Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,451)

Search Parameters:
Keywords = high temperature degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1595 KB  
Review
Ecological Functions of Microbes in Constructed Wetlands for Natural Water Purification
by Aradhna Kumari, Saurav Raj, Santosh Kumar Singh, Krishan K. Verma and Praveen Kumar Mishra
Water 2025, 17(20), 2947; https://doi.org/10.3390/w17202947 (registering DOI) - 13 Oct 2025
Abstract
Constructed wetlands (CWs) are sustainable and cost-effective systems that utilise plant–microbe interactions and natural processes for wastewater treatment. Microbial communities play a pivotal role in pollutant removal by crucial processes like nitrogen transformations, phosphorus cycling, organic matter degradation and the breakdown of emerging [...] Read more.
Constructed wetlands (CWs) are sustainable and cost-effective systems that utilise plant–microbe interactions and natural processes for wastewater treatment. Microbial communities play a pivotal role in pollutant removal by crucial processes like nitrogen transformations, phosphorus cycling, organic matter degradation and the breakdown of emerging contaminants. Dominant phyla, such as Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes, collectively orchestrate these biogeochemical functions. Advances in molecular tools, including high-throughput sequencing and metagenomics, have revealed the diversity and functional potential of wetland microbiomes, while environmental factors, i.e., temperature, pH and hydraulic retention time, strongly influence their performance. Phosphorus removal efficiency is often lower than nitrogen, and large land requirements and long start-up times restrict broader application. Microplastic accumulation, the spread of antibiotic resistance genes and greenhouse gas emissions (methane, nitrous oxide) present additional challenges. The possible persistence of pathogenic microbes further complicates system safety. Future research should integrate engineered substrates, biochar amendments, optimised plant–microbe interactions and hybrid CW designs to enhance treatment performance and resilience in the era of climate change. By acknowledging the potential and constraints, CWs can be further developed as next-generation, nature-based solutions for sustainable water management in the years to come. Full article
(This article belongs to the Special Issue Application of Environmental Microbiology in Water Treatment)
25 pages, 24888 KB  
Article
Assessing Synergistic Effects on NPP from a Refined Vegetation Perspective: Ecological Projects and Climate in Heilongjiang
by Tingting Xia and Jiapeng Huang
Forests 2025, 16(10), 1574; https://doi.org/10.3390/f16101574 (registering DOI) - 12 Oct 2025
Abstract
Net Primary Productivity (NPP) serves as a key indicator of ecosystem health and productivity. However, most existing research focuses on primary land cover types, overlooking the dynamic response processes of NPP in refined vegetation types to multiple climate drivers. Furthermore, it lacks systematic [...] Read more.
Net Primary Productivity (NPP) serves as a key indicator of ecosystem health and productivity. However, most existing research focuses on primary land cover types, overlooking the dynamic response processes of NPP in refined vegetation types to multiple climate drivers. Furthermore, it lacks systematic analysis of the feedback mechanisms through which China’s Five-Year Plan (FYP) ecological projects regulate climate stress. This study, based on refined vegetation classification, systematically analyzes the dynamic changes in NPP in Heilongjiang Province from the 10th to the 13th FYP periods (2001–2020), with a focus on refined vegetation types. Results show that between 2001 and 2020, mixed-leaved forest emerged as the core driver of regional NPP change during the 12th FYP (NPP increase of +58.4 gC·m−2·a−1). Although deciduous needle-leaved forest (DNF) showed the highest cumulative increase (+64 gC·m−2·a−1), it experienced significant degradation (p < 0.01) in 57%–62% of its area during the 12th and 13th FYP periods. The dominant climate driver shifted from precipitation (positively correlated in 74% of the area during the 10th–11th FYPs) to drought stress dominated by vapor pressure deficit (VPD) (positive correlation increasing to 54%). Ecological projects mitigated the negative impact of temperature, reducing the area with negative correlations by 13%. Overall, the ecological policies of the FYP exerted a weak negative influence. However, forest vegetation was strongly regulated by VPD (SV = −0.61~0.59), while grasslands and croplands exhibited high sensitivity to temperature. These findings underscore the contrasting climate policy responses among plant functional groups, highlighting the urgent need for differentiated ecological management strategies. Full article
Show Figures

