Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,791)

Search Parameters:
Keywords = high-dynamic motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1675 KB  
Article
A Data-Driven Framework for Modeling Car-Following Behavior Using Conditional Transfer Entropy and Dynamic Mode Decomposition
by Poorendra Ramlall and Subhradeep Roy
Appl. Sci. 2025, 15(17), 9700; https://doi.org/10.3390/app15179700 (registering DOI) - 3 Sep 2025
Abstract
Accurate modeling of car-following behavior is essential for understanding traffic dynamics and enabling predictive control in intelligent transportation systems. This study presents a novel data-driven framework that combines information-theoretic input selection via conditional transfer entropy (CTE) with dynamic mode decomposition with control (DMDc) [...] Read more.
Accurate modeling of car-following behavior is essential for understanding traffic dynamics and enabling predictive control in intelligent transportation systems. This study presents a novel data-driven framework that combines information-theoretic input selection via conditional transfer entropy (CTE) with dynamic mode decomposition with control (DMDc) for identifying and forecasting car-following dynamics. In the first step, CTE is employed to identify the specific vehicles that exert directional influence on a given subject vehicle, thereby systematically determining the relevant control inputs for modeling its behavior. In the second step, DMDc is applied to estimate and predict the dynamics by reconstructing the closed-form expression of the dynamical system governing the subject vehicle’s motion. Unlike conventional machine learning models that typically seek a single generalized representation across all drivers, our framework develops individualized models that explicitly preserve driver heterogeneity. Using both synthetic data from multiple traffic models and real-world naturalistic driving datasets, we demonstrate that DMDc accurately captures nonlinear vehicle interactions and achieves high-fidelity short-term predictions. Analysis of the estimated system matrices reveals that DMDc naturally approximates kinematic relationships, further reinforcing its interpretability. Importantly, this is the first study to apply DMDc to model and predict car-following behavior using real-world driving data. The proposed framework offers a computationally efficient and interpretable tool for traffic behavior analysis, with potential applications in adaptive traffic control, autonomous vehicle planning, and human-driver modeling. Full article
(This article belongs to the Section Transportation and Future Mobility)
23 pages, 3668 KB  
Article
Graph-Driven Micro-Expression Rendering with Emotionally Diverse Expressions for Lifelike Digital Humans
by Lei Fang, Fan Yang, Yichen Lin, Jing Zhang and Mincheol Whang
Biomimetics 2025, 10(9), 587; https://doi.org/10.3390/biomimetics10090587 - 3 Sep 2025
Abstract
Micro-expressions, characterized by brief and subtle facial muscle movements, are essential for conveying nuanced emotions in digital humans, yet existing rendering techniques often produce rigid or emotionally monotonous animations due to the inadequate modeling of temporal dynamics and action unit interdependencies. This paper [...] Read more.
Micro-expressions, characterized by brief and subtle facial muscle movements, are essential for conveying nuanced emotions in digital humans, yet existing rendering techniques often produce rigid or emotionally monotonous animations due to the inadequate modeling of temporal dynamics and action unit interdependencies. This paper proposes a graph-driven framework for micro-expression rendering that generates emotionally diverse and lifelike expressions. We employ a 3D-ResNet-18 backbone network to perform joint spatio-temporal feature extraction from facial video sequences, enhancing sensitivity to transient motion cues. Action units (AUs) are modeled as nodes in a symmetric graph, with edge weights derived from empirical co-occurrence probabilities and processed via a graph convolutional network to capture structural dependencies and symmetric interactions. This symmetry is justified by the inherent bilateral nature of human facial anatomy, where AU relationships are based on co-occurrence and facial anatomy analysis (as per the FACS), which are typically undirected and symmetric. Human faces are symmetric, and such relationships align with the design of classic spectral GCNs for undirected graphs, assuming that adjacency matrices are symmetric to model non-directional co-occurrences effectively. Predicted AU activations and timestamps are interpolated into continuous motion curves using B-spline functions and mapped to skeletal controls within a real-time animation pipeline (Unreal Engine). Experiments on the CASME II dataset demonstrate superior performance, achieving an F1-score of 77.93% and an accuracy of 84.80% (k-fold cross-validation, k = 5), outperforming baselines in temporal segmentation. Subjective evaluations confirm that the rendered digital human exhibits improvements in perceptual clarity, naturalness, and realism. This approach bridges micro-expression recognition and high-fidelity facial animation, enabling more expressive virtual interactions through curve extraction from AU values and timestamps. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

