dispersion of MoS2 nanosheets and exposed abundant edge sites, leading to well-integrated heterojunctions with enhanced interfacial contact. Comprehensive structural and photoelectronic characterizations (XRD, SEM, TEM, EDS mapping, UV–Vis, TRPL, EIS, EPR) confirmed that the composite exhibited improved visible-light absorption, accelerated charge separation, and suppressed recombination. Under simulated solar irradiation with triethanolamine (TEOA) as a sacrificial agent, the optimized 24% MoS2/g-C3N4-S catalyst achieved a high hydrogen evolution rate of 14.33 mmol·g−1·h−1 at a catalyst loading of 3.2 mg, significantly outperforming the unstirred and pristine components, and demonstrating excellent cycling stability. Mechanistic studies revealed that the performance enhancement is attributed to the synergistic effects of Type-II heterojunction formation and edge-site-rich MoS2 co-catalysis. This work provides a scalable approach for non-noble metal interface engineering and offers insight into the design of efficient and durable photocatalysts for solar hydrogen production. Full article
Show Figures

Figure 1

17 pages, 3371 KB  
Article
Band Engineering Induced by Sulphur Vacancies in MoS2/g-C3N4 or Selective CO2 Photoreduction to CH3OH
by Shicheng Liu, Junbo Yu, Xiangyu Chen, Na Li and Qulan Zhou
Nanomaterials 2025, 15(17), 1294; https://doi.org/10.3390/nano15171294 - 22 Aug 2025
Viewed by 432
Abstract
Developing photocatalysts with both high efficiency and reaction pathway selectivity is essential for achieving efficient and sustainable CO2 conversion. By incorporating sulphur vacancies into MoS2, an S-scheme heterojunction photocatalyst (MoS2-SVs/g-C3N4) was developed, achieving efficient [...] Read more.
Developing photocatalysts with both high efficiency and reaction pathway selectivity is essential for achieving efficient and sustainable CO2 conversion. By incorporating sulphur vacancies into MoS2, an S-scheme heterojunction photocatalyst (MoS2-SVs/g-C3N4) was developed, achieving efficient and selective CO2 photoreduction to CH3OH. The structural and photoelectronic characterisation of the system shows that the heterogeneous interface between MoS2 and g-C3N4 is in close contact. The introduction of SVs effectively modulates the electronic structure and surface activity of MoS2, which in turn enhances the CO2 reduction performance. Optical and electronic structure analyses reveal that the heterojunction promotes favourable band alignment and interfacial electric potential gradients, which together suppress charge recombination and enhance directional carrier separation. Under irradiation, the MoS2-SVs/g-C3N4 photocatalyst exhibited outstanding photocatalytic CH3OH production with a yield of 10.06 μmol·h−1·g−1, significantly surpassing the performance of control samples while demonstrating excellent product selectivity and remarkable stability. Mechanistic studies further verify that vacancy-induced energy band modulation with Fermi energy level enhancement significantly reduces the multi-electron transfer barrier, thus preferentially driving the CH3OH generation pathway. This work proposes a universal structural design strategy that synergistically coordinates vacancy engineering with band structure modulation, establishing both theoretical principles and practical methodologies for developing selective multi-electron CO2 reduction systems. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