Figure 1

22 pages, 1041 KB  
Review
Cannabidiol Encapsulation in Polymeric Hydrogels and Its Controlled Release: A Review
by Víctor M. Ovando-Medina, Carlos A. García-Martínez, Lorena Farias-Cepeda, Iveth D. Antonio-Carmona, Andrés Dector, Juan M. Olivares-Ramírez, Alondra Anahí Ortiz-Verdin, Hugo Martínez-Gutiérrez and Erika Nohemi Rivas Martínez
Gels 2025, 11(10), 815; https://doi.org/10.3390/gels11100815 (registering DOI) - 11 Oct 2025
Viewed by 36
Abstract
Cannabidiol (CBD) and its derivatives show interesting therapeutic potential, including antioxidant, anti-inflammatory, and anticancer properties; however, their clinical translation remains a complex task due to physicochemical restrictions such as low water solubility, high lipophilicity, and instability under light, oxygen, and high temperatures. Polymeric [...] Read more.
Cannabidiol (CBD) and its derivatives show interesting therapeutic potential, including antioxidant, anti-inflammatory, and anticancer properties; however, their clinical translation remains a complex task due to physicochemical restrictions such as low water solubility, high lipophilicity, and instability under light, oxygen, and high temperatures. Polymeric encapsulation has emerged as a promising strategy to overcome these challenges, offering protection against environmental degradation, improved bioavailability, and controlled release. Natural and synthetic polymers, both biocompatible and biodegradable, provide versatile matrices for CBD delivery, enabling nanoparticle formation, targeted transport, and enhanced pharmacokinetics. This review highlights the structural characteristics of CBD, its interaction mechanisms with polymeric matrices such as hydrogels, electrospun nanofibers, biodegradable microparticles, thin films, and lipid-polymer hybrid systems, and the principal encapsulation techniques, such as emulsion solvent evaporation, electrospinning, and supercritical fluid technologies, that facilitate stability and scalability. Furthermore, material characterization approaches, including microscopy, thermal, and degradation analyses, are discussed as tools for optimizing encapsulation systems. While notable advances have been made, key challenges remain in achieving reproducible large-scale production, ensuring regulatory compliance, and designing smart polymeric carriers personalized for specific therapeutic contexts. By addressing these gaps, polymer-based encapsulation may unlock new opportunities for CBD in pharmaceutical, nutraceutical, and therapeutic applications, providing a guide for future innovation and translation into effective patient-centered products. Full article
(This article belongs to the Special Issue Composite Hydrogels for Biomedical Applications)
Show Figures

Figure 1

18 pages, 4629 KB  
Article
Research on Aging Characteristics and Interfacial Adhesion Performance of Polyurethane-Modified Asphalt
by Meng Wang, Jixian Li, Lu Chen, Changyun Shi and Jinguo Ge
Coatings 2025, 15(10), 1194; https://doi.org/10.3390/coatings15101194 - 11 Oct 2025
Viewed by 115
Abstract
Polyurethane (PU), owing to its superior physicochemical properties, is considered an ideal modifier for asphalt. To improve the mechanical performance and service durability of asphalt pavements, PU-modified asphalts with varying dosages were prepared and evaluated through laboratory experiments and molecular dynamics simulations. Rheological, [...] Read more.
Polyurethane (PU), owing to its superior physicochemical properties, is considered an ideal modifier for asphalt. To improve the mechanical performance and service durability of asphalt pavements, PU-modified asphalts with varying dosages were prepared and evaluated through laboratory experiments and molecular dynamics simulations. Rheological, thermodynamic, and mechanical tests, as well as asphalt–aggregate adhesion energy calculations, were conducted to elucidate the modification mechanism, aging resistance, and interfacial behavior. The results showed that PU incorporation significantly enhanced rutting resistance at high temperatures, flexibility at low temperatures, and overall load-bearing capacity. Under ultraviolet and long-term aging, PU-modified asphalts exhibited notably lower performance degradation than base asphalt. At the molecular level, PU absorbed light fractions and formed a cross-linked network, reducing the free volume fraction and strengthening resistance to deformation. Moreover, PU substantially improved asphalt–aggregate adhesion energy, thereby reinforcing interfacial bonding. These findings provide theoretical insights and practical guidance for the optimal design and engineering application of PU-modified asphalt. Full article
Show Figures

