Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,135)

Search Parameters:
Keywords = high resolution remote sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 32792 KB  
Article
MRV-YOLO: A Multi-Channel Remote Sensing Object Detection Method for Identifying Reclaimed Vegetation in Hilly and Mountainous Mining Areas
by Xingmei Li, Hengkai Li, Jingjing Dai, Kunming Liu, Guanshi Wang, Shengdong Nie and Zhiyu Zhang
Forests 2025, 16(10), 1536; https://doi.org/10.3390/f16101536 - 2 Oct 2025
Abstract
Leaching mining of ion-adsorption rare earths degrades soil organic matter and hampers vegetation recovery. High-resolution UAV remote sensing enables large-scale monitoring of reclamation, yet vegetation detection accuracy is constrained by key challenges. Conventional three-channel detection struggles with terrain complexity, illumination variation, and shadow [...] Read more.
Leaching mining of ion-adsorption rare earths degrades soil organic matter and hampers vegetation recovery. High-resolution UAV remote sensing enables large-scale monitoring of reclamation, yet vegetation detection accuracy is constrained by key challenges. Conventional three-channel detection struggles with terrain complexity, illumination variation, and shadow effects. Fixed UAV altitude and missing topographic data further cause resolution inconsistencies, posing major challenges for accurate vegetation detection in reclaimed land. To enhance multi-spectral vegetation detection, the model input is expanded from the traditional three channels to six channels, enabling full utilization of multi-spectral information. Furthermore, the Channel Attention and Global Pooling SPPF (CAGP-SPPF) module is introduced for multi-scale feature extraction, integrating global pooling and channel attention to capture multi-channel semantic information. In addition, the C2f_DynamicConv module replaces conventional convolutions in the neck network to strengthen high-dimensional feature transmission and reduce information loss, thereby improving detection accuracy. On the self-constructed reclaimed vegetation dataset, MRV-YOLO outperformed YOLOv8, with mAP@0.5 and mAP@0.5:0.95 increasing by 4.6% and 10.8%, respectively. Compared with RT-DETR, YOLOv3, YOLOv5, YOLOv6, YOLOv7, yolov7-tiny, YOLOv8-AS, YOLOv10, and YOLOv11, mAP@0.5 improved by 6.8%, 9.7%, 5.3%, 6.5%, 6.4%, 8.9%, 4.6%, 2.1%, and 5.4%, respectively. The results demonstrate that multichannel inputs incorporating near-infrared and dual red-edge bands significantly enhance detection accuracy for reclaimed vegetation in rare earth mining areas, providing technical support for ecological restoration monitoring. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

15 pages, 2475 KB  
Article
Nationwide Decline of Wet Sulfur Deposition in China from 2013 to 2023
by Yue Xi, Qiufeng Wang, Jianxing Zhu, Tianxiang Hao, Qiongyu Zhang, Yanran Chen, Zihan Tai, Quanhong Lin and Hao Wang
Sustainability 2025, 17(19), 8815; https://doi.org/10.3390/su17198815 - 1 Oct 2025
Abstract
Atmospheric sulfur (S) deposition, a key component of acid deposition, poses risks to ecosystems, human health, and sustainable development. In China, decades of coal-dominated energy use caused severe S pollution, but recent emission-control policies and energy restructuring have sought to reverse this trend. [...] Read more.
Atmospheric sulfur (S) deposition, a key component of acid deposition, poses risks to ecosystems, human health, and sustainable development. In China, decades of coal-dominated energy use caused severe S pollution, but recent emission-control policies and energy restructuring have sought to reverse this trend. However, the effectiveness and regional differences in these measures remain insufficiently quantified. Here, we combined continuous observations from 43 monitoring sites (2013–2023), satellite-derived SO2 vertical column density, and multi-source environmental datasets to construct a high-resolution record of wet S deposition. A random forest model, validated with R2 = 0.52 and RMSE = 1.2 kg ha−1 yr−1, was used to estimate fluxes and spatial patterns, while ridge regression and SHAP analysis quantified the relative contributions of emissions, precipitation, and socioeconomic factors. This framework allows us to assess both the environmental and health-related sustainability implications of sulfur deposition. Results show a nationwide decline of more than 50% in wet S deposition during 2013–2023, with two-thirds of sites and 95% of grids showing significant decreases. Historical hotspots such as the North China Plain and Sichuan Basin improved markedly, while some southern provinces (e.g., Guizhou, Hunan, Jiangxi) still exhibited high deposition (>20 kg ha−1 yr−1). Over 90% of the reduction was attributable to emission declines, confirming the dominant effect of sustained policy-driven measures. This study extends sulfur deposition records to 2023, demonstrates the value of integrating ground monitoring with remote sensing and machine learning, and provides robust evidence that China’s emission reduction policies have delivered significant environmental and sustainability benefits. The findings offer insights for region-specific governance and for developing countries balancing economic growth with ecological protection. Full article
Show Figures