31 pages, 9907 KB  
Article
The Synthesis and Photophysical Performance of a Novel Z-Scheme Ho2FeSbO7/Bi0.5Yb0.5O1.5 Heterojunction Photocatalyst and the Photocatalytic Degradation of Ciprofloxacin Under Visible Light Irradiation
by Jingfei Luan, Anan Liu, Liang Hao, Boyang Liu and Hengchang Zeng
Nanomaterials 2025, 15(16), 1290; https://doi.org/10.3390/nano15161290 - 21 Aug 2025
Viewed by 315
Abstract
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5 [...] Read more.
A pyrochlore-type crystal structure photocatalytic nanomaterial, Ho2FeSbO7, was successfully synthesized using a hydrothermal method. Additionally, a fluorite-structured Bi0.5Yb0.5O1.5 was prepared via rare earth Yb doping. Finally, a novel Ho2FeSbO7/Bi0.5Yb0.5O1.5 heterojunction photocatalyst (HBHP) was fabricated using a solvothermal method. The crystal structure, surface morphology, and physicochemical properties of the samples were characterized using XRD, a micro-Raman spectrometer, FT-IR, XPS, ultraviolet photoelectron spectroscopy (UPS), TEM, and SEM. The results showed that Ho2FeSbO7 possessed a pyrochlore-type cubic crystal structure (space group Fd-3m, No. 227), while Bi0.5Yb0.5O1.5 featured a fluorite-type cubic structure (space group Fm-3m, No. 225). The results of the degradation experiment indicated that when HBHP, Ho2FeSbO7, or Bi0.5Yb0.5O1.5 was employed as a photocatalytic nanomaterial, following 140 min of visible light irradiation, the removal efficiency of ciprofloxacin (CIP) reached 99.82%, 86.15%, or 73.86%, respectively. This finding strongly evidenced the remarkable superiority of HBHP in terms of photocatalytic performance. Compared to the individual catalyst Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, the removal efficiency of CIP by HBHP was 1.16 times, 1.36 times, or 2.52 times higher than that by Ho2FeSbO7, Bi0.5Yb0.5O1.5, or N-doped TiO2, respectively. The radical trapping experiments indicated that in the CIP degradation process, the hydroxyl radical owned the strongest oxidation ability, followed by the superoxide anion and the photoinduced hole. These studies are of great significance for the degradation of antibiotics and environmental protection. Full article
Show Figures

Graphical abstract

48 pages, 2448 KB  
Review
ZnO-Based Photocatalysts: Synergistic Effects of Material Modifications and Machine Learning Optimization
by Sanja J. Armaković, Stevan Armaković, Andrijana Bilić and Maria M. Savanović
Catalysts 2025, 15(8), 793; https://doi.org/10.3390/catal15080793 - 20 Aug 2025
Viewed by 717
Abstract
ZnO-based photocatalysts have attracted significant attention for their potential use in advanced oxidation processes for environmental remediation. However, critical challenges, such as rapid charge carrier recombination and narrow light absorption, and poor long-term stability necessitate material modifications to enhance performance. This review provides [...] Read more.
ZnO-based photocatalysts have attracted significant attention for their potential use in advanced oxidation processes for environmental remediation. However, critical challenges, such as rapid charge carrier recombination and narrow light absorption, and poor long-term stability necessitate material modifications to enhance performance. This review provides a comprehensive and critical analysis of recent developments in ZnO-based photocatalysts, including heterojunctions with metal oxides, carbon-based hybrids, metal/non-metal doping, and metal–organic framework materials. Furthermore, emerging trends, such as the integration of atomistic calculations and machine learning (ML) techniques in material design, property prediction, and the optimization of photocatalytic performance, are critically examined. These modern computationally driven approaches provide new insights into band gap engineering, charge transport mechanisms, and the optimization of synthesis parameters, thereby accelerating the discovery of high-performance ZnO-based photocatalysts. However, their practical integration remains limited due to the availability of high-quality datasets and the lack of interdisciplinary methodologies. The review also discusses key research gaps, including emerging environmental applications, as well as stability and scalability challenges, providing a roadmap for future research in data-driven photocatalysis. By evaluating current research, this review aims to provide a foundation for the modification of next-generation ZnO-based photocatalysts for environmental applications. Full article
Show Figures

