Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = high temperature low sag conductor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 24145 KB  
Article
Influence of Conductor Temperature on the Voltage–Current Characteristic of Corona Discharge in a Coaxial Arrangement—Experiments and Simulation
by Kayumba Grace Ilunga, Andrew Graham Swanson, Nelson Ijumba and Robert Stephen
Energies 2025, 18(5), 1303; https://doi.org/10.3390/en18051303 - 6 Mar 2025
Cited by 2 | Viewed by 1308
Abstract
High-current-carrying capability with minimum thermal elongation is one of the key reasons for using high-temperature low-sag (HTLS) conductors in modern power systems. However, their higher operational temperature can significantly affect corona discharge characteristics. Corona is one of the key factors in transmission line [...] Read more.
High-current-carrying capability with minimum thermal elongation is one of the key reasons for using high-temperature low-sag (HTLS) conductors in modern power systems. However, their higher operational temperature can significantly affect corona discharge characteristics. Corona is one of the key factors in transmission line design considerations. Corona discharge is the leading cause of audible noise, radio interference, and corona loss in power transmission systems. The influence of conductor temperature on corona discharge characteristics is investigated in this paper using experimental methods and computational simulations. A simulation framework has been developed in COMSOL Multiphysics using the physics of plasmas and electrostatics to simulate corona plasma dynamic behavior and electric field distribution. The results show that the conductor temperature enhances the ionization by electron impact, enhances the production of positive and negative ions, changes the electric field distribution, and increases the electron temperature. This analysis emphasizes that temperature-dependent conditions affect the inception and intensity of corona discharge. Additionally, an experimental model was developed to evaluate corona voltage–current characteristics under varying temperature conditions. The study presents both simulation results and a newly developed model for predicting corona current at high conductor temperatures. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

24 pages, 11872 KB  
Article
Experimental Study of Dynamic Line Rating Applied to High-Temperature Low-Sag Conductors
by Luis Vejo, Pablo Castro, Mario Manana, Alberto Laso, Ramon Lecuna, Sergio Bustamante and Eugenio Sainz
Energies 2025, 18(4), 929; https://doi.org/10.3390/en18040929 - 14 Feb 2025
Cited by 3 | Viewed by 1599
Abstract
This study presents an analysis of ampacity evaluation techniques in overhead transmission lines based on methods for calculating conductor capacity through static and dynamic line rating analysis. It is specifically applied to high-temperature low-sag (HTLS) conductors, comparing theoretical results with empirically obtained real-time [...] Read more.
This study presents an analysis of ampacity evaluation techniques in overhead transmission lines based on methods for calculating conductor capacity through static and dynamic line rating analysis. It is specifically applied to high-temperature low-sag (HTLS) conductors, comparing theoretical results with empirically obtained real-time measurements. International standard methodologies, such as those from the IEEE and CIGRE, are examined to assess the impact of meteorological conditions on the performance of overhead transmission lines. Theoretical analyses are contrasted with experimental results obtained through a physical simulation prototype designed specifically for this purpose. A comparative analysis is presented that evaluates the deviations in conventional ampacity calculation techniques based on conductor temperature, comparing them with their performance in experimental situations for High-Temperature Low-Sag conductors under high load demand. This research offers an analytical perspective for optimizing the performance of transmission lines through the use of high-density currents. The results analyze the accuracy of calculation methodologies under different load and environmental scenarios, identifying conditions with the highest deviations, to enable more efficient and secure management in high-demand scenarios. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

