Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,026)

Search Parameters:
Keywords = high energy visible

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2669 KiB  
Article
Self-Diagnostic Advanced Metering Infrastructure Based on Power-Line Communication: A Study Case in Spanish Low-Voltage Distribution Networks
by Matías Ariel Kippke Salomón, José Manuel Carou Álvarez, Lucía Suárez Ramón and Pablo Arboleya
Energies 2025, 18(7), 1746; https://doi.org/10.3390/en18071746 - 31 Mar 2025
Viewed by 29
Abstract
The transformation of low-voltage distribution grids toward decentralized, user-centric models has increased the need for advanced metering infrastructures capable of ensuring both visibility and control. This paper presents a self-diagnostic advanced metering solution based on power-line communication deployed in a segment of the [...] Read more.
The transformation of low-voltage distribution grids toward decentralized, user-centric models has increased the need for advanced metering infrastructures capable of ensuring both visibility and control. This paper presents a self-diagnostic advanced metering solution based on power-line communication deployed in a segment of the Spanish distribution network. The proposed infrastructure leverages the existing power network as a shared-media communication channel, reducing capital expenditures while enhancing system observability. A methodology is introduced for integrating smart metering data with topological and operational analytics to improve network monitoring and energy management. This study details the proposed metering infrastructure, highlighting its role in enhancing distribution network resilience through asynchronous energy measurements, event-driven analytics, and dynamic grid management strategies. The self-diagnostic module enables the detection of non-technical losses, identification of congested areas, and monitoring of network assets. Furthermore, this paper discusses the regulatory and technological challenges associated with scaling metering solutions, particularly in the context of increasing distributed energy resource penetration and evolving European Union regulatory frameworks. The findings demonstrate that a well-integrated advanced metering infrastructure system significantly improves distribution network efficiency, enabling proactive congestion detection and advanced load management techniques. However, this study also emphasizes the limitations of PLC in high-noise environments and proposes enhancements such as hybrid communication approaches to improve reliability and real-time performance. The insights provided contribute to the ongoing evolution of metering infrastructure technologies, offering a path toward more efficient and resource-optimized smart grids. Full article
Show Figures

Figure 1

14 pages, 3873 KiB  
Article
UV-Vis-NIR Broadband Dual-Mode Photodetector Based on Graphene/InP Van Der Waals Heterostructure
by Mingyang Shen, Hao Liu, Qi Wang, Han Ye, Xueguang Yuan, Yangan Zhang, Bo Wei, Xue He, Kai Liu, Shiwei Cai, Yongqing Huang and Xiaomin Ren
Sensors 2025, 25(7), 2115; https://doi.org/10.3390/s25072115 - 27 Mar 2025
Viewed by 120
Abstract
Dual-mode photodetectors (DmPDs) have attracted considerable interest due to their ability to integrate multiple functionalities into a single device. However, 2D material/InP heterostructures, which exhibit built-in electric fields and rapid response characteristics, have not yet been utilized in DmPDs. In this work, we [...] Read more.
Dual-mode photodetectors (DmPDs) have attracted considerable interest due to their ability to integrate multiple functionalities into a single device. However, 2D material/InP heterostructures, which exhibit built-in electric fields and rapid response characteristics, have not yet been utilized in DmPDs. In this work, we fabricate a high-performance DmPD based on a graphene/InP Van der Waals heterostructure in a facile way, achieving a broadband response from ultraviolet-visible to near-infrared wavelengths. The device incorporates two top electrodes contacting monolayer chemical vapor deposition (CVD) graphene and a bottom electrode on the backside of an InP substrate. By flexibly switching among these three electrodes, the as-fabricated DmPD can operate in a self-powered photovoltaic mode for energy-efficient high-speed imaging or in a biased photoconductive mode for detecting weak light signals, fully demonstrating its multifunctional detection capabilities. Specifically, in the self-powered photovoltaic mode, the DmPD leverages the vertically configured Schottky junction to achieve an on/off ratio of 8 × 103, a responsivity of 49.2 mA/W, a detectivity of 4.09 × 1011 Jones, and an ultrafast response, with a rising time (τr) and falling time (τf) of 2.8/6.2 μs. In the photoconductive mode at a 1 V bias, the photogating effect enhances the responsivity to 162.5 A/W. This work advances the development of InP-based multifunctional optoelectronic devices. Full article
(This article belongs to the Special Issue Advances in Optoelectronic Sensors)
Show Figures