Figure 1

27 pages, 5542 KB  
Article
ILF-BDSNet: A Compressed Network for SAR-to-Optical Image Translation Based on Intermediate-Layer Features and Bio-Inspired Dynamic Search
by Yingying Kong and Cheng Xu
Remote Sens. 2025, 17(19), 3351; https://doi.org/10.3390/rs17193351 - 1 Oct 2025
Abstract
Synthetic aperture radar (SAR) exhibits all-day and all-weather capabilities, granting it significant application in remote sensing. However, interpreting SAR images requires extensive expertise, making SAR-to-optical remote sensing image translation a crucial research direction. While conditional generative adversarial networks (CGANs) have demonstrated exceptional performance [...] Read more.
Synthetic aperture radar (SAR) exhibits all-day and all-weather capabilities, granting it significant application in remote sensing. However, interpreting SAR images requires extensive expertise, making SAR-to-optical remote sensing image translation a crucial research direction. While conditional generative adversarial networks (CGANs) have demonstrated exceptional performance in image translation tasks, their massive number of parameters pose substantial challenges. Therefore, this paper proposes ILF-BDSNet, a compressed network for SAR-to-optical image translation. Specifically, first, standard convolutions in the feature-transformation module of the teacher network are replaced with depthwise separable convolutions to construct the student network, and a dual-resolution collaborative discriminator based on PatchGAN is proposed. Next, knowledge distillation based on intermediate-layer features and channel pruning via weight sharing are designed to train the student network. Then, the bio-inspired dynamic search of channel configuration (BDSCC) algorithm is proposed to efficiently select the optimal subnet. Meanwhile, the pixel-semantic dual-domain alignment loss function is designed. The feature-matching loss within this function establishes an alignment mechanism based on intermediate-layer features from the discriminator. Extensive experiments demonstrate the superiority of ILF-BDSNet, which significantly reduces number of parameters and computational complexity while still generating high-quality optical images, providing an efficient solution for SAR image translation in resource-constrained environments. Full article
Show Figures