11 pages, 6594 KB  
Article
Simultaneous Structural Monitoring over Optical Ground Wire and Optical Phase Conductor via Chirped-Pulse Phase-Sensitive Optical Time-Domain Reflectometry
by Jorge Canudo, Pascual Sevillano, Andrea Iranzo, Sacha Kwik, Javier Preciado-Garbayo and Jesús Subías
Sensors 2024, 24(22), 7388; https://doi.org/10.3390/s24227388 - 20 Nov 2024
Cited by 1 | Viewed by 1894
Abstract
Optimizing the use of existing high-voltage transmission lines demands real-time condition monitoring to ensure structural integrity and continuous service. Operating these lines at the current capacity is limited by safety margins based on worst-case weather scenarios, as exceeding these margins risks bringing conductors [...] Read more.
Optimizing the use of existing high-voltage transmission lines demands real-time condition monitoring to ensure structural integrity and continuous service. Operating these lines at the current capacity is limited by safety margins based on worst-case weather scenarios, as exceeding these margins risks bringing conductors dangerously close to the ground. The integration of optical fibers within modern transmission lines enables the use of Distributed Fiber Optic Sensing (DFOS) technology, with Chirped-Pulse Phase-Sensitive Optical Time-Domain Reflectometry (CP-ΦOTDR) proving especially effective for this purpose. CP-ΦOTDR measures wind-induced vibrations along the conductor, allowing for an analysis of frequency-domain vibration modes that correlate with conductor length and sag across spans. This monitoring system, capable of covering distances up to 40 km from a single endpoint, enables dynamic capacity adjustments for optimized line efficiency. Beyond sag monitoring, CP-ΦOTDR provides robust detection of external threats, including environmental interference and mechanical intrusions, which could compromise cable stability. By simultaneously monitoring the Optical Phase Conductor (OPPC) and Optical Ground Wire (OPGW), this study offers the first comprehensive, real-time evaluation of both structural integrity and potential external aggressions on overhead transmission lines. The findings demonstrate that high-frequency data offer valuable insights for classifying mechanical intrusions and environmental interferences based on spectral content, while low-frequency data reveal the diurnal temperature-induced sag evolution, with distinct amplitude responses for each cable. These results affirm CP-ΦOTDR’s unique capacity to enhance line safety, operational efficiency, and proactive maintenance by delivering precise, real-time assessments of both structural integrity and external threats. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 1375 KB  
Review
Aluminum Conductor Steel-Supported Conductors for the Sustainable Growth of Power Line Capacity: A Review and Discussion
by Milad Jalilian, Jordi-Roger Riba and Pooya Parvizi
Materials 2024, 17(18), 4536; https://doi.org/10.3390/ma17184536 - 15 Sep 2024
Cited by 8 | Viewed by 3650
Abstract
Industrial development and population growth have increased the need for higher-capacity power transmission lines. Aluminum conductor steel-supported (ACSS) conductors, a type of high-temperature low-sag (HTLS) conductor, are now widely used in new designs and reconductoring applications. ACSS conductors are preferred over traditional aluminum [...] Read more.
Industrial development and population growth have increased the need for higher-capacity power transmission lines. Aluminum conductor steel-supported (ACSS) conductors, a type of high-temperature low-sag (HTLS) conductor, are now widely used in new designs and reconductoring applications. ACSS conductors are preferred over traditional aluminum conductor steel-reinforced (ACSR) conductors due to their high strength, low sag, and excellent thermal stability. These attributes have garnered significant interest from researchers, engineers, and manufacturers. This paper provides a comprehensive review of the structure, properties, testing methods, and environmental behavior of ACSS conductors. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

17 pages, 4320 KB  
Article
Possibilities of Increasing the Ampacity of Overhead Lines Using High-Temperature Low-Sag Conductors in the Electric Power System of the Slovak Republic
by František Margita, Ľubomír Beňa, Wiesława Malska and Paweł Pijarski
Appl. Sci. 2024, 14(17), 7846; https://doi.org/10.3390/app14177846 - 4 Sep 2024
Cited by 4 | Viewed by 3102
Abstract
The examination of ampacity in overhead transmission lines offers a comprehensive overview, covering its definition, thermal evaluation methodologies, standards, practical applications, and the potential of high-temperature low-sag (HTLS) conductors. By navigating through static and dynamic approaches to thermal evaluation and detailing methodologies prescribed [...] Read more.
The examination of ampacity in overhead transmission lines offers a comprehensive overview, covering its definition, thermal evaluation methodologies, standards, practical applications, and the potential of high-temperature low-sag (HTLS) conductors. By navigating through static and dynamic approaches to thermal evaluation and detailing methodologies prescribed by international standards like those from CIGRE and IEEE, this study provides a solid understanding of how ampacity is determined and optimized. Furthermore, the exploration of HTLS conductors introduces a forward-looking perspective on enhancing transmission capacity while mitigating the need for extensive infrastructure modifications. Through an analysis of regional considerations and preferences using Slovak standards and CIGRE Technical Brochure 601, insights are provided into how environmental factors influence transmission line performance. The analysis of the transition from traditional ACSR (Aluminium Conductor Steel-Reinforced) to advanced ACCC (Aluminium Conductor Composite Core) conductors demonstrates the tangible benefits of adopting advanced conductor technologies in real-world scenarios. Full article
Show Figures