Figure 1

20 pages, 8608 KiB  
Article
Effective Combination of MOF and MoS2 Layers: A Novel Composite Material Capable of Rapidly Degrading Dyes
by Shengyang Zheng, Zhixiu Yuan, Haitao Zhao, Yaping Xu, Nan Jiang and Lijun Meng
Water 2025, 17(7), 980; https://doi.org/10.3390/w17070980 - 27 Mar 2025
Viewed by 152
Abstract
This study successfully prepared MIL-101(Fe)@MoS2 composite photocatalysts via hydrothermal methods to address the efficient removal of refractory organic dyes in dye wastewater. Characterization using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) confirmed that [...] Read more.
This study successfully prepared MIL-101(Fe)@MoS2 composite photocatalysts via hydrothermal methods to address the efficient removal of refractory organic dyes in dye wastewater. Characterization using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) confirmed that molybdenum disulfide (MoS2) was uniformly loaded onto the surface of MIL-101(Fe), forming a heterojunction that significantly enhanced light absorption capacity and charge separation efficiency. In a visible-light-driven photo-Fenton system, this material exhibited excellent degradation performance for Congo red (CR). At an initial CR concentration of 50 mg/L, a catalyst dosage of 0.2 g/L, 4 mL of added H2O2, and pH 7, CR was completely degraded within 30 min, with the total organic carbon (TOC) removal reaching 72.5%. The material maintained high degradation efficiency (>90%) across a pH range of 3–9, overcoming the traditional Fenton system’s dependency on acidic media. Radical-trapping experiments indicated that superoxide radicals (·O2) and photogenerated holes (·h+) were the primary active species responsible for degradation, revealing a synergistic catalytic mechanism at the heterojunction interface. Recyclability tests showed that the material retained 90.8% degradation efficiency after five cycles, and an X-ray photoelectron spectroscopy (XPS) analysis demonstrated the stable binding of Fe and Mo, preventing secondary pollution. This study provides a scientific basis for developing efficient, stable, and wide-pH adaptable photo-Fenton catalytic systems, contributing significantly to the advancement of green water treatment technologies. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 2761 KiB  
Article
Castor Oil-Based Epoxy Vitrimer Based on Dual Dynamic Network with Intrinsic Photothermal Self-Healing Capability
by Yingqing Shao, Haoxin Zhu, Kang Chen, Tianyi Jin, Zhiwen Wang, Zhixin Luo, Jinhui Wang, Haoyuan Sun, Shuangying Wei and Zhenhua Gao
Polymers 2025, 17(7), 897; https://doi.org/10.3390/polym17070897 - 27 Mar 2025
Viewed by 152
Abstract
The development of sustainable epoxy vitrimers with outstanding mechanical strength and facile self-healing capabilities are of great significance for prolonging the lifespan and enhancing the reliability of electronic devices. In this study, we present a castor oil-derived epoxy vitrimer (ASB–ECO) featuring dual dynamic [...] Read more.
The development of sustainable epoxy vitrimers with outstanding mechanical strength and facile self-healing capabilities are of great significance for prolonging the lifespan and enhancing the reliability of electronic devices. In this study, we present a castor oil-derived epoxy vitrimer (ASB–ECO) featuring dual dynamic networks enabled by rationally designed ester–imine bonds and an aromatic Schiff base-conjugated crosslinker architecture. This molecular design strategy effectively enhances the mechanical properties of vegetable oil-based vitrimers and endows them with controllable self-healing capabilities under photothermal conversion. The 1.0-ASB–ECO system demonstrates dynamic characteristics with an activation energy (Ea) of 37.25 kJ/mol and a topological freezing transition temperature (Tv) of 123.13 °C. The material exhibits a photothermal conversion efficiency (ηPT = 61.42%) and can achieve a self-healing rate of 100% under visible-light radiation. In addition, 1.0-ASB–ECO displays a dielectric constant (Dk) of 5.54 and a loss tangent (Df) of 0.025 at 106 Hz. This study on biomass-based epoxy vitrimers presents a novel approach to developing electronic materials, achieving a combination of high mechanical performance, sustainability, and photothermal self-healing properties. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Adhesives and Dynamic Adhesives)
Show Figures