Figure 1

42 pages, 106100 KB  
Review
Seeing the Trees from Above: A Survey on Real and Synthetic Agroforestry Datasets for Remote Sensing Applications
by Babak Chehreh, Alexandra Moutinho and Carlos Viegas
Remote Sens. 2025, 17(19), 3346; https://doi.org/10.3390/rs17193346 - 1 Oct 2025
Abstract
Trees are vital to both environmental health and human well-being. They purify the air we breathe, support biodiversity by providing habitats for wildlife, prevent soil erosion to maintain fertile land, and supply wood for construction, fuel, and a multitude of essential products such [...] Read more.
Trees are vital to both environmental health and human well-being. They purify the air we breathe, support biodiversity by providing habitats for wildlife, prevent soil erosion to maintain fertile land, and supply wood for construction, fuel, and a multitude of essential products such as fruits, to name a few. Therefore, it is important to monitor and preserve them to protect the natural environment for future generations and ensure the sustainability of our planet. Remote sensing is the rapidly advancing and powerful tool that enables us to monitor and manage trees and forests efficiently and at large scale. Statistical methods, machine learning, and more recently deep learning are essential for analyzing the vast amounts of data collected, making data the fundamental component of these methodologies. The advancement of these methods goes hand in hand with the availability of sample data; therefore, a review study on available high-resolution aerial datasets of trees can help pave the way for further development of analytical methods in this field. This study aims to shed light on publicly available datasets by conducting a systematic search and filter and an in-depth analysis of them, including their alignment with the FAIR—findable, accessible, interoperable, and reusable—principles and the latest trends concerning applications for such datasets. Full article
(This article belongs to the Special Issue Advances in Deep Learning Approaches: UAV Data Analysis)
Show Figures

Figure 1

17 pages, 6312 KB  
Article
Thickness-Driven Thermal Gradients in LVL Hot Pressing: Insights from a Custom Multi-Layer Sensor Network
by Szymon Kowaluk, Patryk Maciej Król and Grzegorz Kowaluk
Appl. Sci. 2025, 15(19), 10599; https://doi.org/10.3390/app151910599 - 30 Sep 2025
Abstract
Ensuring optimal adhesive curing during plywood and LVL (Layered Veneer Lumber) hot pressing requires accurate knowledge of internal temperature distribution, which is often difficult to assess using conventional surface-based measurements. This study introduces a custom-developed multi-layer smart sensor network capable of in situ, [...] Read more.
Ensuring optimal adhesive curing during plywood and LVL (Layered Veneer Lumber) hot pressing requires accurate knowledge of internal temperature distribution, which is often difficult to assess using conventional surface-based measurements. This study introduces a custom-developed multi-layer smart sensor network capable of in situ, real-time temperature profiling across LVL layers during industrial hot pressing. The system integrates miniature embedded sensors and proprietary data acquisition software, enabling the simultaneous multi-point monitoring of thermal dynamics with a high temporal resolution. Experiments were performed on LVL panels of varying thicknesses, applying industry-standard pressing schedules derived from conventional calculation rules. Despite adherence to prescribed pressing times, results reveal significant core temperature deficits in thicker panels, potentially compromising adhesive gelation and overall bonding quality. These findings underline the need to revisit the pressing time determination for thicker products and demonstrate the potential of advanced sensing technologies to support adaptive process control. The proposed approach contributes to smart manufacturing and the remote-like monitoring of internal thermal states, providing valuable insights for enhancing product performance and industrial process efficiency. Full article
(This article belongs to the Special Issue Advances in Wood Processing Technology: 2nd Edition)
Show Figures