Graphical abstract

14 pages, 2928 KB  
Article
Gold Nanoparticles-Functionalized Ultrathin Graphitic Carbon Nitride Nanosheets for Boosting Solar Hydrogen Production: The Role of Plasmon-Induced Interfacial Electric Fields
by Haidong Yu, Ziqi Wei, Qiyue Gao, Ping Qu, Rui Wang, Xuehui Luo, Xiao Sun, Dong Li, Xiao Zhang, Jiufen Liu and Liang Feng
Molecules 2025, 30(16), 3406; https://doi.org/10.3390/molecules30163406 - 18 Aug 2025
Viewed by 544
Abstract
The design of photocatalysts capable of generating localized surface plasmon resonance (LSPR) effects represents a promising strategy for enhancing photocatalytic activity. However, the mechanistic role of plasmonic nanoparticles-induced interfacial electric fields in driving photocatalytic processes remains poorly understood. To produce a Schottky junction, [...] Read more.
The design of photocatalysts capable of generating localized surface plasmon resonance (LSPR) effects represents a promising strategy for enhancing photocatalytic activity. However, the mechanistic role of plasmonic nanoparticles-induced interfacial electric fields in driving photocatalytic processes remains poorly understood. To produce a Schottky junction, varying amounts of Au nanoparticles widely utilized to broaden the light absorption were loaded onto ultrathin carbon nitride sheets (Au/UCN). The Au/UCN-20 Schottky junction exhibits exceptional photocatalytic activity, achieving a hydrogen evolution rate (14.2 mmol·g−1 over a 4 h period) while maintaining robust stability through five consecutive photocatalytic cycles. The LSPR activity of Au nanoparticles are responsible for the broadened light absorption spectrum of Au/UCN nanocomposites. The interfacial electric field generated at the Au /UCN heterojunction is proposed to enhance charge-transfer efficiency through Schottky barrier penetration of photocarriers, mediated by electric field-driven carrier migration, according to surface potential and finite-difference time-domain (FDTD). These findings uncover a previously obscured photocatalytic mechanism driven by LSPR-induced interfacial electric fields, pioneering a quantum-dot-directed strategy to precisely engineer charge dynamics in advanced photocatalysts via targeted manipulation of nanoscale electric field effects. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

16 pages, 3710 KB  
Article
Janus Ga2SSe-Based van der Waals Heterojunctions as a Class of Promising Candidates for Photocatalytic Water Splitting: A DFT Investigation
by Fan Yang, Marie-Christine Record and Pascal Boulet
Crystals 2025, 15(8), 728; https://doi.org/10.3390/cryst15080728 - 16 Aug 2025
Viewed by 364
Abstract
Addressing global energy and environmental issues calls for the development of effective photocatalysts capable of enabling solar-driven water splitting, a key route toward sustainable hydrogen generation. In this work, we conducted a detailed density functional theory (DFT) study on three bilayer van der [...] Read more.
Addressing global energy and environmental issues calls for the development of effective photocatalysts capable of enabling solar-driven water splitting, a key route toward sustainable hydrogen generation. In this work, we conducted a detailed density functional theory (DFT) study on three bilayer van der Waals (vdW) heterojunctions, Ga2SSe/GaP, Ga2SSe/PtSSe, and Ga2SSe/SnSSe, each explored in four distinct stacking configurations, with Ga2SSe serving as the base monolayer. We assessed their structural stability, electronic properties, and optical responses to determine their suitability for photocatalytic water splitting. The analysis showed that Ga2SSe/GaP and Ga2SSe/SnSSe exhibit type-II band alignment, while Ga2SSe/PtSSe displays a type-I alignment. Electrostatic potential profiles and Bader charge calculations identified SeGa2S/SSnSe and SeGa2S/SeSnS as direct Z-scheme systems, offering efficient charge carrier separation and robust redox potential. For effective water splitting, the band edges must straddle the water redox potentials. Our results indicate that configurations A and B in Ga2SSe/GaP, along with C and D in Ga2SSe/SnSSe, fulfill this requirement. These four configurations also exhibit strong absorption in both the visible and ultraviolet spectral ranges. Notably, configurations C and D of Ga2SSe/SnSSe achieve high solar-to-hydrogen (STH) efficiencies, reaching 38.44% and 21.75%, respectively. Overall, our findings suggest that these direct Z-scheme heterostructures are promising candidates for water splitting photocatalysis. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