Figure 1

13 pages, 2037 KB  
Article
Thermal Performance of Silica-Coated Wood Particles
by Elif Yurttaş, Mariem Zouari, Silvo Hribernik and Matthew Schwarzkopf
J. Compos. Sci. 2025, 9(10), 556; https://doi.org/10.3390/jcs9100556 - 10 Oct 2025
Viewed by 94
Abstract
Wood is one of the most widely used sustainable lignocellulosic materials, with numerous applications in consumer goods and the construction sector. Despite its positive properties, such as a high strength-to-weight ratio, thermal insulation, and low density, wood’s natural thermal degradation can limit its [...] Read more.
Wood is one of the most widely used sustainable lignocellulosic materials, with numerous applications in consumer goods and the construction sector. Despite its positive properties, such as a high strength-to-weight ratio, thermal insulation, and low density, wood’s natural thermal degradation can limit its potential applications. In composite applications like wood–plastic composites, the particle morphology and surface topography must be preserved to support intimate polymer–wood contact and mechanical interlocking. This study investigated the efficacy of a thin silica coating for thermal protection, which was applied via an in situ sol–gel method using the precursor tetraethoxysilane (TEOS). The wood particles and treatments were characterized using particle size analysis, physisorption, FTIR, SEM, XRD, and TGA analyses. After treatment, the specific and microporous surface area of wood particles increased by 118% and 97%, respectively, an effect of the porosity of silica itself. FTIR spectra of the silica-treated wood displayed peaks corresponding to Si stretching, and SEM micrographs confirmed a successful silica coating formation. TGA showed that the silica coating increased the temperatures needed to degrade the underlying hemicellulose and cellulose by 16 °C for all treatment levels. This particle-scale coating provided a promising method for producing thermally protected, functionalizable wood fillers for composites that maintain the filler geometry and potential mechanical interlocking, offering an attractive upcycling pathway for wood residues. Full article
(This article belongs to the Section Composites Modelling and Characterization)
20 pages, 6936 KB  
Article
Mechanistic Insights into Cooling-Rate-Governed Acicular Ferrite Transformation Kinetics and Strengthening-Toughening Synergy in EH36 Heavy Steel Plate
by Chunliang Yan, Fengming Wang, Rongli Sang and Qingjun Zhang
Materials 2025, 18(20), 4661; https://doi.org/10.3390/ma18204661 - 10 Oct 2025
Viewed by 183
Abstract
This study was focused on addressing the performance degradation in core microstructures of ultra-heavy steel plates (thickness ≥ 50 mm) caused by non-uniform cooling during thermo-mechanical controlled processing. Using microalloyed DH36 steel as the research subject, we systematically investigated the effects of cooling [...] Read more.
This study was focused on addressing the performance degradation in core microstructures of ultra-heavy steel plates (thickness ≥ 50 mm) caused by non-uniform cooling during thermo-mechanical controlled processing. Using microalloyed DH36 steel as the research subject, we systematically investigated the effects of cooling rate on the nucleation and growth of acicular ferrite and its consequent microstructure-property relationships through an integrated approach combining in situ observation via high-temperature laser scanning confocal microscopy with multiscale characterization techniques. Results demonstrate that the cooling rate significantly affects acicular ferrite formation, with the range of 3–7 °C/s being most conducive to acicular ferrite formation. At 5 °C/s, the acicular ferrite volume fraction reached a maximum of 74% with an optimal aspect ratio (5.97). Characterization confirmed that TiOx-Al2O3·SiO2-MnO-MnS complex inclusions act as effective nucleation sites for acicular ferrite, where the MnS outer layer plays a key role in reducing interfacial energy and promoting acicular ferrite radial growth. Furthermore, the interlocking acicular ferrite structure was shown to enhance microhardness by 14% (HV0.1 = 212.5) compared to conventional ferrite through grain refinement strengthening and dislocation strengthening (with a dislocation density of 2 × 108 dislocations/mm2). These results provide crucial theoretical insights and a practical processing window for strengthening-toughening control of heavy plate core microstructures, offering a viable pathway for improving the comprehensive performance of ultra-heavy plates. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (4th Edition))
Show Figures