Graphical abstract

13 pages, 3917 KiB  
Article
Computational Discovery of Novel Chalcogenide Perovskites YbMX3 (M = Zr, Hf; X = S, Se) for Optoelectronics
by Qingyu Li, Helong Wu, Weiguo Li, Jiming Zhang and Rongjian Sa
Molecules 2025, 30(7), 1468; https://doi.org/10.3390/molecules30071468 - 26 Mar 2025
Viewed by 133
Abstract
Chalcogenide perovskites have shown great potential for photovoltaic applications. Most researchers have begun to pay close attention to the crystal synthesis, phase stability, and optoelectronic properties of chalcogenide perovskites AMX3 (A = Ca, Sr, Ba; M = Ti, Zr, Hf, Sn; X [...] Read more.
Chalcogenide perovskites have shown great potential for photovoltaic applications. Most researchers have begun to pay close attention to the crystal synthesis, phase stability, and optoelectronic properties of chalcogenide perovskites AMX3 (A = Ca, Sr, Ba; M = Ti, Zr, Hf, Sn; X = S, Se). At present, the A-site metal cations are mainly limited to alkaline earth metal cations in the literature. The replacement of the alkaline earth metal cations by Yb2+ is proposed as an alternative for chalcogenide perovskites. In this study, the phase stability, and mechanical, electronic, optical, and photovoltaic properties of novel chalcogenides YbMX3 (M = Zr, Hf; X = S, Se) are theoretically evaluated in detail for the first time. It is mentioned that YbZrS3 and YbHfS3 are marginally thermodynamically stable while YbZrSe3 and YbHfSe3 exhibit superior phase stability against decomposition. Good mechanical and dynamical stability of these chalcogenide perovskites are verified, and they are all ductile materials. The accurate electronic structure calculations suggest that the predicted direct bandgap of YbMSe3 (M = Zr, Hf) is within 1.3–1.7 eV. Additionally, the small effective mass and low exciton binding energy of YbMSe3 (M = Zr, Hf) are favorable for their photovoltaic applications. However, YbZrS3 and YbHfS3 show larger direct band gaps with a change from 1.92 to 2.27 eV. The optical and photovoltaic properties of these compounds are thoroughly studied. In accordance with their band gaps, YbZrSe3 and YbHfSe3 are discovered to exhibit high visible-light absorption coefficients. The maximum conversion efficiency analysis shows that YbMSe3 (M = Zr, Hf) can achieve an excellent efficiency, especially for YbZrSe3, whose efficiency can reach ~32% in a film thickness of 1 μm. Overall, our study uncovers that YbZrSe3 is an ideal stable photovoltaic material with a high efficiency comparable to those of lead-based halide perovskites. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