Figure 1

23 pages, 2326 KB  
Review
Overview of Electricity Transmission Conductors: Challenges and Remedies
by Chika Oliver Ujah, Daramy Vandi Von Kallon and Victor Sunday Aigbodion
Materials 2022, 15(22), 8094; https://doi.org/10.3390/ma15228094 - 15 Nov 2022
Cited by 15 | Viewed by 3333
Abstract
Electricity transmission is an essential intermediary linking power generation and distribution. Voltage drops or total blackouts have always characterized the transmission and distribution of electricity in the sub-Saharan Africa and some Asian dwellers. This has been attributed partly to faulty, defective or dilapidated [...] Read more.
Electricity transmission is an essential intermediary linking power generation and distribution. Voltage drops or total blackouts have always characterized the transmission and distribution of electricity in the sub-Saharan Africa and some Asian dwellers. This has been attributed partly to faulty, defective or dilapidated transmission conductors/networks. The aim of this study is to identify the causes of those defects in the transmission conductors and proffer possible remedies to them. Studies have shown that the current production techniques of transmission conductors (TCs) generate defective products, and that the materials used have their own challenges too. This work, therefore, reviewed all the production techniques and materials used in the development of TCs. It was observed that pultrusion, extrusion, hot-rolling, and stir-casting were the techniques used in the production of transmission conductors. Defects such as shrinkage, pores, impurities, and warps were identified in those techniques and some recommendations to ameliorate the defects of those techniques were presented. Spark plasma sintering is recommended as the most promising solid- state production techniques that should be adopted in fabricating transmission conductors, though it is yet to be developed for producing long-span products. In addition, advanced TCs materials such as Al-CNTs, Al-Nb, Al-Ti, and Al-B2 were presented as better alternatives to the existing TCs materials. By producing TCs with the recommended techniques and materials, the electricity availability will be enhanced; and this will lead to sustainable industrial growth and economic stability in the third world countries and the entire world. Full article
Show Figures

Figure 1

19 pages, 13003 KB  
Review
Advanced Composite Materials: A Panacea for Improved Electricity Transmission
by Chika Oliver Ujah, Daramy Vandi Von Kallon, Daniel O. Aikhuele and Victor Sunday Aigbodion
Appl. Sci. 2022, 12(16), 8291; https://doi.org/10.3390/app12168291 - 19 Aug 2022
Cited by 22 | Viewed by 3842
Abstract
The demand for electricity has increased drastically due to population explosion globally. Unfortunately, supply does not meet the demand. Consequently, the transmission grid becomes overloaded, culminating in frequent power outages. Worse still, the transmission grid lacks adequate maintenance, and this has led to [...] Read more.
The demand for electricity has increased drastically due to population explosion globally. Unfortunately, supply does not meet the demand. Consequently, the transmission grid becomes overloaded, culminating in frequent power outages. Worse still, the transmission grid lacks adequate maintenance, and this has led to energy crisis in Africa and some parts of Asia. In this review, studies on the strength and weaknesses of existing transmission conductors were conducted. Further studied were natural and artificial phenomena that attack the overhead transmission networks. It was observed that besides inherent conductor defects, overloading, bush fire, short-circuit, harsh weather, and lightning were the factors that ravage the transmission grid. Hence, there is the need to develop more robust conductor materials that can withstand these challenges. The conventional conductors such as all aluminum conductor (AAC) and aluminum conductor steel reinforced (ACSR) are challenged by low operating temperatures, among others. High-temperature low-sag (HTLS) conductors that were invented to tackle these shortcomings certainly have higher ampacity and better thermal rating than the conventional conductors. However, some challenges still devastate them. So, from the study conducted, it was discovered that developing advanced nano-based Al-composite conductor would help in ameliorating the challenges prevalent in the transmission grid. Such an Al-nanocomposite conductor would possess higher ampacity and better thermal stability and would be more durable and cost effective. Full article
(This article belongs to the Topic Metal Matrix Composites: Recent Advancements)
Show Figures