Figure 1

27 pages, 3776 KB  
Article
An Efficient Method for Retrieving Citrus Orchard Evapotranspiration Based on Multi-Source Remote Sensing Data Fusion from Unmanned Aerial Vehicles
by Zhiwei Zhang, Weiqi Zhang, Chenfei Duan, Shijiang Zhu and Hu Li
Agriculture 2025, 15(19), 2058; https://doi.org/10.3390/agriculture15192058 - 30 Sep 2025
Abstract
Severe water scarcity has become a critical constraint to global agricultural development. Enhancing both the timeliness and accuracy of crop evapotranspiration (ETc) retrieval is essential for optimizing irrigation scheduling. Addressing the limitations of conventional ground-based point-source measurements in rapidly acquiring [...] Read more.
Severe water scarcity has become a critical constraint to global agricultural development. Enhancing both the timeliness and accuracy of crop evapotranspiration (ETc) retrieval is essential for optimizing irrigation scheduling. Addressing the limitations of conventional ground-based point-source measurements in rapidly acquiring two-dimensional ETc information at the field scale, this study employed unmanned aerial vehicle (UAV) remote sensing equipped with multispectral and thermal infrared sensors to obtain high spatiotemporal resolution imagery of a representative citrus orchard (Citrus reticulata Blanco cv. ‘Yichangmiju’) in western Hubei at different phenological stages. In conjunction with meteorological data (air temperature, daily net radiation, etc.), ETc was retrieved using two established approaches: the Seguin-Itier (S-I) model, which relates canopy–air temperature differences to ETc, and the multispectral-driven single crop coefficient method, which estimates ETc by combining vegetation indices with reference evapotranspiration. The thermal-infrared-driven S-I model, which relates canopy–air temperature differences to ETc, and the multispectral-driven single crop coefficient method, which estimates ETc by combining vegetation indices with reference evapotranspiration. The findings indicate that: (1) both the S-I model and the single crop coefficient method achieved satisfactory ETc estimation accuracy, with the latter performing slightly better (accuracy of 80% and 85%, respectively); (2) the proposed multi-source fusion model consistently demonstrated high accuracy and stability across all phenological stages (R2 = 0.9104, 0.9851, and 0.9313 for the fruit-setting, fruit-enlargement, and coloration–sugar-accumulation stages, respectively; all significant at p < 0.01), significantly enhancing the precision and timeliness of ETc retrieval; and (3) the model was successfully applied to ETc retrieval during the main growth stages in the Cangwubang citrus-producing area of Yichang, providing practical support for irrigation scheduling and water resource management at the regional scale. This multi-source fusion approach offers effective technical support for precision irrigation control in agriculture and holds broad application prospects. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Graphical abstract

31 pages, 1983 KB  
Review
Integrating Remote Sensing and Autonomous Robotics in Precision Agriculture: Current Applications and Workflow Challenges
by Magdalena Łągiewska and Ewa Panek-Chwastyk
Agronomy 2025, 15(10), 2314; https://doi.org/10.3390/agronomy15102314 - 30 Sep 2025
Abstract
Remote sensing technologies are increasingly integrated with autonomous robotic platforms to enhance data-driven decision-making in precision agriculture. Rather than replacing conventional platforms such as satellites or UAVs, autonomous ground robots complement them by enabling high-resolution, site-specific observations in real time, especially at the [...] Read more.
Remote sensing technologies are increasingly integrated with autonomous robotic platforms to enhance data-driven decision-making in precision agriculture. Rather than replacing conventional platforms such as satellites or UAVs, autonomous ground robots complement them by enabling high-resolution, site-specific observations in real time, especially at the plant level. This review analyzes how remote sensing sensors—including multispectral, hyperspectral, LiDAR, and thermal—are deployed via robotic systems for specific agricultural tasks such as canopy mapping, weed identification, soil moisture monitoring, and precision spraying. Key benefits include higher spatial and temporal resolution, improved monitoring of under-canopy conditions, and enhanced task automation. However, the practical deployment of such systems is constrained by terrain complexity, power demands, and sensor calibration. The integration of artificial intelligence and IoT connectivity emerges as a critical enabler for responsive, scalable solutions. By focusing on how autonomous robots function as mobile sensor platforms, this article contributes to the understanding of their role within modern precision agriculture workflows. The findings support future development pathways aimed at increasing operational efficiency and sustainability across diverse crop systems. Full article
Show Figures