18 pages, 2968 KiB  
Article
Research on the Mechanical and Photoelectric Properties Regulation of the New-Type Ceramic Material Ta2AlC
by Zhongzheng Zhang, Chunhong Zhang, Xinmao Qin and Wanjun Yan
Crystals 2025, 15(4), 309; https://doi.org/10.3390/cryst15040309 - 26 Mar 2025
Viewed by 138
Abstract
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation [...] Read more.
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation of the mechanical and photoelectric properties of Ta2AlC through doping using the first-principles pseudopotential plane-wave method. We specifically calculated the geometric structure, mechanical properties, electronic structure, Mulliken population analysis, and optical properties of Ta2AlC doped with V, Ga, or Si. The results indicate that doping induces significant changes in the structural parameters of Ta2AlC. By applying the Born’s criterion as the standard for mechanical stability, we have calculated that the structures of Ta2AlC, both before and after doping, are stable. The mechanical property calculations revealed that V and Si doping weaken the material’s resistance to deformation while enhancing its plasticity. In contrast, Ga doping increases the material’s resistance to lateral deformation and brittleness. Doping also increases the anisotropy of Ta2AlC. Electronic structure calculations confirmed that Ta2AlC is a conductor with excellent electrical conductivity, which is not diminished by doping. The symmetric distribution of spin-up and spin-down electronic state densities indicates that the Ta2AlC system remains non-magnetic after doping. The partial density of states diagrams successfully elucidated the influence of dopant atoms on the band structure and electronic state density. Mulliken population analysis revealed that V and Ga doping enhance the covalent interactions between C-Ta and Al-Ta atoms, whereas Si doping weakens these interactions. Optical property calculations showed that V and Si doping significantly enhance the electromagnetic energy storage capacity and dielectric loss of Ta2AlC, while Ga doping has minimal effect. The reflectivity of doped and undoped Ta2AlC reaches over 90% in the ultraviolet region, indicating its potential as an anti-ultraviolet coating material. In the visible light region, both doped and undoped Ta2AlC exhibit a similar metallic gray appearance, suggesting its potential as a temperature control coating material. The light loss of Ta2AlC is limited to a narrow energy range, indicating that doping does not affect its use as a light storage material. These results demonstrate that different dopants can effectively modulate the mechanical and photoelectric properties of Ta2AlC. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

29 pages, 6092 KiB  
Review
The Evolving Landscape of Advanced Oxidation Processes in Wastewater Treatment: Challenges and Recent Innovations
by Satyam Satyam and Sanjukta Patra
Processes 2025, 13(4), 987; https://doi.org/10.3390/pr13040987 - 26 Mar 2025
Viewed by 266
Abstract
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals [...] Read more.
The increasing presence of persistent pollutants in industrial wastewater underscores the shortcomings of conventional treatment methods, prompting the adoption of advanced oxidation processes (AOPs) for sustainable water remediation. This review examines the development of AOPs, focusing on their ability to produce hydroxyl radicals and reactive oxygen species (ROS) to mineralize complex pollutants. Homogeneous systems such as Fenton’s reagent show high degradation efficiency. However, challenges like pH sensitivity, catalyst recovery issues, sludge generation, and energy-intensive operations limit their scalability. Heterogeneous catalysts, such as TiO2-based photocatalysts and Fe3O4 composites, offer improved pH adaptability, visible-light activation, and recyclability. Emerging innovations like ultraviolet light emitting diode (UV-LED)-driven systems, plasma-assisted oxidation, and artificial intelligence (AI)-enhanced hybrid reactors demonstrate progress in energy efficiency and process optimization. Nevertheless, key challenges remain, including secondary byproduct formation, mass transfer constraints, and economic feasibility for large-scale applications. Integrating AOPs with membrane filtration or biological treatments enhances treatment synergy, while advances in materials science and computational modeling refine catalyst design and reaction mechanisms. Addressing barriers in energy use, catalyst durability, and practical adaptability requires multidisciplinary collaboration. This review highlights AOPs as pivotal solutions for water security amid growing environmental pollution, urging targeted research to bridge gaps between laboratory success and real-world implementation. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