13 pages, 6309 KB  
Article
Reusable Three-Dimensional TiO2@MoS2 Core–Shell Photoreduction Material: Designed for High-Performance Seawater Uranium Extraction
by Chen Xie, Tianyi Zhao, Feng Zhou and Bohao Zhao
Catalysts 2025, 15(8), 769; https://doi.org/10.3390/catal15080769 - 13 Aug 2025
Viewed by 546
Abstract
Photocatalysis offers a cost-effective and eco-friendly approach for environmental remediation, yet traditional powdered photocatalysts suffer from poor recyclability and separation challenges. To address these limitations, we developed a recyclable carbon fiber-supported composite photocatalyst (CC/TiO2 NRs@MoS2 NPs) featuring a three-dimensional hierarchical core–shell [...] Read more.
Photocatalysis offers a cost-effective and eco-friendly approach for environmental remediation, yet traditional powdered photocatalysts suffer from poor recyclability and separation challenges. To address these limitations, we developed a recyclable carbon fiber-supported composite photocatalyst (CC/TiO2 NRs@MoS2 NPs) featuring a three-dimensional hierarchical core–shell architecture. This structure comprises a TiO2 seed layer, vertically aligned TiO2 nanorod arrays as the core, and a MoS2 nanoparticle shell, fabricated via sequential deposition. Under simulated solar irradiation, the TiO2@MoS2 heterojunction exhibited significantly enhanced uranium adsorption capacity, achieving a remarkable 97.3% photocatalytic removal efficiency within 2 h. At an initial uranium concentration of 200 ppm, the material demonstrated an exceptional extraction capacity of 976.7 mg g−1, outperforming most reported photocatalysts. These findings highlight the potential of this 3D core–shell design for efficient uranium recovery and environmental purification applications. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Graphical abstract

14 pages, 3138 KB  
Article
Construction of BiOBr/BNQDs Heterostructure Photocatalyst and Performance Studies of Photocatalytic Degradation of RhB
by Yufeng Qin, Xinyu Peng, Tong Wu, Yi Zhong, Hong Xu, Zhiping Mao and Linping Zhang
Catalysts 2025, 15(8), 771; https://doi.org/10.3390/catal15080771 - 13 Aug 2025
Viewed by 457
Abstract
As a common semiconductor material, BiOBr has a unique layered structure and a suitable bandgap. However, the slow electron–hole separation efficiency leads to poor photocatalytic performance. To solve this problem, BiOBr/BNQDs heterojunctions were constructed. BiOBr/BNQDs composite photocatalysts were prepared by the solvothermal method, [...] Read more.
As a common semiconductor material, BiOBr has a unique layered structure and a suitable bandgap. However, the slow electron–hole separation efficiency leads to poor photocatalytic performance. To solve this problem, BiOBr/BNQDs heterojunctions were constructed. BiOBr/BNQDs composite photocatalysts were prepared by the solvothermal method, and the cocatalyst BNQDs were loaded onto BiOBr via electrostatic adsorption to enhance the photocatalytic degradation activity towards Rhodamine B (RhB). The photocatalysts were characterized by FT-IR, XRD, XPS, SEM-EDS, UV-Vis, PL, EIS, etc. Compared with pure BiOBr, the construction of heterojunctions BiOBr/BNQDs realized the rapid elimination of weak carriers and the effective separation and enrichment of high-energy carriers, which improved the efficiency of photocatalytic degradation of RhB. Among them, BiOBr/BNQDs-8.3% demonstrated the highest photocatalytic activity. The degradation rate of RhB under visible light irradiation for 60 min was up to 98.56%, and the reaction rate constant was 0.0696 min−1, which was 2.80 times that of pure BiOBr. Moreover, after five photocatalytic cycles, the degradation rate was still 87.58%, demonstrating good cycling stability. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Pollutants in Wastewater)
Show Figures

Graphical abstract

20 pages, 10780 KB  
Article
Enhanced Photo-Fenton Removal of Oxytetracycline Hydrochloride via BP/Bi2MoO6 Z-Scheme Heterojunction Photocatalyst
by Jian Feng, Xiaohui Li, Xia Ran, Li Wang, Bo Xiao, Rong Li and Guangwei Feng
Int. J. Mol. Sci. 2025, 26(16), 7751; https://doi.org/10.3390/ijms26167751 - 11 Aug 2025
Viewed by 307
Abstract
Fenton oxidation technology utilizing hydrogen peroxide is recognized as an effective method for producing reactive oxygen species (ROS) to facilitate the degradation of antibiotics. However, the requirement for strongly acidic conditions during this process significantly restricts its broader applicability. In this study, we [...] Read more.
Fenton oxidation technology utilizing hydrogen peroxide is recognized as an effective method for producing reactive oxygen species (ROS) to facilitate the degradation of antibiotics. However, the requirement for strongly acidic conditions during this process significantly restricts its broader applicability. In this study, we synthesized black phosphorus (BP) nanosheets by exposing the {010} crystal planes and then constructed a 0D/2D BP/Bi2MoO6 (PBMO) heterojunction to function as a Fenton catalyst. The PBMO-75 heterojunction exhibited a remarkable increase in photo-Fenton catalytic activity towards oxytetracycline (OTC) under neutral conditions, achieving catalytic efficiencies that were 20 and 8 times greater than those of BP and Bi2MoO6 (BMO), respectively. This can be attributed to its strong absorption of visible light, the establishment of an internal electric field (IEF) at the interface, and the implementation of a Z-scheme catalytic mechanism. Additionally, the photo-Fenton system was further improved in OTC degradation through the continuous conversion of Mo6+/Mo5+ under visible light irradiation in conjunction with H2O2. Based on ERS, XPS, and active species trapping experiments, we propose a Z-scheme charge transfer mechanism for PBMO. This research offers compelling evidence that 0D/2D Z-scheme heterojunctions are promising candidates for the photo-Fenton treatment of antibiotic contaminants. Full article
(This article belongs to the Special Issue Latest Research in Photocatalysis)
Show Figures