Figure 1

18 pages, 3444 KB  
Article
Enhancing Wildfire Monitoring with SDGSAT-1: A Performance Analysis
by Xinkun Zhu, Guojiang Zhang, Bo Xiang, Jiangxia Ye, Lei Kong, Wenlong Yang, Mingshan Wu, Song Yang, Wenquan Wang, Weili Kou, Qiuhua Wang and Zhichao Huang
Remote Sens. 2025, 17(19), 3339; https://doi.org/10.3390/rs17193339 - 30 Sep 2025
Abstract
Advancements in remote sensing technology have enabled the acquisition of high spatial and radiometric resolution imagery, offering abundant and reliable data sources for forest fire monitoring. In order to explore the ability of Sustainable Development Science Satellite 1 (SDGSAT-1) in wildfire monitoring, a [...] Read more.
Advancements in remote sensing technology have enabled the acquisition of high spatial and radiometric resolution imagery, offering abundant and reliable data sources for forest fire monitoring. In order to explore the ability of Sustainable Development Science Satellite 1 (SDGSAT-1) in wildfire monitoring, a systematic and comprehensive study was proposed on smoke detection during the wildfire early warning phase, fire point identification during the fire occurrence, and burned area delineation after the wildfire. The smoke detection effect of SDGSAT-1 was analyzed by machine learning and the discriminating potential of SDGSAT-1 burned area was discussed by Mid-Infrared Burn Index (MIRBI) and Normalized Burn Ratio 2 (NBR2). In addition, compared with Sentinel-2, the fixed-threshold method and the two-channel fixed-threshold plus contextual approach are further used to demonstrate the performance of SDGSAT-1 in fire point identification. The results show that the average accuracy of SDGSAT-1 fire burned area recognition is 90.21%, and a clear fire boundary can be obtained. The average smoke detection precision is 81.72%, while the fire point accuracy is 97.40%, and the minimum identified fire area is 0.0009 km2, which implies SDGSAT-1 offers significant advantages in the early detection and identification of small-scale fires, which is significant in fire emergency and disposal. The performance of fire point detection is superior to that of Sentinel-2 and Landsat 8. SDGSAT-1 demonstrates great potential in monitoring the entire process of wildfire occurrence, development, and evolution. With its higher-resolution satellite imagery, it has become an important data source for monitoring in the field of remote sensing. Full article
Show Figures

Graphical abstract

23 pages, 18084 KB  
Article
WetSegNet: An Edge-Guided Multi-Scale Feature Interaction Network for Wetland Classification
by Li Chen, Shaogang Xia, Xun Liu, Zhan Xie, Haohong Chen, Feiyu Long, Yehong Wu and Meng Zhang
Remote Sens. 2025, 17(19), 3330; https://doi.org/10.3390/rs17193330 - 29 Sep 2025
Abstract
Wetlands play a crucial role in climate regulation, pollutant filtration, and biodiversity conservation. Accurate wetland classification through high-resolution remote sensing imagery is pivotal for the scientific management, ecological monitoring, and sustainable development of these ecosystems. However, the intricate spatial details in such imagery [...] Read more.
Wetlands play a crucial role in climate regulation, pollutant filtration, and biodiversity conservation. Accurate wetland classification through high-resolution remote sensing imagery is pivotal for the scientific management, ecological monitoring, and sustainable development of these ecosystems. However, the intricate spatial details in such imagery pose significant challenges to conventional interpretation techniques, necessitating precise boundary extraction and multi-scale contextual modeling. In this study, we propose WetSegNet, an edge-guided Multi-Scale Feature Interaction network for wetland classification, which integrates a convolutional neural network (CNN) and Swin Transformer within a U-Net architecture to synergize local texture perception and global semantic comprehension. Specifically, the framework incorporates two novel components: (1) a Multi-Scale Feature Interaction (MFI) module employing cross-attention mechanisms to mitigate semantic discrepancies between encoder–decoder features, and (2) a Multi-Feature Fusion (MFF) module that hierarchically enhances boundary delineation through edge-guided spatial attention (EGA). Experimental validation on GF-2 satellite imagery of Dongting Lake wetlands demonstrates that WetSegNet achieves state-of-the-art performance, with an overall accuracy (OA) of 90.81% and a Kappa coefficient of 0.88. Notably, it achieves classification accuracies exceeding 90% for water, sedge, and reed habitats, surpassing the baseline U-Net by 3.3% in overall accuracy and 0.05 in Kappa. The proposed model effectively addresses heterogeneous wetland classification challenges, validating its capability to reconcile local–global feature representation. Full article
Show Figures