29 pages, 7040 KiB  
Article
Digital Advertising and Customer Movement Analysis Using BLE Beacon Technology and Smart Shopping Carts in Retail
by Zafer Ayaz
J. Theor. Appl. Electron. Commer. Res. 2025, 20(2), 55; https://doi.org/10.3390/jtaer20020055 - 25 Mar 2025
Viewed by 178
Abstract
This paper proposes an innovative, intelligent shopping cart system with an interdisciplinary approach using Bluetooth low energy (BLE) beacons. The research integrates online and offline retail strategies by presenting campaigns and ads to the customers during in-store navigation. In a testing environment, BLE [...] Read more.
This paper proposes an innovative, intelligent shopping cart system with an interdisciplinary approach using Bluetooth low energy (BLE) beacons. The research integrates online and offline retail strategies by presenting campaigns and ads to the customers during in-store navigation. In a testing environment, BLE beacons are strategically positioned to monitor the purchasing process and deliver relevant insights to retailers. The technology anonymously logs customers’ locations and the duration of their browsing at each sales shelf. Through the analysis of client movement heatmaps, retailers may discern high-traffic zones and modify product placement to enhance visibility and sales. Additionally, the system provides an additional revenue model for store owners through location specific targeted ads displayed on a tablet mounted on the cart. Unlike previous BLE-based tracking solutions, this research bridges the gap between customer movement analytics and real-time targeted advertising in retail settings. The system achieved an accuracy of 82.4% when the aisle partition length was 3.00 m and 91.7% when the aisle partition length was 6.00 m. This system, which can generate additional income for store owners by generating 0.171 USD in a single test simulation as a result of displaying ads to three test customers in a two-partitioned aisle layout, offers a new and scalable business model for modern retailers. Full article
Show Figures

Figure 1

18 pages, 8807 KiB  
Article
Optimizing Energy Efficiency and Light Transmission in Greenhouses Using Rotating Low-Emissivity-Coated Envelopes
by Subin Song, JungHo Jeon and Seonghwan Yoon
Energies 2025, 18(7), 1613; https://doi.org/10.3390/en18071613 - 24 Mar 2025
Viewed by 122
Abstract
Growing demand for sustainable agricultural solutions has driven innovations in greenhouse design, particularly in urban areas. This study evaluated the relationship between transparent envelope thermal properties and greenhouse energy loads through regression analysis using DesignBuilder simulations. The thermal performance of the envelope was [...] Read more.
Growing demand for sustainable agricultural solutions has driven innovations in greenhouse design, particularly in urban areas. This study evaluated the relationship between transparent envelope thermal properties and greenhouse energy loads through regression analysis using DesignBuilder simulations. The thermal performance of the envelope was designated as independent variables to quantify its impact on heating and cooling loads. Based on this analysis, a rotatable low-emissivity (low-E) coating envelope system optimized for temperate climate zones was proposed. This system allows seasonal adjustment of coating orientation to enhance energy efficiency. Compared to traditional materials, this approach achieved up to 16% energy savings without compromising visible light transmittance, essential for crop growth. While double-glazed low-E glass demonstrated the highest energy reduction (22%), it reduced visible light transmittance by 20%, potentially affecting crop productivity. In contrast, the proposed system maintained high visible light transmittance while achieving significant energy efficiency, balancing energy performance and light environment requirements. Additionally, integrating the greenhouse with building structures resulted in a 31.91% reduction in building energy consumption through improved insulation. These findings highlight the potential of adaptable greenhouse envelopes to improve energy performance and support urban sustainability. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

