Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = high energy pouch cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8711 KB  
Article
Intrinsic Thermal Stability of Li-Rich Mn-Based Cathodes Enabling Safe High-Energy Lithium-Ion Batteries
by Zhaoqiang Pei, Shaobo Feng, Zhibo Han, Zihua Wang, Chengshan Xu, Xiangming He, Li Wang, Yu Wang and Xuning Feng
Batteries 2025, 11(8), 311; https://doi.org/10.3390/batteries11080311 - 15 Aug 2025
Viewed by 280
Abstract
Lithium-rich manganese-based oxides (LMR) are promising next-generation cathode materials due to their high capacity and low cost, but safety remains a critical bottleneck restricting the practical application of high-energy-density cathodes. However, the safety level of LMR batteries and the thermal failure mechanism of [...] Read more.
Lithium-rich manganese-based oxides (LMR) are promising next-generation cathode materials due to their high capacity and low cost, but safety remains a critical bottleneck restricting the practical application of high-energy-density cathodes. However, the safety level of LMR batteries and the thermal failure mechanism of the cathode are still poorly understood, especially when compared with traditional high-energy nickel-rich (Ni-rich) cathodes. Here, we investigate the LMR cell’s thermal runaway behavior and the thermal failure mechanism of the cathode. Compared to a Ni-rich cell, Accelerating Rate Calorimetry (ARC) shows the LMR pouch cell exhibits a 62.7 °C higher thermal runaway trigger temperature (T2) and 270.3 °C lower maximum temperature (T3). These results indicate that the cell utilizing a higher-energy-density LMR cathode presents significantly lower thermal runaway risks and hazards. The results of differential scanning calorimetry–thermogravimetry–mass spectrometry (DSC-TG-MS) and in situ heating X-ray diffraction (XRD) indicate that the LMR cathode has superior thermal stability compared with the Ni-rich cathode, with cathode oxygen released at higher temperatures and lower rates, which is beneficial for delaying and mitigating the exothermic reaction inside the battery. This study demonstrates that simultaneously enhancing cathode energy density and battery safety is achievable, and these findings provide theoretical guidance for the design of next-generation high-energy and high-safety battery systems. Full article
(This article belongs to the Special Issue Thermal Management System for Lithium-Ion Batteries: 2nd Edition)
Show Figures

Graphical abstract

18 pages, 4487 KB  
Article
Thermal Management and Performance Optimization in High-Power-Density Lithium-Ion Battery Modules
by Jianhui He, Chao Wang and Yunhui Huang
Energies 2025, 18(9), 2294; https://doi.org/10.3390/en18092294 - 30 Apr 2025
Viewed by 609
Abstract
The growing demand for high-power battery output in the ever-evolving electric vehicle and energy storage sectors necessitates the development of efficient thermal management systems. High-power lithium-ion batteries (LIBs), known for their outstanding performance, are widely used across various applications. However, effectively managing the [...] Read more.
The growing demand for high-power battery output in the ever-evolving electric vehicle and energy storage sectors necessitates the development of efficient thermal management systems. High-power lithium-ion batteries (LIBs), known for their outstanding performance, are widely used across various applications. However, effectively managing the thermal conditions of high-power battery packs remains a critical challenge that limits the operational efficiency and hinders broader market acceptance. The high charge and discharge rates in LIBs generate significant heat, and, as a result, inadequate heat dissipation adversely impacts battery performance, lifespan, and safety. This study utilized theoretical analysis, numerical simulations, and experimental methodologies to address these issues. Considering the anisotropic heat transfer characteristics of laminated pouch cells, this study developed a fluid–solid coupling simulation model tailored to the liquid-cooled structure of pouch battery modules, supported by an experimental test setup. A U-shaped “bathtub-type” cooling structure was designed for a 48 V/8 Ah high-power-density battery pack intended for start–stop power supply applications. This design aimed to resolve heat dissipation challenges, optimize the cooling efficiency, and ensure stable operation under varying conditions. During the performance assessments of the cooling structure conducted through simulations and experiments, extreme discharge conditions (320 A) and pulse charging/discharging cycles (80 A) at ambient temperatures of up to 45 °C were simulated. An analysis of the temperature distribution and its temporal evolution led to critical insights. The results showed that, under these severe conditions, the maximum temperature of the battery module remained below 60 °C, with temperature uniformity maintained within a 5 °C range and cell uniformity within 2 °C. Consequently, the battery pack meets the operational requirements for start–stop power supply applications and provides an effective solution for thermal management in high-power-density environments. Full article
Show Figures