Figure 1

21 pages, 5514 KB  
Article
Dynamic Constitutive Model of Basalt Fiber Concrete After High Temperature Based on Fractional Calculus
by Wenbiao Liang, Kai Ding, Yan Li, Yue Zhai, Lintao Li and Yi Tian
Materials 2025, 18(20), 4657; https://doi.org/10.3390/ma18204657 - 10 Oct 2025
Viewed by 183
Abstract
Concrete materials undergo a series of physical and chemical changes under high temperature, leading to the degradation of mechanical properties. This study investigates basalt fiber-reinforced concrete (BFRC) through high-temperature testing using the split Hopkinson pressure bar (SHPB) apparatus. Impact compression tests were conducted [...] Read more.
Concrete materials undergo a series of physical and chemical changes under high temperature, leading to the degradation of mechanical properties. This study investigates basalt fiber-reinforced concrete (BFRC) through high-temperature testing using the split Hopkinson pressure bar (SHPB) apparatus. Impact compression tests were conducted on specimens after exposure to elevated temperatures to analyze the effects of varying fiber content, temperature levels, and impact rates on the mechanical behaviors of BFRC. Based on fractional calculus theory, a dynamic constitutive equation was established to characterize the viscoelastic properties and high-temperature damage of BFRC. The results indicate that the dynamic compressive strength of BFRC decreases significantly with increasing temperature but increases gradually with higher impact rates, demonstrating fiber-toughening effects, thermal degradation effects, and strain rate strengthening effects. The proposed constitutive model aligns well with the experimental data, effectively capturing the dynamic mechanical behaviors of BFRC after high-temperature exposure, including its transitional mechanical characteristics across elastic, viscoelastic, and viscous states. The viscoelastic behaviors of BFRC are fundamentally attributed to the synergistic response of its multi-phase composite system across different scales. Basalt fibers enhance the material’s elastic properties by improving the stress transfer mechanism, while high-temperature exposure amplifies its viscous characteristics through microstructural deterioration, chemical transformations, and associated thermal damage. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 11631 KB  
Article
Local Surface Environmental Changes in a Basin in the Permafrost Region of Qinghai-Tibet Plateau Affected by Lake Outburst Event
by Saize Zhang, Shifen Wu, Zekun Ding, Fujun Niu and Yanhu Mu
Remote Sens. 2025, 17(19), 3392; https://doi.org/10.3390/rs17193392 - 9 Oct 2025
Viewed by 145
Abstract
The outburst of Zonag Lake in the permafrost region of the Qinghai-Tibet Plateau (QTP) has significantly altered the local environment, particularly affecting surface conditions and permafrost dynamics. By employing remote sensing and GIS tools, this study analyzed the spatial and temporal variations in [...] Read more.
The outburst of Zonag Lake in the permafrost region of the Qinghai-Tibet Plateau (QTP) has significantly altered the local environment, particularly affecting surface conditions and permafrost dynamics. By employing remote sensing and GIS tools, this study analyzed the spatial and temporal variations in surface environmental changes (surface temperature, vegetation, and dryness) within the Zonag–Salt Lake basin. The results indicate that the outburst caused higher surface temperatures and reduced vegetation cover around Zonag Lake. Analysis using the Temperature–Vegetation Dryness Index (TVDI) reveals higher dryness levels in downstream areas, especially from Kusai Lake to Salt Lake, compared to the upstream Zonag Lake. Temporal trends from 2000 to 2023 show a decrease in average Land Surface Temperature (LST) and an increase in the Normalized Difference Vegetation Index (NDVI). Geographical centroid shifts in environmental indices demonstrate migration patterns influenced by seasonal climate changes and the outburst event. Desertification around Zonag Lake accelerates permafrost development, while the wetting environment around Salt Lake promotes permafrost degradation. The Zonag Lake region is also an ecologically significant area, serving as a key calving ground for the Tibetan antelope (Pantholops hodgsonii), a nationally protected species. Thus, the environmental changes revealed in this study carry important implications for biodiversity conservation on the Tibetan Plateau. These findings highlight the profound impact of the Zonag Lake outburst on the surface environment and permafrost dynamics in the region, providing critical insights for understanding environmental responses to lake outbursts in high-altitude regions. Full article
(This article belongs to the Special Issue Remote Sensing of Water Dynamics in Permafrost Regions)
Show Figures