12 pages, 4236 KiB  
Article
Capacitance and Dielectric Properties of Spin-Coated Silk Fibroin Thin Films for Bioelectronic Capacitors
by Jongyun Choi, Seung Hun Lee, Taehun Kim, Kyungtaek Min and Sung-Nam Lee
Materials 2025, 18(7), 1408; https://doi.org/10.3390/ma18071408 - 22 Mar 2025
Viewed by 176
Abstract
Silk fibroin, a biocompatible and flexible biopolymer derived from Bombyx mori silkworms, has shown promise in bioelectronics, due to its adjustable dielectric properties. This study investigates the influence of spin coating parameters on the optical, electrical, and dielectric properties of thin silk fibroin [...] Read more.
Silk fibroin, a biocompatible and flexible biopolymer derived from Bombyx mori silkworms, has shown promise in bioelectronics, due to its adjustable dielectric properties. This study investigates the influence of spin coating parameters on the optical, electrical, and dielectric properties of thin silk fibroin films. Silk fibroin solutions were spin coated onto indium tin oxide (ITO)/glass substrates at speeds ranging from 1000 to 7000 revolutions per minute (RPM), resulting in films with thicknesses that varied from 264.8 nm to 81.9 nm. Atomic force microscopy analysis revealed that the surface roughness remained consistent at approximately 1.5 nm across all the spin coating speeds, while the film thickness decreased with the increasing spin speed. Ultraviolet (UV)–visible spectroscopy showed that the transmittance at 550 nm increased from 81.2% at 1000 RPM to 93.8% at 7000 RPM, and the optical bandgap widened from 3.82 eV at 1000 RPM to 3.92 eV at 7000 RPM, which was attributed to reduced molecular packing and quantum confinement effects. Electrical characterization showed that thinner films (a spin speed of 5000–7000 RPM) exhibited a 15-fold increase in the leakage current, rising from 2.99 pA at 1000 RPM to 44.9 pA at 7000 RPM, and a decrease in resistance from 334 GΩ at 1000 RPM to 22.2 GΩ at 7000 RPM. The capacitance–voltage measurements indicated a 4-fold increase in voltage-dependent capacitance for thinner films, with capacitance values increasing from 36 pF at 1000 RPM to 176 pF at 7000 RPM. Dielectric loss analysis revealed that thinner films experienced higher energy dissipation at low frequencies (tan δ of 0.041 at 0.01 MHz for 7000 RPM), but lower losses at high frequencies (tan δ of 0.123 at 1 MHz for 7000 RPM). These findings emphasize the importance of film thickness control in optimizing the performance of silk fibroin-based bioelectronic devices. Full article
(This article belongs to the Special Issue Advanced and Smart Materials in Photoelectric Applications)
Show Figures

Figure 1

11 pages, 14848 KiB  
Article
A Comparative Study of Arc Welding and Laser Welding for the Fabrication and Repair of Multi-Layer Hydro Plant Bellows
by Lichao Cao, Kaiming Lv, Zhengjun Liu, Guoying Tu, Yi Zhang, Han Hu, Zirui Yang, Huikang Wang, Hao Zhang and Guijun Bi
Appl. Sci. 2025, 15(6), 3387; https://doi.org/10.3390/app15063387 - 20 Mar 2025
Viewed by 112
Abstract
The development of clean energy resources, including hydro power, plays an important role in protecting the global environment. Multi-layer bellows are key components and are widely used in hydro power plants. Due to the special multi-layer structures, conventional arc welding is prone to [...] Read more.
The development of clean energy resources, including hydro power, plays an important role in protecting the global environment. Multi-layer bellows are key components and are widely used in hydro power plants. Due to the special multi-layer structures, conventional arc welding is prone to the defects of pores and insufficient fusion when fabricating or repairing such bellows. Precise laser welding with a high energy density and a low heat input has the potential to join multi-layer bellows in a high-quality manner. In this study, a comparative investigation was conducted on the arc welding and laser welding of multi-layer 316L stainless steel sheets and B610CF high-strength steel plates regarding the weld quality, microstructure and tensile properties. The results show that laser-welded joints produced a narrower heat-affected zone and a full weld without visible defects. Compared with arc welding, laser welding had more equiaxed grain regions in the fusion zone and a homogeneous elemental distribution in the heat-affected zone. This led to a more reliable welded joint using laser welding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