Figure 1

14 pages, 11366 KB  
Article
A Lithiophilic Artificial Li3P Interphase with High Li-Ion Conductivity via Solid-State Friction for Lithium Metal Anodes
by Haoling Liu, Wen Pan, Bo Xiao, Yunke Jin, Kun Li, An Wang, Huimiao Li, Zhibin Wu, Yuejiao Chen, Shaozhen Huang, Lin Mei and Libao Chen
Materials 2025, 18(9), 1930; https://doi.org/10.3390/ma18091930 - 24 Apr 2025
Viewed by 552
Abstract
Interfacial modification strategies for lithium metal anodes have emerged as a promising method to improve cycling stability, suppress lithium dendrite growth, and increase Coulombic efficiency. However, the reported chemical synthesis methods lead to side reactions and side products, which hinder their electrochemical performance. [...] Read more.
Interfacial modification strategies for lithium metal anodes have emerged as a promising method to improve cycling stability, suppress lithium dendrite growth, and increase Coulombic efficiency. However, the reported chemical synthesis methods lead to side reactions and side products, which hinder their electrochemical performance. In this study, we propose a novel and facile red phosphorus-assisted solid-state friction method to in situ fabricate a uniform Li3P interphase directly on the surface of lithium metal. Interestingly, the as-formed artificial Li3P interphase with high ionic conductivity and lithium affinity features significantly enhanced interfacial stability and electrochemical kinetics. The symmetric cells based on Li@P with the Li3P interphase achieved a prolonged lifespan, over 1000 h, at 1 mA/cm2 with low polarization. When paired with a high-loading LiFePO4 cathode (10.5 mg/cm2), the Li@P||LiFePO4 full cell retained 88.9% of its capacity after stable cycling for 550 cycles at 2 C and further demonstrated the excellent performance and stability of the Li@P‖LiCoO2 full pouch cell. This study provides an efficient and scalable strategy for stabilizing lithium metal anodes, expanding new ideas for the development of next-generation high-energy-density batteries. Full article
Show Figures

Graphical abstract

12 pages, 4129 KB  
Article
Structural Design of Dry-Processed Lithium-Rich Mn-Based Materials with High Loading for Enhanced Energy Density
by Yujie Ma, Haojin Guo, Tai Yang and Zhifeng Wang
Batteries 2025, 11(4), 146; https://doi.org/10.3390/batteries11040146 - 7 Apr 2025
Cited by 1 | Viewed by 750
Abstract
With the growing demand for electric vehicles and consumer electronics, lithium-ion batteries with a high energy density are urgently needed. Lithium-rich manganese-based materials (LRMs) are known for their high theoretical specific capacity, rapid electron/ion transfer, and high output voltage. Constructing electrodes with a [...] Read more.
With the growing demand for electric vehicles and consumer electronics, lithium-ion batteries with a high energy density are urgently needed. Lithium-rich manganese-based materials (LRMs) are known for their high theoretical specific capacity, rapid electron/ion transfer, and high output voltage. Constructing electrodes with a substantial amount of active materials is a viable method for enhancing the energy density of batteries. In this study, we prepare thick LRM electrodes through a dry process method of binder fibrillation. A point-to-line-to-surface three-dimensional conductive network is designed by carbon agents with various morphologies. This structural design improves conductivity and facilitates efficient ion and electron transport due to close particle contact and tight packing. A high-loading cathode (35 mg cm−2) is fabricated, achieving an impressive areal capacity of up to 7.9 mAh cm−2. Moreover, the pouch cell paired with a lithium metal anode exhibits a remarkable energy density of 949 Wh kg−1. Compared with the cathodes prepared by the wet process, the dry process optimizes the pathways for e/Li+ transport, leading to reduced resistance, superior coulombic efficiency, retention over cycling, and minimized side reaction. Therefore, the novel structural adoption of the dry process represents a promising avenue for driving innovation and pushing the boundaries for enhanced energy density for batteries. Full article
Show Figures