Figure 1

16 pages, 1083 KB  
Article
Simultaneous Development and Validation of an HPLC Method for the Determination of Furosemide and Its Degraded Compound in Pediatric Extemporaneous Furosemide Oral Solution
by Katsanee Srejomthong, Thanawat Pattananandecha, Sutasinee Apichai, Suporn Charumanee, Busaban Sirithunyalug, Fumihiko Ogata, Naohito Kawasaki and Chalermpong Saenjum
Molecules 2025, 30(19), 4031; https://doi.org/10.3390/molecules30194031 - 9 Oct 2025
Viewed by 168
Abstract
Furosemide (FUR) is a loop diuretic widely used in pediatric care. However, no standardized oral liquid formulation exists due to degradation concerns, particularly the formation of furosemide-related compound B (FUR-B). This study aimed to develop and validate the HPLC method for the simultaneous [...] Read more.
Furosemide (FUR) is a loop diuretic widely used in pediatric care. However, no standardized oral liquid formulation exists due to degradation concerns, particularly the formation of furosemide-related compound B (FUR-B). This study aimed to develop and validate the HPLC method for the simultaneous quantification of FUR, FUR-B, methylparaben (MP), and propylparaben (PP) in pediatric extemporaneous oral solutions. Chromatographic separation was achieved using a Symmetry® C18 column (4.6 × 250 mm, 5 µm) with a mobile phase of 0.1% acetic acid in water and acetonitrile (60:40, v/v) at 1.0 mL/min of flow with injection volume at 10 µL. Detection at 272 nm provided optimal sensitivity, especially for low concentrations of FUR-B. Forced degradation confirmed baseline separation of FUR from its degradation products. The condition showed high linearity (R2 > 0.995), accuracy (recoveries 98.2–101.0%), and precision (RSD ≤ 2%). Robustness and ruggedness tests under varied conditions, analysts, and intra-day yielded consistent performance. Application to extemporaneous formulations showed that refrigeration (2–8 °C) retained initial composition, while elevated temperatures (30 °C and 40 °C) promoted FUR degradation, with FUR-B increasing to 6.84% after 90 days and greater MP and PP degradation. This validated method offers a reliable analytical tool for monitoring chemical changes and supporting quality control of pediatric FUR extemporaneous formulations. Full article
(This article belongs to the Special Issue Recent Advances in Chromatography for Pharmaceutical Analysis)
Show Figures

Figure 1

28 pages, 1421 KB  
Article
Climate, Crops, and Communities: Modeling the Environmental Stressors Driving Food Supply Chain Insecurity
by Manu Sharma, Sudhanshu Joshi, Priyanka Gupta and Tanuja Joshi
Earth 2025, 6(4), 121; https://doi.org/10.3390/earth6040121 - 9 Oct 2025
Viewed by 187
Abstract
As climate variability intensifies, its impacts are increasingly visible through disrupted agricultural systems and rising food insecurity, especially in climate-sensitive regions. This study explores the complex relationships between environmental stressors, such as rising temperatures, erratic rainfall, and soil degradation, with food insecurity outcomes [...] Read more.
As climate variability intensifies, its impacts are increasingly visible through disrupted agricultural systems and rising food insecurity, especially in climate-sensitive regions. This study explores the complex relationships between environmental stressors, such as rising temperatures, erratic rainfall, and soil degradation, with food insecurity outcomes in selected districts of Uttarakhand, India. Using the Fuzzy DEMATEL method, this study analyzes 19 stressors affecting the food supply chain and identifies the nine most influential factors. An Environmental Stressor Index (ESI) is constructed, integrating climatic, hydrological, and land-use dimensions. The ESI is applied to three districts—Rudraprayag, Udham Singh Nagar, and Almora—to assess their vulnerability. The results suggest that Rudraprayag faces high exposure to climate extremes (heatwaves, floods, and droughts) but benefits from a relatively stronger infrastructure. Udham Singh Nagar exhibits the highest overall vulnerability, driven by water stress, air pollution, and salinity, whereas Almora remains relatively less exposed, apart from moderate drought and connectivity stress. Simulations based on RCP 4.5 and RCP 8.5 scenarios indicate increasing stress across all regions, with Udham Singh Nagar consistently identified as the most vulnerable. Rudraprayag experiences increased stress under the RCP 8.5 scenario, while Almora is the least vulnerable, though still at risk from drought and pest outbreaks. By incorporating crop yield models into the ESI framework, this study advances a systems-level tool for assessing agricultural vulnerability to climate change. This research holds global relevance, as food supply chains in climate-sensitive regions such as Africa, Southeast Asia, and Latin America face similar compound stressors. Its novelty lies in integrating a Fuzzy DEMATEL-based Environmental Stressor Index with crop yield modeling. The findings highlight the urgent need for climate-informed food system planning and policies that integrate environmental and social vulnerabilities. Full article
Show Figures