Figure 1

23 pages, 4361 KB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Viewed by 400
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Graphical abstract

34 pages, 4196 KB  
Review
Surface Interface Modulation and Photocatalytic Membrane Technology for Degradation of Oily Wastewater
by Yulin Zhao, Yang Xu, Chunling Yu, Yufan Feng, Geng Chen and Yingying Zhu
Catalysts 2025, 15(8), 730; https://doi.org/10.3390/catal15080730 - 31 Jul 2025
Viewed by 526
Abstract
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional [...] Read more.
The discharge of oily wastewater threatens the ecosystem and human health, and the efficient treatment of oily wastewater is confronted with problems of high mass transfer resistance at the oil-water-solid multiphase interface, significant light shielding effect, and easy deactivation of photocatalysts. Although traditional physical separation methods avoid secondary pollution by chemicals and can effectively separate floating oil and dispersed oil, they are ineffective in removing emulsified oil with small particle sizes. To address these complex challenges, photocatalytic technology and photocatalysis-based improved technologies have emerged, offering significant application prospects in degrading organic pollutants in oily wastewater as an environmentally friendly oxidation technology. In this paper, the degradation mechanism, kinetic mechanism, and limitations of conventional photocatalysis technology are briefly discussed. Subsequently, the surface interface modulation functions of metal doping and heterojunction energy band engineering, along with their applications in enhancing the light absorption range and carrier separation efficiency, are reviewed. Focus on typical studies on the separation and degradation of aqueous and oily phases using photocatalytic membrane technology, and illustrate the advantages and mechanisms of photocatalysts loaded on the membranes. Finally, other new approaches and converging technologies in the field are outlined, and the challenges and prospects for the future treatment of oily wastewater are presented. Full article
Show Figures

Figure 1

7 pages, 784 KB  
Communication
Mechanoluminescent-Boosted NiS@g-C3N4/Sr2MgSi2O7:Eu,Dy Heterostructure: An All-Weather Photocatalyst for Water Purification
by Yuchen Huang, Jiamin Wu, Honglei Li, Dehao Liu, Qingzhe Zhang and Kai Li
Processes 2025, 13(8), 2416; https://doi.org/10.3390/pr13082416 - 30 Jul 2025
Viewed by 393
Abstract
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi [...] Read more.
The vast majority of photocatalysts find it difficult to consistently and stably exhibit high performance due to the variability of sunlight intensity within a day, as well as the high energy consumption of artificial light sources. In this study, mechanoluminescent Sr2MgSi2O7:Eu,Dy phosphors is combined with NiS@g-C3N4 composite to construct a ternary heterogeneous photocatalytic system, denoted as NCS. In addition to the enhanced separation efficiency of photogenerated charge carriers by the formation of a heterojunction, the introduction of Sr2MgSi2O7:Eu,Dy provides an ultra-driving force for the photocatalytic reactions owing to its mechanoluminescence-induced excitation. Results show that the degradation rate of RhB increased significantly in comparison with pristine g-C3N4 and NiS@g-C3N4, indicating the obvious advantages of the ternary system for charge separation and migration. Moreover, the additional photocatalytic activity of NCS under ultrasound stimulation makes it a promising all-weather photocatalyst even in dark environments. This novel strategy opens up new horizons for the synergistic combination of light-driven and ultrasound-driven heterogeneous photocatalytic systems, and it also has important reference significance for the design and application of high-performance photocatalysts. Full article
(This article belongs to the Special Issue Green Photocatalysis for a Sustainable Future)
Show Figures