Figure 1

16 pages, 4035 KB  
Article
Realizing Environmentally Scalable Pre-Lithiation via Protective Coating of LiSi Alloys to Promote High-Energy-Density Lithium-Ion Batteries
by Yinan Liu, Wei Jiang, Congcong Zhang, Pingshan Jia, Zhiyuan Zhang, Yun Zheng, Kunye Yan, Jun Wang, Yunxian Qian, Junpo Guo, Rong Chen, Yike Huang, Yingying Shen, Lifen Long, Bang Zheng and Huaiyu Shao
Inorganics 2025, 13(4), 115; https://doi.org/10.3390/inorganics13040115 - 6 Apr 2025
Cited by 2 | Viewed by 1012
Abstract
Pre-lithiation using Li–Si alloy-type additives is a promising technical approach to address the drawbacks of Si-based anodes, such as a low initial Coulombic efficiency (ICE) and inevitable capacity decay during cycling. However, its commercial application is limited by the air sensitivity of the [...] Read more.
Pre-lithiation using Li–Si alloy-type additives is a promising technical approach to address the drawbacks of Si-based anodes, such as a low initial Coulombic efficiency (ICE) and inevitable capacity decay during cycling. However, its commercial application is limited by the air sensitivity of the highly reactive Li–Si alloys, which demands improved environmental stability. In this work, a protective membrane is constructed on Li13Si4 alloys using low-surface-energy paraffin and highly conductive carbon nanotubes through liquid-phase deposition, exhibiting enhanced hydrophobicity and improved Li+/e conductivity. The Li13Si4@Paraffin/carbon nanotubes (Li13Si4@P-CNTs) composite achieves a high pre-lithiation capacity of 970 mAh g−1 and superb environmental stability, retaining 92.2% capacity after exposure to ambient air with 45% relative humidity. DFT calculations and in situ XRD measurements reveal that the paraffin-dominated coating membrane, featuring weak dipole–dipole interactions with water molecules, effectively reduces the moisture-induced oxidation kinetics of Li13Si4@P-CNTs in air. Electrochemical kinetic analysis and XPS depth profiling reveal the enhancement in charge transfer dynamics and surface Li+ transport kinetics (SEI rich in inorganic lithium salts) in P-SiO@C pre-lithiated by Li13Si4@P-CNTs pre-lithiation additives. Benefitting from pre-lithiation via Li13Si4@P-CNTs, the pre-lithiated SiO@C(P-SiO@C) delivers high ICE (103.7%), stable cycling performance (981 mAh g−1 at 200 cycles) and superior rate performance (474.5 mAh g−1 at 3C) in a half-cell system. The LFP||P-Gr pouch-type full cell exhibits a capacity retention of 83.2% (2500 cycles) and an energy density of 381 Wh kg−1 after 2500 cycles. The Li13Si4@P-CNTs additives provide valuable design concepts for the development of pre-lithiation materials. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Energy Storage Devices)
Show Figures

Graphical abstract

31 pages, 1777 KB  
Review
Development and Commercial Application of Lithium-Ion Batteries in Electric Vehicles: A Review
by Zhi-Wei Gao, Tianyu Lan, Haishuang Yin and Yuanhong Liu
Processes 2025, 13(3), 756; https://doi.org/10.3390/pr13030756 - 5 Mar 2025
Cited by 8 | Viewed by 4981
Abstract
Lithium-ion batteries are one of the critical components in electric vehicles (EVs) and play an important role in green energy transportation. In this paper, lithium-ion batteries are reviewed from the perspective of battery materials, the characteristics of lithium-ion batteries with different cathode and [...] Read more.
Lithium-ion batteries are one of the critical components in electric vehicles (EVs) and play an important role in green energy transportation. In this paper, lithium-ion batteries are reviewed from the perspective of battery materials, the characteristics of lithium-ion batteries with different cathode and anode mediums, and their commercial values in the field of electric vehicles. Representative products, including blade battery and Tesla 4680 cells, are inspected. Moreover, the results of commercial application of lithium-ion batteries in electric vehicles are summarized. Furthermore, cutting-edge technologies of lithium-ion batteries are discussed, including electrolyte technology, high-energy-density in situ polymerization technology, and pouch batteries. Finally, the latest EV battery technology development is looked over, including challenges and future development directions. Full article
Show Figures