Figure 1

27 pages, 11400 KB  
Article
MambaSegNet: A Fast and Accurate High-Resolution Remote Sensing Imagery Ship Segmentation Network
by Runke Wen, Yongjie Yuan, Xingyuan Xu, Shi Yin, Zegang Chen, Haibo Zeng and Zhipan Wang
Remote Sens. 2025, 17(19), 3328; https://doi.org/10.3390/rs17193328 - 29 Sep 2025
Abstract
High-resolution remote sensing imagery is crucial for ship extraction in ocean-related applications. Existing object detection and semantic segmentation methods for ship extraction have limitations: the former cannot precisely obtain ship shapes, while the latter struggles with small targets and complex backgrounds. This study [...] Read more.
High-resolution remote sensing imagery is crucial for ship extraction in ocean-related applications. Existing object detection and semantic segmentation methods for ship extraction have limitations: the former cannot precisely obtain ship shapes, while the latter struggles with small targets and complex backgrounds. This study addresses these issues by constructing two datasets, DIOR_SHIP and LEVIR_SHIP, using the SAM model and morphological operations. A novel MambaSegNet is then designed based on the advanced Mamba architecture. It is an encoder–decoder network with MambaLayer and ResMambaBlock for effective multi-scale feature processing. The experiments conducted with seven mainstream models show that the IOU of MambaSegNet is 0.8208, the Accuracy is 0.9176, the Precision is 0.9276, the Recall is 0.9076, and the F1-score is 0.9176. Compared with other models, it acquired the best performance. This research offers a valuable dataset and a novel model for ship extraction, with potential cross-domain application prospects. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

25 pages, 17492 KB  
Article
Temporal and Spatial Upscaling with PlanetScope Data: Predicting Relative Canopy Dieback in the Piñon-Juniper Woodlands of Utah
by Elliot S. Shayle and Dirk Zeuss
Remote Sens. 2025, 17(19), 3323; https://doi.org/10.3390/rs17193323 - 28 Sep 2025
Abstract
Drought-induced forest mortality threatens biodiversity globally, particularly in arid, and semi-arid woodlands. The continual development of remote sensing approaches enables enhanced monitoring of forest health. Herein, we investigate the ability of a limited ground-truthed canopy dieback dataset and satellite image derived Normalised Difference [...] Read more.
Drought-induced forest mortality threatens biodiversity globally, particularly in arid, and semi-arid woodlands. The continual development of remote sensing approaches enables enhanced monitoring of forest health. Herein, we investigate the ability of a limited ground-truthed canopy dieback dataset and satellite image derived Normalised Difference Vegetation Index (NDVI) to make inferences about forest health as temporal and spatial extent from its collection increases. We used ground-truthed observations of relative canopy mortality from the Pinus edulis-Juniperus osteosperma woodlands of southeastern Utah, United States of America, collected after the 2017–2018 drought, and PlanetScope satellite imagery. Through assessing different modelling approaches, we found that NDVI is significantly associated with sitewide mean canopy dieback, with beta regression being the most optimal modelling framework due to the bounded nature of the variable relative canopy dieback. Model performance was further improved by incorporating the proportion of J. osteosperma as an interaction term, matching the reports of species-specific differential dieback. A time-series analysis revealed that NDVI retained its predictive power for our whole testing period; four years after the initial ground-truthing, thus enabling retrospective inference of defoliation and regreening. A spatial random forest model trained on our ground-truthed observations accurately predicted dieback across the broader landscape. These findings demonstrate that modest field campaigns combined with high-resolution satellite data can generate reliable, scalable insights into forest health, offering a cost-effective method for monitoring drought-impacted ecosystems under climate change. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