Figure 1

30 pages, 3410 KB  
Review
Application of Rejuvenators in Asphalt Binders: Classification and Micro- and Macro-Properties
by Chengwei Xing, Weichao Zhou, Bohan Zhu, Haozongyang Li and Shixian Tang
Coatings 2025, 15(10), 1177; https://doi.org/10.3390/coatings15101177 - 8 Oct 2025
Viewed by 317
Abstract
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. [...] Read more.
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. Each type offers distinct advantages in recovering the performance of aged asphalt. Mineral oil-based rejuvenators primarily enhance low-temperature cracking resistance through physical dilution, while bio-based rejuvenators demonstrate superior environmental sustainability and stability. Compound rejuvenators, particularly those incorporating reactive compounds, show the best results in repairing degraded polymer modifiers and improving both low- and high-temperature properties of aged, modified asphalt. Atomic Force Microscopy (AFM), Fluorescence Microscopy (FM), and Scanning Electron Microscopy (SEM) have been applied to analyze the micro-properties of rejuvenated asphalt. These techniques have revealed that rejuvenators can restore the microstructure of aged asphalt by dispersing agglomerated asphaltenes and promoting molecular mobility. Functional groups and molecular weight changes, characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Gel Permeation Chromatography (GPC), indicate that rejuvenators effectively reduce oxidation products and molecular weight of aged asphalt, restoring its physicochemical properties. Macro-property evaluations show that rejuvenators significantly improve penetration, ductility, and fatigue resistance. Finally, this review identifies the key characteristics and challenges associated with rejuvenator applications and provides an outlook on future research directions. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

17 pages, 2845 KB  
Article
Quantitative Mechanisms of Long-Term Drilling-Fluid–Coal Interaction and Strength Deterioration in Deep CBM Formations
by Qiang Miao, Hongtao Liu, Yubin Wang, Wei Wang, Shichao Li, Wenbao Zhai and Kai Wei
Processes 2025, 13(10), 3183; https://doi.org/10.3390/pr13103183 - 7 Oct 2025
Viewed by 295
Abstract
During deep coalbed methane (CBM) drilling, wellbore stability is significantly influenced by the interaction between drilling fluid and coal rock. However, quantitative data on mechanical degradation under long-term high-temperature and high-pressure conditions are lacking. This study subjected coal cores to immersion in field-formula [...] Read more.
During deep coalbed methane (CBM) drilling, wellbore stability is significantly influenced by the interaction between drilling fluid and coal rock. However, quantitative data on mechanical degradation under long-term high-temperature and high-pressure conditions are lacking. This study subjected coal cores to immersion in field-formula drilling fluid at 60 °C and 10.5 MPa for 0–30 days, followed by uniaxial and triaxial compression tests under confining pressures of 0/5/10/20 MPa. The fracture evolution was tracked using micro-indentation (µ-indentation), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM), establishing a relationship between water absorption and strength. The results indicate a sharp decline in mechanical parameters within the first 5 days, after which they stabilized. Uniaxial compressive strength decreased from 36.85 MPa to 22.0 MPa (−40%), elastic modulus from 1.93 GPa to 1.07 GPa (−44%), cohesion from 14.5 MPa to 5.9 MPa (−59%), and internal friction angle from 24.9° to 19.8° (−20%). Even under 20 MPa confining pressure after 30 days, the strength loss reached 43%. Water absorption increased from 6.1% to 7.9%, showing a linear negative correlation with strength, with the slope increasing from −171 MPa/% (no confining pressure) to −808 MPa/% (20 MPa confining pressure). The matrix elastic modulus remained stable at 3.5–3.9 GPa, and mineral composition remained unchanged, confirming that the degradation was due to hydraulic wedging and lubrication of fractures rather than matrix damage. These quantitative thresholds provide direct evidence for predicting wellbore stability in deep CBM drilling. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