Figure 1

14 pages, 4389 KB  
Article
Bimetal/Li2Se Nanocomposite as Cathode Prelithiation Additive for Sustainable High-Energy Lithium-Ion Batteries
by Ting Liu, Xuemei Hu, Yadong Zhang, Ting He, Yunxiang Guo and Junqiang Qiao
Batteries 2025, 11(2), 74; https://doi.org/10.3390/batteries11020074 - 11 Feb 2025
Viewed by 1028
Abstract
Cathodes undergo unavoidable lithium loss due to the formation of a solid electrolyte interface (SEI), which seriously affects the energy density of lithium iron phosphate (LFP) batteries. To compensate for the initial capacity loss, we introduced an NiCo-Li2Se nanocomposite to an [...] Read more.
Cathodes undergo unavoidable lithium loss due to the formation of a solid electrolyte interface (SEI), which seriously affects the energy density of lithium iron phosphate (LFP) batteries. To compensate for the initial capacity loss, we introduced an NiCo-Li2Se nanocomposite to an LFP battery system to act as a competitive cathode prelithiation additive. Benefiting from its zero gas-emissions, ambient stability, high irreversible capacity, low delithiation potential, and good compatibility with carbonate-based electrolytes, the NiCo-Li2Se additive based on the chemical conversion reaction effectively offset the initial lithium loss. As a result, with 10 wt% addition, the initial charge capacity of the Li||LFP half-cell was improved by 34 mA h g−1. The Gra||LFP-Li2Se full-cell released an initial discharge specific capacity of 159.7 mA h g−1, which increased by 18% compared with the Gra||LFP full-cell, resulting in improved cycling stability. In addition, COMSOL Multiphysics simulation was applied to verify the function of the NiCo-Li2Se additive, and pouch cells were assembled to explore its potential in large-scale industrial application. This work provides a meaningful research direction for the design of a prelithiation additive for LFP cells. Full article
Show Figures

Figure 1

19 pages, 12894 KB  
Article
Comparison Between Crystalline and Amorphous Silicon as Anodes for Lithium Ion Batteries: Electrochemical Performance from Practical Cells and Lithiation Behavior from Molecular Dynamics Simulations
by Geonhee Kim, Min-Ji Yang, Sanghun Lee and Jae-Hyun Shim
Materials 2025, 18(3), 515; https://doi.org/10.3390/ma18030515 - 23 Jan 2025
Cited by 1 | Viewed by 1796
Abstract
As a prominent next-generation anode material for high-capacity applications, silicon stands out due to its potential. Crystalline silicon, which offers a higher initial capacity compared to its amorphous counterpart, presents challenges in practical applications due to its poor cycling performance. In this study, [...] Read more.
As a prominent next-generation anode material for high-capacity applications, silicon stands out due to its potential. Crystalline silicon, which offers a higher initial capacity compared to its amorphous counterpart, presents challenges in practical applications due to its poor cycling performance. In this study, we prepared composites of crystalline and amorphous silicon with graphite, assembled pouch-type full cells, and evaluated their suitability for practical use. The material incorporating amorphous silicon demonstrated superior performance at both high and low rates, as well as various temperatures. Additionally, the changes in cell thickness during charge and discharge, i.e., the volume changes in the anode material, are significantly related to cycling performance. We examined the microscopic interactions between silicon and lithium atoms using molecular dynamics simulations. Our observations indicate that lithium migration within amorphous silicon, which has lower activation energy, is much easier than in crystalline silicon. In crystalline silicon, lithium penetration is greatly influenced by the orientation of the crystal planes, resulting in anisotropic volume expansion during lithiation. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