Figure 1

20 pages, 10028 KB  
Article
The Fabrication of Cu2O-u/g-C3N4 Heterojunction and Its Application in CO2 Photoreduction
by Jiawei Lu, Yupeng Zhang, Fengxu Xiao, Zhikai Liu, Youran Li, Guiyang Shi and Hao Zhang
Catalysts 2025, 15(8), 715; https://doi.org/10.3390/catal15080715 - 27 Jul 2025
Viewed by 650
Abstract
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. [...] Read more.
Over efficient photocatalysts, CO2 photoreduction typically converts CO2 into low-carbon chemicals, which serve as raw materials for downstream synthesis processes. Here, an efficient composite photocatalyst heterojunction (Cu2O-u/g-C3N4) has been fabricated to reduce CO2. Graphitic carbon nitride (g-C3N4) was synthesized via thermal polymerization of urea at 550 °C, while pre-dispersed Cu2O derived from urea pyrolysis (Cu2O-u) was prepared by thermal reduction of urea and CuCl2·2H2O at 180 °C. The heterojunction Cu2O-u/g-C3N4 was subsequently constructed through hydrothermal treatment at 180 °C. This heterojunction exhibited a bandgap of 2.10 eV, with dual optical absorption edges at 485 nm and above 800 nm, enabling efficient harvesting of solar light. Under 175 W mercury lamp irradiation, the heterojunction catalyzed liquid-phase CO2 photoreduction to formic acid, acetic acid, and methanol. Its formic acid production activity surpassed that of pristine g-C3N4 by 3.14-fold and TiO2 by 8.72-fold. Reaction media, hole scavengers, and reaction duration modulated product selectivity. In acetonitrile/isopropanol systems, formic acid and acetic acid production reached 579.4 and 582.8 μmol·h−1·gcat−1. Conversely, in water/triethanolamine systems, methanol production reached 3061.6 μmol·h−1·gcat−1, with 94.79% of the initial conversion retained after three cycles. Finally, this work ends with the conclusions of the CO2 photocatalytic reduction to formic acid, acetic acid, and methanol, and recommends prospects for future research. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

20 pages, 4256 KB  
Review
Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
by Parnapalle Ravi and Jin-Seo Noh
Materials 2025, 18(15), 3516; https://doi.org/10.3390/ma18153516 - 27 Jul 2025
Viewed by 384
Abstract
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band [...] Read more.
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band structures, chemical robustness, and tailored morphologies. The objectives of this work are to (i) encompass the current synthesis strategies for MNb2O6 compounds; (ii) assess their structural, electronic, and optical properties in relation to photocatalytic performance; and (iii) elucidate the mechanisms underpinning enhanced hydrogen evolution. Main data collection methods include a literature review of experimental studies reporting bandgap measurements, structural analyses, and hydrogen production metrics for various MNb2O6 compositions—especially those incorporating transition metals such as Mn, Cu, Ni, and Co. Novelty stems from systematically detailing the relationships between synthesis routes (hydrothermal, solvothermal, electrospinning, etc.), crystallographic features, conductivity type, and bandgap tuning in these materials, as well as by benchmarking their performance against more conventional photocatalyst systems. Key findings indicate that MnNb2O6, CuNb2O6, and certain engineered heterostructures (e.g., with g-C3N4 or TiO2) display significant visible-light-driven hydrogen evolution, achieving hydrogen production rates up to 146 mmol h−1 g−1 in composite systems. The review spotlights trends in heterojunction design, defect engineering, co-catalyst integration, and the extension of light absorption into the visible range, all contributing to improved charge separation and catalytic longevity. However, significant challenges remain in realizing the full potential of the broader MNb2O6 family, particularly regarding efficiency, scalability, and long-term stability. The insights synthesized here serve as a guide for future experimental investigations and materials design, advancing the deployment of MNb2O6-based photocatalysts for large-scale, sustainable hydrogen production. Full article
Show Figures

Figure 1

Back to TopTop