34 pages, 9527 KB  
Article
High-Resolution 3D Thermal Mapping: From Dual-Sensor Calibration to Thermally Enriched Point Clouds
by Neri Edgardo Güidi, Andrea di Filippo and Salvatore Barba
Appl. Sci. 2025, 15(19), 10491; https://doi.org/10.3390/app151910491 - 28 Sep 2025
Abstract
Thermal imaging is increasingly applied in remote sensing to identify material degradation, monitor structural integrity, and support energy diagnostics. However, its adoption is limited by the low spatial resolution of thermal sensors compared to RGB cameras. This study proposes a modular pipeline to [...] Read more.
Thermal imaging is increasingly applied in remote sensing to identify material degradation, monitor structural integrity, and support energy diagnostics. However, its adoption is limited by the low spatial resolution of thermal sensors compared to RGB cameras. This study proposes a modular pipeline to generate thermally enriched 3D point clouds by fusing RGB and thermal imagery acquired simultaneously with a dual-sensor unmanned aerial vehicle system. The methodology includes geometric calibration of both cameras, image undistortion, cross-spectral feature matching, and projection of radiometric data onto the photogrammetric model through a computed homography. Thermal values are extracted using a custom parser and assigned to 3D points based on visibility masks and interpolation strategies. Calibration achieved 81.8% chessboard detection, yielding subpixel reprojection errors. Among twelve evaluated algorithms, LightGlue retained 99% of its matches and delivered a reprojection accuracy of 18.2% at 1 px, 65.1% at 3 px and 79% at 5 px. A case study on photovoltaic panels demonstrates the method’s capability to map thermal patterns with low temperature deviation from ground-truth data. Developed entirely in Python, the workflow integrates into Agisoft Metashape or other software. The proposed approach enables cost-effective, high-resolution thermal mapping with applications in civil engineering, cultural heritage conservation, and environmental monitoring applications. Full article
Show Figures

Figure 1

12 pages, 6091 KB  
Proceeding Paper
Satellite-Based Assessment of Coastal Morphology Changes in Pichilemu Bay, Chile
by Isidora Díaz Quijada, Idania Briceño de Urbaneja, Waldo Pérez Martínez and Joaquín Valenzuela Jara
Eng. Proc. 2025, 94(1), 24; https://doi.org/10.3390/engproc2025094024 - 26 Sep 2025
Abstract
Coastal erosion is a global issue exacerbated by extreme events, ENSO variability, storms, and anthropogenic pressures. In Chile, over 80% of beaches are affected by erosion, impacting more than one million people. This study analyzes the evolution of Pichilemu Bay between 1985 and [...] Read more.
Coastal erosion is a global issue exacerbated by extreme events, ENSO variability, storms, and anthropogenic pressures. In Chile, over 80% of beaches are affected by erosion, impacting more than one million people. This study analyzes the evolution of Pichilemu Bay between 1985 and 2024 using satellite imagery, spatio-temporal models, and drone-based surveys. A total of 554 shorelines were extracted, revealing and average shoreline retreat of −1.17 m/year, with maximum erosion of −1.76 m/year and maximum accretion of +0.9 m/year. Wave climate analysis (mean Hs 2.5 m, mean Tp 12.5 s) identified 10 major storm events exceeding 3 m, while sediment sampling showed significant negative correlations between grain size and erosion rates (r = −0.64, p < 0.05). The morphology before and after the 2010 earth-quake was assessed, evidencing up to 100 m of shoreline retreat in affected sectors. Remote sensing techniques proved highly effective for monitoring coastal dynamics, providing high-resolution insights that inform spatial planning, enhance regional erosion monitoring programs, and support adaptive management strategies in the face of climatic and tectonic challenges. Full article
Show Figures