Figure 1

19 pages, 1951 KB  
Article
A Didactic Procedure to Solve the Equation of Steady-Static Response in Suspended Cables
by José Agüero-Rubio, Javier López-Martínez, Marta Gómez-Galán and Ángel-Jesús Callejón-Ferre
Mathematics 2020, 8(9), 1468; https://doi.org/10.3390/math8091468 - 1 Sep 2020
Cited by 2 | Viewed by 2751
Abstract
Students in the electrical branch of the short-cycle tertiary education program acquire developmental and design skills for low voltage transmission power lines. Aerial power line design requires mathematical tools not covered well enough in the curricula. Designing suspension cables requires the use of [...] Read more.
Students in the electrical branch of the short-cycle tertiary education program acquire developmental and design skills for low voltage transmission power lines. Aerial power line design requires mathematical tools not covered well enough in the curricula. Designing suspension cables requires the use of a Taylor series and integral calculation to obtain the parabola’s arc length. Moreover, it requires iterative procedures, such as the Newton–Raphson method, to solve the third-order equation of the steady-static response. The aim of this work is to solve the steady-static response equation for suspended cables using simple calculation tools. For this purpose, the influence of the horizontal component of the cable tension on its curvature was decoupled from the cable’s self-weight, which was responsible for the tension’s vertical component. To this end, we analyzed the laying and operation of the suspended cables by defining three phases (i.e., stressing, lifting, and operation). The phenomena that occurred in each phase were analyzed, as was their manifestation in the cable model. Herein, we developed and validated the solution of the steady-static response equation in suspended cables using simple equations supported with intuitive graphics. The best results of the proposed calculation procedure were obtained in conditions of large temperature variations. Full article
Show Figures

Figure 1

13 pages, 1959 KB  
Article
Uncertainties in the Testing of the Coefficient of Thermal Expansion of Overhead Conductors
by Miren T. Bedialauneta, Igor Albizu, Elvira Fernandez and A. Javier Mazon
Energies 2020, 13(2), 411; https://doi.org/10.3390/en13020411 - 14 Jan 2020
Cited by 6 | Viewed by 3461
Abstract
Overhead lines can be replaced by high temperature low sag (HTLS) conductors in order to increase their capacity. The coefficients of thermal expansion (CTE) of the HTLS conductors are lower than the CTE of conventional conductors. The utilities and conductor manufacturers usually carry [...] Read more.
Overhead lines can be replaced by high temperature low sag (HTLS) conductors in order to increase their capacity. The coefficients of thermal expansion (CTE) of the HTLS conductors are lower than the CTE of conventional conductors. The utilities and conductor manufacturers usually carry out the verification of the CTE of the overhead conductors in an actual size span. The verification is based on the observation of the change of the conductor length as a result of the conductor temperature change. This process is influenced by the coefficient of thermal expansion to be verified. However, there are other factors that also affect it. This paper analyzes the effect of some of the uncertainty sources in the testing of the coefficient of thermal expansion of the overhead conductors. Firstly, the thermal expansion process is described and the uncertainty sources related to the conductor and the line section are identified. Then, the uncertainty sources and their effect on the CTE testing are quantified. Full article
(This article belongs to the Special Issue Modelling, Simulation and Control of Thermal Energy Systems)
Show Figures

Graphical abstract

26 pages, 6498 KB  
Article
Evaluation Study of Potential Use of Advanced Conductors in Transmission Line Projects
by Svetlana Beryozkina
Energies 2019, 12(5), 822; https://doi.org/10.3390/en12050822 - 1 Mar 2019
Cited by 17 | Viewed by 5517
Abstract
Transmission networks recently faced new technical and economic challenges. The direct use of advanced technologies and modern methods could solve these issues. This paper discusses the potential application of straightforward technology such as high-temperature low-sag conductors (HTLScs) as an additional measure for the [...] Read more.
Transmission networks recently faced new technical and economic challenges. The direct use of advanced technologies and modern methods could solve these issues. This paper discusses the potential application of straightforward technology such as high-temperature low-sag conductors (HTLScs) as an additional measure for the protection and effective operation of overhead power lines. An evaluation was conducted to determine an approach for selecting the cross-sectional area and type of conductor with respect to a fault current limitation. It showed the potential benefits of using HTLScs based on an assessment of the throughput capacity and up-front capital costs. A case study considered two scenarios: the construction of a new power line and reconductoring of the existing one. The data for a real project with two overhead power lines were used. The obtained results are analyzed and discussed in detail in this paper. Full article
Show Figures

Graphical abstract

Back to TopTop