9 pages, 2407 KiB  
Proceeding Paper
Investigation of Structural, Optical, and Frequency-Dependent Dielectric Properties of Barium Zirconate (BaZrO3) Ceramic Prepared via Wet Chemical Auto-Combustion Technique
by Anitha Gnanasekar, Pavithra Gurusamy and Geetha Deivasigamani
Eng. Proc. 2025, 87(1), 22; https://doi.org/10.3390/engproc2025087022 - 19 Mar 2025
Viewed by 101
Abstract
The wet chemical auto-combustion technique was used to synthesize barium zirconate ceramic (BaZrO3). Many strategies were applied to regulate the functional properties of the perovskite-structured sample which was calcinated at 800 °C for 9 h. A Fourier-transform IR spectrometer, an X-ray [...] Read more.
The wet chemical auto-combustion technique was used to synthesize barium zirconate ceramic (BaZrO3). Many strategies were applied to regulate the functional properties of the perovskite-structured sample which was calcinated at 800 °C for 9 h. A Fourier-transform IR spectrometer, an X-ray diffractometer, a scanning electron microscope (SEM)-EDAX, an LCR meter, and a UV–visible spectrometer were employed to study the structural, morphological, optical, and electrical properties of the prepared barium zirconate sample. Using data derived from XRD, the perovskite phase was confirmed, and the average value of the crystallite size was found to be 17.68 nm. The lattice constant, crystallinity, unit cell volume, tolerance factor, and X-ray density were also calculated. SEM-EDAX confirmed the elemental composition of the product and verified that it contained only the major constituents (Ba, Zr, and O). The vibrational modes of the prepared sample were investigated using FTIR in wavelengths ranging from 400 to 4000 cm−1. Energy bandgap was observed using Tauc’s plot, where a graph was prepared for photon energy (hυ) and (αhυ)2. The powder sample was blended with PVA and made into pellets of 13 mm diameter using a pelletizer to explore dielectric parameters like the dielectric constant, while the loss factor was recorded at a frequency ranging from 100 Hz to 4 MHz at room temperature. With its high dielectric constant and low dielectric loss factor, barium zirconate ceramic stands as an excellent material for several microwave applications. Full article
Show Figures

Figure 1

17 pages, 3949 KiB  
Article
Enhanced Long-Term In-Sensing Memory in ZnO Nanoparticle-Based Optoelectronic Synaptic Devices Through Thermal Treatment
by Dabin Jeon, Seung Hun Lee and Sung-Nam Lee
Materials 2025, 18(6), 1321; https://doi.org/10.3390/ma18061321 - 17 Mar 2025
Viewed by 270
Abstract
Two-terminal optoelectronic synaptic devices based on ZnO nanoparticles (NPs) were fabricated to investigate the effects of thermal annealing control (200 °C–500 °C) in nitrogen and oxygen atmospheres on surface morphology, optical response, and synaptic functionality. Atomic force microscopy (AFM) analysis revealed improved grain [...] Read more.
Two-terminal optoelectronic synaptic devices based on ZnO nanoparticles (NPs) were fabricated to investigate the effects of thermal annealing control (200 °C–500 °C) in nitrogen and oxygen atmospheres on surface morphology, optical response, and synaptic functionality. Atomic force microscopy (AFM) analysis revealed improved grain growth and reduced surface roughness. At the same time, UV–visible spectroscopy and photoluminescence confirmed a blue shift in the absorption edge and enhanced near-band-edge emission, particularly in nitrogen-annealed devices due to increased oxygen vacancies. X-ray photoelectron spectroscopy (XPS) analysis of the O 1s spectra confirmed that oxygen vacancies were more pronounced in nitrogen-annealed devices than in oxygen-annealed ones at 500 °C. Optical resistive switching was observed, where 365 nm ultraviolet (UV) irradiation induced a transition from a high-resistance state (HRS) to a low-resistance state (LRS), attributed to electron–hole pair generation and oxygen desorption. The electrical reset process, achieved by applying −1.0 V to −5.0 V, restored the initial HRS, demonstrating stable switching behavior. Nitrogen-annealed devices with higher oxygen vacancies exhibited superior synaptic performance, including higher excitatory postsynaptic currents, stronger paired-pulse facilitation, and extended persistent photoconductivity (PPC) duration, enabling long-term memory retention. By systematically varying UV exposure time, intensity, pulse number, and frequency, ZnO NPs-based devices demonstrated the transition from short-term to long-term memory, mimicking biological synaptic behavior. Learning and forgetting simulations showed faster learning and slower decay in nitrogen-annealed devices, emphasizing their potential for next-generation neuromorphic computing and energy-efficient artificial synapses. Full article
Show Figures