Figure 1

25 pages, 11479 KB  
Article
Improved Pixel Offset Tracking Method Based on Corner Point Variation in Large-Gradient Landslide Deformation Monitoring
by Dingyi Zhou, Zhifang Zhao and Fei Zhao
Remote Sens. 2025, 17(19), 3292; https://doi.org/10.3390/rs17193292 - 25 Sep 2025
Abstract
Aiming at the problems of feature matching difficulty and limited extension application in the existing pixel offset tracking method for large-gradient landslides, this paper proposes an improved pixel offset tracking method based on corner point variation. Taking the Jinshajiang Baige landslide as the [...] Read more.
Aiming at the problems of feature matching difficulty and limited extension application in the existing pixel offset tracking method for large-gradient landslides, this paper proposes an improved pixel offset tracking method based on corner point variation. Taking the Jinshajiang Baige landslide as the research object, the method’s effectiveness is verified using sentinel data. Through a series of experiments, the results show that (1) the use of VV (Vertical-Vertical) and VH (Vertical-Horizontal) polarisation information combined with the mean value calculation method can improve the accuracy and credibility of the circling of the landslide monitoring range, make up for the limitations of the single polarisation information, and capture the landslide range more comprehensively, which provides essential information for landslide monitoring. (2) The choice of scale factor has an essential influence on the results of corner detection, in which the best corner effect is obtained when the scale factor R is 2, which provides an essential reference basis for practical application. (3) By comparing traditional normalized and adaptive window cross-correlation methods with the proposed approach in calculating landslide offset distances, the proposed method shows superior matching accuracy and sliding direction estimation. (4) Analysis of pixels P1, P2, and P3 confirms the method’s high accuracy and reliability in landslide displacement assessment, demonstrating its advantage in tracking pixel offsets in large-gradient scenarios. Therefore, the proposed method offers an effective solution for large-gradient landslide monitoring, overcoming limitations of feature matching and limited applicability. It is expected to provide more reliable technical support for geological disaster management. Full article
Show Figures

Graphical abstract

19 pages, 3473 KB  
Article
Enhancing Instance Segmentation in High-Resolution Images Using Slicing-Aided Hyper Inference and Spatial Mask Merging Optimized via R-Tree Indexing
by Marko Mihajlovic and Marina Marjanovic
Mathematics 2025, 13(19), 3079; https://doi.org/10.3390/math13193079 - 25 Sep 2025
Abstract
Instance segmentation in high-resolution images is essential for applications such as remote sensing, medical imaging, and precision agriculture, yet remains challenging due to factors such as small object sizes, irregular shapes, and occlusions. Tiling-based approaches, such as Slicing-Aided Hyper Inference (SAHI), alleviate some [...] Read more.
Instance segmentation in high-resolution images is essential for applications such as remote sensing, medical imaging, and precision agriculture, yet remains challenging due to factors such as small object sizes, irregular shapes, and occlusions. Tiling-based approaches, such as Slicing-Aided Hyper Inference (SAHI), alleviate some of these challenges by processing smaller patches but introduce border artifacts and increased computational cost. Overlapping tiles can mitigate certain boundary effects but often result in duplicate detections and boundary inconsistencies, particularly along patch edges. Conventional deduplication techniques, including Non-Maximum Suppression (NMS) and Non-Mask Merging (NMM), rely on Intersection over Union (IoU) thresholds and frequently fail to merge fragmented or adjacent masks with low mutual IoU that nonetheless correspond to the same object. To address deduplication and mask fragmentation, Spatial Mask Merging (SMM) is proposed as a graph clustering approach that integrates pixel-level overlap and boundary distance metrics while using R-tree indexing for efficient candidate retrieval. SMM was evaluated on the iSAID benchmark using standard segmentation metrics, with tile overlap configurations systematically examined to determine the optimal setting for segmentation accuracy. The method achieved a nearly 7% increase in precision, with consistent gains in F1 score and Panoptic Quality over existing approaches. The integration of R-tree indexing facilitated faster candidate retrieval, enabling computational performance improvements over standard merging algorithms alongside the observed accuracy gains. Full article
Show Figures

Figure 1

Back to TopTop