40 pages, 6548 KB  
Review
Cell Architecture Design for Fast-Charging Lithium-Ion Batteries in Electric Vehicles
by Firoozeh Yeganehdoust, Anil Kumar Madikere Raghunatha Reddy and Karim Zaghib
Batteries 2025, 11(1), 20; https://doi.org/10.3390/batteries11010020 - 8 Jan 2025
Cited by 3 | Viewed by 6218
Abstract
This paper reviews the growing demand for and importance of fast and ultra-fast charging in lithium-ion batteries (LIBs) for electric vehicles (EVs). Fast charging is critical to improving EV performance and is crucial in reducing range concerns to make EVs more attractive to [...] Read more.
This paper reviews the growing demand for and importance of fast and ultra-fast charging in lithium-ion batteries (LIBs) for electric vehicles (EVs). Fast charging is critical to improving EV performance and is crucial in reducing range concerns to make EVs more attractive to consumers. We focused on the design aspects of fast- and ultra-fast-charging LIBs at different levels, from internal cell architecture, through cell design, to complete system integration within the vehicle chassis. This paper explores battery internal cell architecture, including how the design of electrodes, electrolytes, and other factors may impact battery performance. Then, we provide a detailed review of different cell format characteristics in cylindrical, prismatic, pouch, and blade shapes. Recent trends, technological advancements in tab design and placement, and shape factors are discussed with a focus on reducing ion transport resistance and enhancing energy density. In addition to cell-level modifications, pack and chassis design must be implemented across aspects such as safety, mechanical integrity, and thermal management. Considering the requirements and challenges of high-power charging systems, we examined how modules, packs, and the vehicle chassis should be adapted to provide fast and ultra-fast charging. In this way, we explored the potential of fast and ultra-fast charging by investigating the required modification of individual cells up to their integration into the EV system through pack and chassis design. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Graphical abstract

16 pages, 5915 KB  
Article
Hierarchically Porous Carbon Microspheres Coated with MnO2 Nanosheets as the Sulfur Host for High-Loading Lithium–Sulfur Batteries
by Liqin Dai, Zonglin Yi, Lijing Xie, Fangyuan Su, Xiaoqian Guo, Zhenbing Wang, Jiayao Cheng and Chengmeng Chen
Molecules 2024, 29(24), 5881; https://doi.org/10.3390/molecules29245881 - 13 Dec 2024
Viewed by 1117
Abstract
Lithium–sulfur (Li–S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO2 nanosheets onto hierarchical [...] Read more.
Lithium–sulfur (Li–S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO2 nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO2 composite for advanced lithium–sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm−2, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO2 nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect. The thick HPCs/S@MnO2 electrode with 7 mg cm−2 sulfur loading delivers an areal capacity of 4.0 mAh cm−2 at 0.1 C and provides stable cycling stability with a low-capacity decay rate of 0.063 % per cycle after 200 cycles at 0.1 C. Furthermore, a Li–S pouch cell with a capacity of 2.5 A h is fabricated and demonstrates high cycling stability. This work offers a feasible method to build advanced sulfur electrodes with high areal loading and sheds light on their commercial application in high-performance Li–S batteries. Full article
Show Figures

Figure 1

30 pages, 5421 KB  
Article
A Comprehensive Investigation on Catalytic Behavior of Anaerobic Jar Gassing Systems and Design of an Enhanced Cultivation System
by Fatih S. Sayin, Hasan Erdal, Nurver T. Ulger, Mehmet B. Aksu and Mehmet M. Guncu
Bioengineering 2024, 11(11), 1068; https://doi.org/10.3390/bioengineering11111068 - 25 Oct 2024
Viewed by 2108
Abstract
The rapid and reliable diagnosis of anaerobic bacteria constitutes one of the key procedures in clinical microbiology. Automatic jar gassing systems are commonly used laboratory instruments for this purpose. The most critical factors affecting the cultivation performance of these systems are the level [...] Read more.
The rapid and reliable diagnosis of anaerobic bacteria constitutes one of the key procedures in clinical microbiology. Automatic jar gassing systems are commonly used laboratory instruments for this purpose. The most critical factors affecting the cultivation performance of these systems are the level of residual oxygen remaining in the anaerobic jar and the reaction rate determined by the Pd/Al2O3 catalyst. The main objective of the presented study is to design and manufacture an enhanced jar gassing system equipped with an extremum seeking-based estimation algorithm that combines real-time data and a reaction model of the Pd/Al2O3 catalyst. The microkinetic behavior of the palladium catalyst was modeled through a learning-from-experiment methodology. The majority of microkinetic model parameters were derived from material characterization analysis. A comparative validation test of the designed cultivation system was conducted using conventional gas pouches via six different bacterial strains. The results demonstrated high cell viability, with colony counts ranging from 1.26 × 105 to 2.17 × 105 CFU mL−1. The favorable catalyst facets for water formation on Pd surfaces and the crystal structure of Pd/Al2O3 pellets were identified by X-Ray diffraction analysis (XRD). The doping ratio of the noble metal (Pd) and the support material (Al2O3) was validated via energy-dispersive spectroscopy (EDS) measurements as 0.68% and 99.32%, respectively. The porous structure of the catalyst was also analyzed by scanning electron microscopy (SEM). During the reference clinical trial, the estimation algorithm was terminated after 878 iterations, having reached its predetermined termination value. The measured and modelled reaction rates were found to converge with a root-mean-squared error (RMSE) of less than 10−4, and the Arrhenius parameters of ongoing catalytic reaction were obtained. Additionally, our research offers a comprehensive analysis of anaerobic jar gassing systems from an engineering perspective, providing novel insights that are absent from the existing literature. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