12 pages, 806 KB  
Article
Stability Studies of Clonazepam 2.5 mg/mL Oral Solution and 1 mg/mL Parenteral Solution in Pre-Filled Polypropylene Syringes
by Juan Carlos Ruiz Ramirez, Icram Talsi Hamdani, Laura Bermúdez Gazquez, Alice Charlotte Viney and José M. Alonso Herreros
Pharmaceutics 2025, 17(10), 1302; https://doi.org/10.3390/pharmaceutics17101302 - 7 Oct 2025
Viewed by 195
Abstract
Background: Clonazepam is a benzodiazepine drug indicated in all clinical forms of epileptic seizures, various forms of myoclonic seizures, myoclonus and other abnormal movements. At present, it is classified as a hazardous drug requiring special precautions for personnel at reproductive risk, according to [...] Read more.
Background: Clonazepam is a benzodiazepine drug indicated in all clinical forms of epileptic seizures, various forms of myoclonic seizures, myoclonus and other abnormal movements. At present, it is classified as a hazardous drug requiring special precautions for personnel at reproductive risk, according to a technical document produced by the Spanish National Institute for Safety and Health at Work (INSST), in collaboration with the Spanish Society of Hospital Pharmacy (SEFH). The commercial solutions of clonazepam, for oral and parenteral administration, are supplied by laboratories in glass containers. Repacking in pre-filled polypropylene (PP) syringes, made in the pharmacy service, and in aseptic conditions, may facilitate its administration and reduce the risks to the health or safety of nursing personnel. Nevertheless, there is a lack of stability studies of clonazepam in pre-filled PP syringes. Objectives: To evaluate the physicochemical stability of commercial clonazepam 2.5 mg/mL oral solution and 1 mg/mL parenteral solution repackaged in pre-filled PP syringes under various storage conditions. Methods: A rapid, linear, precise and sensitive high-performance liquid chromatography (HPLC) method for chemical stability studies of Clonazepam 1 mg/mL (parenteral use) and 2.5 mg/mL (oral use) in solution was implemented after repackaging in pre-filled PP syringes. The studies were conducted by measuring concentrations of oral and parenteral clonazepam in pre-filled syringes, at various time points, over 30 days in several different storage conditions: oral clonazepam protected from light in refrigerator and at controlled room temperature exposed to ambient light; parenteral clonazepam protected from light in a refrigerator and at controlled room temperature protected or unprotected from light. Visual aspects and pH change as well as crystal formation were checked to determine physical stability. Results: The degradation of the active ingredient in all groups was less than 10% after 30 days. No evidence of crystal formation, pH and visual aspect changes were observed. Conclusions: Clonazepam 1 mg/mL parenteral solution and 2.5 mg/mL oral solution in pre-filled PP syringes are stable for up to 30 days in the tested conditions. The centralized repackaging of clonazepam in pre-filled PP syringes, connected to a closed safety system, in the pharmacy service, reduces drug manipulation by nursing staff decreasing the risk of occupational exposure. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