16 pages, 3175 KB  
Article
Research and Optimization of Key Technologies for Manure Cleaning Equipment Based on a Profiling Wheel Mechanism
by Fengxin Yan, Can Gao, Lishuang Ren, Jiahao Li and Yuanda Gao
AgriEngineering 2025, 7(9), 287; https://doi.org/10.3390/agriengineering7090287 - 3 Sep 2025
Abstract
This study addresses the problems of poor dynamic stability, high vibration coupling, and inefficient energy use in large-farm manure handling machines. A profiling wheel-based multi-disciplinary approach is proposed in the study. With the rocker arm prototype, double-ball heads, and a hydraulic damping system, [...] Read more.
This study addresses the problems of poor dynamic stability, high vibration coupling, and inefficient energy use in large-farm manure handling machines. A profiling wheel-based multi-disciplinary approach is proposed in the study. With the rocker arm prototype, double-ball heads, and a hydraulic damping system, a parametric design is built that includes vibration and energy consumption. The simulation results in EDEM2022 and ANSYS2022 prove the structure viability and motion compensation capability, while NSGA-II optimizes the damping parameters (k1 = 380 kN/m, C = 1200 Ns/m). The results show a 14.7% σFc reduction, 14.3% αRMS decrease, resonance avoidance (14–18 Hz), Δx (horizontal offset of the frame) < 5 mm, 18% power loss to 12.5%, and 62% stability improvement. The new research includes constructing a dynamic model by combining the Hertz contact theory with the modal decoupling method, while interacting with an automatic algorithm of adaptive damping and a mechanical-hydraulic-control-oriented optimization platform. Future work could integrate lightweight materials and multi-machine collaboration for smarter, greener manure cleaning. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

22 pages, 6994 KB  
Article
Dynamic Quantification of PISHA Sandstone Rill Erosion Using the SFM-MVS Method Under Laboratory Rainfall Simulation
by Yuhang Liu, Sui Zhang, Jiwei Wang, Rongyan Gao, Jiaxuan Liu, Siqi Liu, Xuebing Hu, Jianrong Liu and Ruiqiang Bai
Atmosphere 2025, 16(9), 1045; https://doi.org/10.3390/atmos16091045 - 2 Sep 2025
Abstract
Soil erosion is a critical ecological challenge in semi-arid regions of China, particularly in the Yellow River Basin, where Pisha sandstone slopes undergo rapid degradation. Rill erosion, driven by rainfall and overland flow, destabilizes slopes and accelerates ecosystem degradation. To address this, we [...] Read more.
Soil erosion is a critical ecological challenge in semi-arid regions of China, particularly in the Yellow River Basin, where Pisha sandstone slopes undergo rapid degradation. Rill erosion, driven by rainfall and overland flow, destabilizes slopes and accelerates ecosystem degradation. To address this, we developed a multi-view stereo observation system that integrates Structure-from-Motion (SFM) and multi-view stereo (MVS) for high-precision, dynamic monitoring of rill erosion. Laboratory rainfall simulations were conducted under four inflow rates (2–8 L/min), corresponding to rainfall intensities of 30–120 mm/h. The erosion process was divided into four phases: infiltration and particle rolling, splash and sheet erosion, incipient rill incision, and mature rill networks, with erosion concentrated in the middle and lower slope sections. The SFM-MVS system achieved planimetric and vertical errors of 3.1 mm and 3.7 mm, respectively, providing approximately 25% higher accuracy and nearly 50% faster processing compared with LiDAR and UAV photogrammetry. Infiltration stabilized at approximately 6.2 mm/h under low flows (2 L/min) but declined to less than 4 mm/h under high flows (≥6 L/min), leading to intensified rill incision and coarse-particle transport (up to 21.4% of sediment). These results demonstrate that the SFM-MVS system offers a scalable and non-invasive method for quantifying erosion dynamics, with direct implications for field monitoring, ecological restoration, and soil conservation planning. Full article
(This article belongs to the Special Issue Research About Permafrost–Atmosphere Interactions (2nd Edition))
Show Figures