9 pages, 8393 KB  
Article
High-Energy-Density Lithium–Sulfur Battery Based on a Lithium Polysulfide Catholyte and Carbon Nanofiber Cathode
by Byeonghun Oh, Baeksang Yoon, Suhyeon Ahn, Jumsuk Jang, Duhyun Lim and Inseok Seo
Energies 2024, 17(21), 5258; https://doi.org/10.3390/en17215258 - 22 Oct 2024
Cited by 2 | Viewed by 1275
Abstract
Li–S batteries are promising large-scale energy storage systems but currently suffer from performance issues; a major reason is the dissolution of polysulfides in electrolytes. To this end, we report a high-energy-density Lithium–Sulfur (Li–S) battery that combines a catholyte and a sulfur-free carbon nanofiber [...] Read more.
Li–S batteries are promising large-scale energy storage systems but currently suffer from performance issues; a major reason is the dissolution of polysulfides in electrolytes. To this end, we report a high-energy-density Lithium–Sulfur (Li–S) battery that combines a catholyte and a sulfur-free carbon nanofiber (CNF) cathode. The cathode was synthesized by carbonizing binder-free polyacrylonitrile (PAN) nanofibers, affording a high surface area. In the catholyte, added polysulfides acted as both conductive Li salts and active materials. Investigating the electrochemical performance of this concept in both Swagelok- and pouch-type cells afforded energy densities exceeding 3 mAh cm−2 at a discharge rate of 0.1 C. This combination could also be utilized in high-capacity pouch cells with capacities of up to 250 mAh g−1. Both cell types exhibited good cycle performance. Adding LiNO3 to the electrolyte suppressed the redox shuttle reactions. Moreover, the cathode being binder-free increased the energy density and simplified cathode fabrication. Characterizing the cathode before and after cycling revealed that deposition was reversible, and that cell reactions at least partially formed sulfur as the end product, resulting in high sulfur amounts in the cell. We expect our concept to greatly aid in the development of practically applicable Li–S cells. Full article
(This article belongs to the Special Issue Advances in Secondary Battery)
Show Figures

Figure 1

16 pages, 5588 KB  
Article
The Influence of Thick Cathode Fabrication Processing on Battery Cell Performance
by Dewen Kong, Haijing Liu, Si Chen and Meiyuan Wu
Electrochem 2024, 5(4), 421-436; https://doi.org/10.3390/electrochem5040028 - 16 Oct 2024
Cited by 1 | Viewed by 2413
Abstract
The lithium-ion battery (LIB) is the key energy storage device for electric transportation. The thick electrode (single-sided areal capacity >4.0 mAh/cm2) design is a straightforward and effective strategy for improving cell energy density by improving the mass proportion of electroactive materials [...] Read more.
The lithium-ion battery (LIB) is the key energy storage device for electric transportation. The thick electrode (single-sided areal capacity >4.0 mAh/cm2) design is a straightforward and effective strategy for improving cell energy density by improving the mass proportion of electroactive materials in whole cell components and for reducing cost of the battery cell without involving new chemistries of uncertainties. Thus, selecting a low-cost and environmentally friendly fabrication process to achieve a thick cathode electrode with good electrochemical performance is of strong interest. This study investigated the impact of fabrication processes on the performance of thick LiNi0.75Mn0.25O2 (NM75) cathode electrodes in pouch cells. Two fabrication methods were compared: the conventional polyvinylidene fluoride (PVDF)-based slurry casting method (C-NM75) and the polytetrafluoroethylene (PTFE)-based powder fibrillating process (F-NM75). The pouch cells with F-NM75 electrodes exhibited significantly improved discharge and charge rate capabilities, with a discharge capacity ratio (3 C vs. C/3) > 62% and a charge capacity ratio (2 C vs. C/3) > 81%. Furthermore, F-NM75 cells demonstrated outstanding C/3 cycling performance, retaining 86% of discharge capacity after 2200 cycles. These results strongly indicated that the PTFE-based powder fibrillating process is a promising solution to construct high-performance thick cathode electrodes for electric vehicles (EVs) applications. Full article
Show Figures