Figure 1

29 pages, 1234 KiB  
Review
Advancing Dye Degradation: Integrating Microbial Metabolism, Photocatalysis, and Nanotechnology for Eco-Friendly Solutions
by Anjuman Ayub, Atif Khurshid Wani, Chirag Chopra, Devinder Kumar Sharma, Owais Amin, Ab Waheed Wani, Anjuvan Singh, Subaya Manzoor and Reena Singh
Bacteria 2025, 4(1), 15; https://doi.org/10.3390/bacteria4010015 - 7 Mar 2025
Viewed by 439
Abstract
Textile dyes pose a major environmental threat due to their toxicity, persistence in water bodies, and resistance to conventional wastewater treatment. To address this, researchers have explored biological and physicochemical degradation methods, focusing on microbial, photolytic, and nanoparticle-mediated approaches, among others. Microbial degradation [...] Read more.
Textile dyes pose a major environmental threat due to their toxicity, persistence in water bodies, and resistance to conventional wastewater treatment. To address this, researchers have explored biological and physicochemical degradation methods, focusing on microbial, photolytic, and nanoparticle-mediated approaches, among others. Microbial degradation depends on fungi, bacteria, yeasts, and algae, utilizing enzymatic pathways involving oxidoreductases like laccases, peroxidases, and azoreductases to breakdown or modify complex dye molecules. Photolytic degradation employs hydroxyl radical generation and electron-hole pair formation, while nanoparticle-mediated degradation utilizes titanium dioxide (TiO2), zinc oxide (ZnO), and silver (Ag) nanoparticles to enhance dye removal. To improve efficiency, microbial consortia have been developed to enhance decolorization and mineralization, offering a cost-effective and eco-friendly alternative to physicochemical methods. Photocatalytic degradation, particularly using TiO2, harnesses light energy for dye breakdown. Research advancements focus on shifting TiO2 activation from UV to visible light through doping and composite materials, while optimizing surface area and mesoporosity for better adsorption. Nanoparticle-mediated approaches benefit from a high surface area and rapid adsorption, with ongoing improvements in synthesis, functionalization, and reusability, particularly through magnetic nanoparticle integration. These emerging technologies provide sustainable solutions for dye degradation. The primary aim of this review is to comprehensively evaluate and synthesize current research and advancements in the degradation of azo dyes through microbial methods, photolytic processes, and nanotechnology-based approaches. The review also provides detailed information on salient mechanistic aspects of these methods, efficiencies, advantages, challenges, and potential applications in industrial and environmental contexts. Full article
Show Figures

Figure 1

12 pages, 3336 KiB  
Article
Alumina–Nano-Nickel Composite Coatings on Al6061 Substrate Obtained by Electrophoretic Deposition
by Souaad Hamoudi, Nacer Bezzi, Farid Bensebaa and Philippe Delaporte
J. Compos. Sci. 2025, 9(3), 122; https://doi.org/10.3390/jcs9030122 - 6 Mar 2025
Viewed by 183
Abstract
Ceramic–nano-metallic composite coatings of Al2O3–nano-Ni on an aluminum substrate (Al6061) were obtained using electrophoretic deposition (EPD). Three composite coatings with different ratios of nano-Ni, i.e., 25, 50, and 75%, were obtained. The phase composition of the resulting composite coatings [...] Read more.
Ceramic–nano-metallic composite coatings of Al2O3–nano-Ni on an aluminum substrate (Al6061) were obtained using electrophoretic deposition (EPD). Three composite coatings with different ratios of nano-Ni, i.e., 25, 50, and 75%, were obtained. The phase composition of the resulting composite coatings was examined using XRD; this confirmed the existence of alumina and nickel in the composite coatings. The surface morphology and microstructure of the composite coatings were analyzed with SEM, while the chemical composition and phase content were determined through energy-dispersive spectroscopy. The hardness indenter results revealed a high hardness 420 HV for the Ni 25% composite coating However the hardness decreased with an increase in the Ni nanoparticle ratio, reaching a value of 360 HV for the Ni 75% composite coating. Reflectance measurements were conducted using a UV–visible spectrophotometer equipped with an integrating sphere (UV2600), and the composite coating with a Ni ratio of 75% exhibited the lowest reflectance of UV–visible light at <0.035. These results are promising for subsequent investigations into the absorbance of Al2O3–nano-Ni composite coatings within the sunlight irradiation wavelength range. Full article
(This article belongs to the Section Metal Composites)
Show Figures

Figure 1

Back to TopTop