Figure 1

25 pages, 29114 KB  
Article
Towards UAV Localization in GNSS-Denied Environments: The SatLoc Dataset and a Hierarchical Adaptive Fusion Framework
by Xiang Zhou, Xiangkai Zhang, Xu Yang, Jiannan Zhao, Zhiyong Liu and Feng Shuang
Remote Sens. 2025, 17(17), 3048; https://doi.org/10.3390/rs17173048 - 2 Sep 2025
Abstract
Precise and robust localization for micro Unmanned Aerial Vehicles (UAVs) in GNSS-denied environments is hindered by the lack of diverse datasets and the limited real-world performance of existing visual matching methods. To address these gaps, we introduce two contributions: (1) the SatLoc dataset, [...] Read more.
Precise and robust localization for micro Unmanned Aerial Vehicles (UAVs) in GNSS-denied environments is hindered by the lack of diverse datasets and the limited real-world performance of existing visual matching methods. To address these gaps, we introduce two contributions: (1) the SatLoc dataset, a new benchmark featuring synchronized, multi-source data from varied real-world scenarios tailored for UAV-to-satellite image matching, and (2) SatLoc-Fusion, a hierarchical localization framework. Our proposed pipeline integrates three complementary layers: absolute geo-localization via satellite imagery using DinoV2, high-frequency relative motion tracking from visual odometry with XFeat, and velocity estimation using optical flow. An adaptive fusion strategy dynamically weights the output of each layer based on real-time confidence metrics, ensuring an accurate and self-consistent state estimate. Deployed on a 6 TFLOPS edge computer, our system achieves real-time operation at over 2 Hz, with an absolute localization error below 15 m and effective trajectory coverage exceeding 90%, demonstrating state-of-the-art performance. The SatLoc dataset and fusion pipeline provide a robust and comprehensive baseline for advancing UAV navigation in challenging environments. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

23 pages, 2203 KB  
Review
Gait Analysis in Multiple Sclerosis: A Scoping Review of Advanced Technologies for Adaptive Rehabilitation and Health Promotion
by Anna Tsiakiri, Spyridon Plakias, Georgios Giarmatzis, Georgia Tsakni, Foteini Christidi, Marianna Papadopoulou, Daphne Bakalidou, Konstantinos Vadikolias, Nikolaos Aggelousis and Pinelopi Vlotinou
Biomechanics 2025, 5(3), 65; https://doi.org/10.3390/biomechanics5030065 - 2 Sep 2025
Abstract
Background/Objectives: Multiple sclerosis (MS) often leads to gait impairments, even in early stages, and can affect autonomy and quality of life. Traditional assessment methods, while widely used, have been criticized because they lack sensitivity to subtle gait changes. This scoping review aims [...] Read more.
Background/Objectives: Multiple sclerosis (MS) often leads to gait impairments, even in early stages, and can affect autonomy and quality of life. Traditional assessment methods, while widely used, have been criticized because they lack sensitivity to subtle gait changes. This scoping review aims to map the landscape of advanced gait analysis technologies—both wearable and non-wearable—and evaluate their application in detecting, characterizing, and monitoring possible gait dysfunction in individuals with MS. Methods: A systematic search was conducted across PubMed and Scopus databases for peer-reviewed studies published in the last decade. Inclusion criteria focused on original human research using technological tools for gait assessment in individuals with MS. Data from 113 eligible studies were extracted and categorized based on gait parameters, technologies used, study design, and clinical relevance. Results: Findings highlight a growing integration of advanced technologies such as inertial measurement units, 3D motion capture, pressure insoles, and smartphone-based tools. Studies primarily focused on spatiotemporal parameters, joint kinematics, gait variability, and coordination, with many reporting strong correlations to MS subtype, disability level, fatigue, fall risk, and cognitive load. Real-world and dual-task assessments emerged as key methodologies for detecting subtle motor and cognitive-motor impairments. Digital gait biomarkers, such as stride regularity, asymmetry, and dynamic stability demonstrated high potential for early detection and monitoring. Conclusions: Advanced gait analysis technologies can provide a multidimensional, sensitive, and ecologically valid approach to evaluating and detecting motor function in MS. Their clinical integration supports personalized rehabilitation, early diagnosis, and long-term disease monitoring. Future research should focus on standardizing metrics, validating digital biomarkers, and leveraging AI-driven analytics for real-time, patient-centered care. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