Figure 1

21 pages, 3878 KB  
Article
Impact of Laser Ablation Strategies on Electrochemical Performances of 3D Batteries Containing Aqueous Acid Processed Li(Ni0.6Mn0.2Co0.2)O2 Cathodes with High Mass Loading
by Penghui Zhu, Yannic Sterzl and Wilhelm Pfleging
Batteries 2024, 10(10), 354; https://doi.org/10.3390/batteries10100354 - 10 Oct 2024
Cited by 2 | Viewed by 2362
Abstract
Lithium-ion batteries are currently one of the most important energy storage devices for various applications. However, it remains a great challenge to achieve both high energy density and high-power density while reducing the production costs. Cells with three-dimensional electrodes realized by laser ablation [...] Read more.
Lithium-ion batteries are currently one of the most important energy storage devices for various applications. However, it remains a great challenge to achieve both high energy density and high-power density while reducing the production costs. Cells with three-dimensional electrodes realized by laser ablation are proven to have enhanced electrochemical performance compared to those with conventional two-dimensional electrodes, especially at fast charging/discharging. Nevertheless, laser structuring of electrodes is still limited in terms of achievable processing speed, and the upscaling of the laser structuring process is of great importance to gain a high technology readiness level. In the presented research, the impact of different laser structuring strategies on the electro-chemical performance was investigated on aqueous processed Li(Ni0.6Mn0.2Co0.2)O2 cathodes with acid addition during the slurry mixing process. Rate capability analyses of cells with laser structured aqueous processed electrodes exhibited enhanced performance with capacity increases of up to 60 mAh/g at high current density, while a 65% decrease in ionic resistance was observed for cells with laser structured electrodes. In addition, pouch cells with laser structured acid-added electrodes maintained 29–38% higher cell capacity after 500 cycles and their end-of-life was extended by a factor of about 4 in contrast to the reference cells with two-dimensional electrodes containing common organic solvent processed polyvinylidene fluoride binder. Full article
Show Figures

Graphical abstract

39 pages, 4148 KB  
Review
A Review on Design Parameters for the Full-Cell Lithium-Ion Batteries
by Faizan Ghani, Kunsik An and Dongjin Lee
Batteries 2024, 10(10), 340; https://doi.org/10.3390/batteries10100340 - 25 Sep 2024
Cited by 12 | Viewed by 9515
Abstract
The lithium-ion battery (LIB) is a promising energy storage system that has dominated the energy market due to its low cost, high specific capacity, and energy density, while still meeting the energy consumption requirements of current appliances. The simple design of LIBs in [...] Read more.
The lithium-ion battery (LIB) is a promising energy storage system that has dominated the energy market due to its low cost, high specific capacity, and energy density, while still meeting the energy consumption requirements of current appliances. The simple design of LIBs in various formats—such as coin cells, pouch cells, cylindrical cells, etc.—along with the latest scientific findings, trends, data collection, and effective research methods, has been summarized previously. These papers addressed individual design parameters as well as provided a general overview of LIBs. They also included characterization techniques, selection of new electrodes and electrolytes, their properties, analysis of electrochemical reaction mechanisms, and reviews of recent research findings. Additionally, some articles on computer simulations and mathematical modeling have examined the design of full-cell LIBs for power grid and electric vehicle applications. To fully understand LIB operation, a simple and concise report on design parameters and modification strategies is essential. This literature aims to summarize the design parameters that are often overlooked in academic research for the development of full-cell LIBs. Full article
Show Figures

Graphical abstract

Back to TopTop