24 pages, 1879 KB  
Article
Comparison of Hard Tick (Acari: Ixodidae) Fauna in Natural and Anthropogenic Habitats in Croatia
by Stjepan Krčmar, Marko Vucelja, Marco Pezzi, Marko Boljfetić, Josip Margaletić and Linda Bjedov
Insects 2025, 16(10), 1027; https://doi.org/10.3390/insects16101027 - 5 Oct 2025
Viewed by 492
Abstract
Due to the evident increase in tick-borne diseases worldwide, it is necessary to constantly update information on the distribution and zoonotic potential of hard ticks. We studied diversity, population structure, and seasonal dynamics of hard tick fauna, faunal similarity and the climate impact [...] Read more.
Due to the evident increase in tick-borne diseases worldwide, it is necessary to constantly update information on the distribution and zoonotic potential of hard ticks. We studied diversity, population structure, and seasonal dynamics of hard tick fauna, faunal similarity and the climate impact on tick occurrence in natural habitats (NHs) (forest communities) and anthropogenic habitats (AHs) (orchards, grasslands, degraded forests) in eastern and central parts of Continental Croatia. Host-seeking hard ticks were sampled by the flag-dragging method in lowland AHs (Bansko Hill (BH); 2023–2024 yr.) and in mountainous NHs (Medvednica Mountain (MM); 2019–2021, 2024 yr.). Overall, 2726 specimens belonging to eight hard tick species (Ixodes ricinus, I. frontalis, I. hexagonus, I. kaiseri, Haemaphysalis inermis, H. concinna, Dermacentor marginatus, D. reticulatus) were identified in AHs, while in NHs 1543 hard ticks, belonging to three species (I. ricinus, I. frontalis, D. reticulatus), were collected. The most abundant species in both habitat types (47.83% in AHs, 99.80% in NHs) was I. ricinus, showing unimodal seasonal activity within studied NHs and bimodal activity at AHs. Comparison of hard tick fauna in different habitats using the Sørenson index on BH and MM showed a high percentage of similarity (50.0–88.8). At AHs, a significant (p < 0.05) negative correlation was determined between the abundance (N) and the mean monthly air temperatures (°C) for H. inermis (r = −0.5931; p = 0.0421) and D. reticulatus (r = −0.6289; p = 0.0285), while their numbers positively correlated (r = 0.5551; p = −0.2667; r = 0.4430; p = 0.1492) with air humidity (%). In contrast, the number of sampled host-seeking I. ricinus ticks at natural forest habitats on MM was positively associated with air temperature and negatively with air humidity at elevations from 200 to 1000 m a.s.l. (r = −0.7684; p = 0.0259; at 200 m a.s.l.). Collected specimens of I. frontalis mark the first record for Osijek–Baranja County, while the sampled D. reticulatus on MM represents the first catch at 1000 m a.s.l. in Croatia. This new data on the distribution and seasonality of medically important hard tick species in Continental Croatia contributes to identifying tick-risk foci and high-risk periods. Full article
(This article belongs to the Topic Ticks and Tick-Borne Pathogens: 2nd Edition)
Show Figures

Graphical abstract

15 pages, 5237 KB  
Article
Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor
by Qian Zhang, Maogang He, Yabin Jin, Zizhen Huang, Tiantian Xu and Long Li
Energies 2025, 18(19), 5276; https://doi.org/10.3390/en18195276 - 4 Oct 2025
Viewed by 307
Abstract
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative [...] Read more.
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative conditions (wall temperature 623.15 K, p = 0.708–6.816 MPa) and pyrolytic conditions (wall temperature 793.15 K, p = 2.706–7.165 MPa); carbon deposits were quantified by LECO analysis, oxidation activity was assessed by temperature-programmed oxidation (TPO), and morphology was performed by FESEM and EDS. Results show that oxidative coking is minimal (5.37–14.95 μg·cm2) and largely insensitive to pressure in the liquid phase (1.882–6.816 MPa), whereas at 0.708 MPa (gas/phase-change conditions), deposition increases, implicating phase and local heat-transfer effects. Under oxidative conditions, deposits are predominantly amorphous carbon with a disordered structure, formed at relatively low temperatures, with only a few fiber-like metal sulfides identified by EDS. In contrast, under pyrolysis conditions, the deposits are predominantly carbon nanotubes, exhibiting well-defined tubular morphology formed at elevated temperatures via metal-catalyzed growth. The pyrolysis coking yield is substantially higher (66.88–221.89 μg·cm−2) and increases with pressure. The findings imply that the pressure influences the coking of JP-10 via phase state under oxidative conditions and residence time under pyrolytic conditions, while basic morphologies of coke deposits remain similar; operationally, maintaining the working pressure higher than the saturated vapor pressure can mitigate oxidation coking associated with phase transitions, and minimizing residence time can mitigate pyrolytic coking. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

Back to TopTop