24 pages, 3537 KB  
Article
Deep Reinforcement Learning Trajectory Tracking Control for a Six-Degree-of-Freedom Electro-Hydraulic Stewart Parallel Mechanism
by Yigang Kong, Yulong Wang, Yueran Wang, Shenghao Zhu, Ruikang Zhang and Liting Wang
Eng 2025, 6(9), 212; https://doi.org/10.3390/eng6090212 - 1 Sep 2025
Viewed by 38
Abstract
The strong coupling of the six-degree-of-freedom (6-DoF) electro-hydraulic Stewart parallel mechanism manifests as adjusting the elongation of one actuator potentially inducing motion in multiple degrees of freedom of the platform, i.e., a change in pose; this pose change leads to time-varying and unbalanced [...] Read more.
The strong coupling of the six-degree-of-freedom (6-DoF) electro-hydraulic Stewart parallel mechanism manifests as adjusting the elongation of one actuator potentially inducing motion in multiple degrees of freedom of the platform, i.e., a change in pose; this pose change leads to time-varying and unbalanced load forces (disturbance inputs) on the six hydraulic actuators; unbalanced load forces exacerbate the time-varying nature of the acceleration and velocity of the six hydraulic actuators, causing instantaneous changes in the pressure and flow rate of the electro-hydraulic system, thereby enhancing the pressure–flow nonlinearity of the hydraulic actuators. Considering the advantage of artificial intelligence in learning hidden patterns within complex environments (strong coupling and strong nonlinearity), this paper proposes a reinforcement learning motion control algorithm based on deep deterministic policy gradient (DDPG). Firstly, the static/dynamic coordinate system transformation matrix of the electro-hydraulic Stewart parallel mechanism is established, and the inverse kinematic model and inverse dynamic model are derived. Secondly, a DDPG algorithm framework incorporating an Actor–Critic network structure is constructed, designing the agent’s state observation space, action space, and a position-error-based reward function, while employing experience replay and target network mechanisms to optimize the training process. Finally, a simulation model is built on the MATLAB 2024b platform, applying variable-amplitude variable-frequency sinusoidal input signals to all 6 degrees of freedom for dynamic characteristic analysis and performance evaluation under the strong coupling and strong nonlinear operating conditions of the electro-hydraulic Stewart parallel mechanism; the DDPG agent dynamically adjusts the proportional, integral, and derivative gains of six PID controllers through interactive trial-and-error learning. Simulation results indicate that compared to the traditional PID control algorithm, the DDPG-PID control algorithm significantly improves the tracking accuracy of all six hydraulic cylinders, with the maximum position error reduced by over 40.00%, achieving high-precision tracking control of variable-amplitude variable-frequency trajectories in all 6 degrees of freedom for the electro-hydraulic Stewart parallel mechanism. Full article
Show Figures

Figure 1

14 pages, 752 KB  
Article
High-Precision Multi-Axis Robotic Printing: Optimized Workflow for Complex Tissue Creation
by Erfan Shojaei Barjuei, Joonhwan Shin, Keekyoung Kim and Jihyun Lee
Bioengineering 2025, 12(9), 949; https://doi.org/10.3390/bioengineering12090949 - 31 Aug 2025
Viewed by 122
Abstract
Three-dimensional bioprinting holds great promise for tissue engineering, but struggles with fabricating complex curved geometries such as vascular networks. Though precise, traditional Cartesian bioprinters are constrained by linear layer-by-layer deposition along fixed axes, resulting in limitations such as the stair-step effect. Multi-axis robotic [...] Read more.
Three-dimensional bioprinting holds great promise for tissue engineering, but struggles with fabricating complex curved geometries such as vascular networks. Though precise, traditional Cartesian bioprinters are constrained by linear layer-by-layer deposition along fixed axes, resulting in limitations such as the stair-step effect. Multi-axis robotic bioprinting addresses these challenges by allowing dynamic nozzle orientation and motion along curvilinear paths, enabling conformal printing on anatomically relevant surfaces. Although robotic arms offer lower mechanical precision than CNC stages, accuracy can be enhanced through methods such as vision-based toolpath correction. This study presents a modular multi-axis robotic embedded bioprinting platform that integrates a six-degrees-of-freedom robotic arm, a pneumatic extrusion system, and a viscoplastic support bath. A streamlined workflow combines CAD modeling, CAM slicing, robotic simulation, and automated execution for efficient fabrication. Two case studies validate the system’s ability to print freeform surfaces and vascular-inspired tubular constructs with high fidelity. The results highlight the platform’s versatility and potential for complex tissue fabrication and future in situ bioprinting applications. Full article
Show Figures

Figure 1

28 pages, 7342 KB  
Article
Numerical Analysis of Flow-Induced Resonance in Pilot-Operated Molten Salt Control Valves
by Shuxun Li, Yu Zhao, Jianzheng Zhang, Linxia Yang and Xinhao Liu
Energies 2025, 18(17), 4631; https://doi.org/10.3390/en18174631 - 31 Aug 2025
Viewed by 167
Abstract
To address the problem of flow-induced resonance in the valve core assembly of a pilot-operated molten salt regulating valve in a concentrated solar thermal power generation molten salt energy storage system under high pressure differential and high flow rate conditions, the flow-induced vibration [...] Read more.
To address the problem of flow-induced resonance in the valve core assembly of a pilot-operated molten salt regulating valve in a concentrated solar thermal power generation molten salt energy storage system under high pressure differential and high flow rate conditions, the flow-induced vibration characteristics of the pilot-operated molten salt regulating valve were analyzed using computational fluid dynamics (CFD) and fluid–structure interaction modal analysis. The vibration characteristics of the valve core assembly under the excitation force of the molten salt medium were analyzed using the harmonic response method, and the influence of different parameters on the valve core assembly’s vibration characteristics was studied. The results show that under typical operating openings, the first six modal frequencies of the valve core motion assembly are not close to the fluid excitation frequency, indicating that flow-induced resonance does not occur. The maximum vibration stress and displacement of the valve core assembly decrease with increasing damping ratio. With increasing pressure differential, the maximum stress and maximum amplitude of the valve core assembly increase. By changing the valve stem constraint conditions, the vibration stress of the valve core assembly can be reduced. This study provides a reference for the design of flow-induced vibration suppression for pilot-operated molten salt regulating valves and provides guidance for the safe operation of concentrated solar thermal power generation molten salt regulating valves under high pressure differential and high flow rate conditions. Full article
Show Figures

Figure 1

21 pages, 2002 KB  
Article
Grey Wolf Optimizer Based on Variable Population and Strategy for Moving Target Search Using UAVs
by Ziyang Li, Zhenzu Bai and Bowen Hou
Drones 2025, 9(9), 613; https://doi.org/10.3390/drones9090613 - 31 Aug 2025
Viewed by 90
Abstract
Unmanned aerial vehicles (UAVs) are increasingly favored for emergency search and rescue operations due to their high adaptability to harsh environments and low operational costs. However, the dynamic nature of search path endpoints, influenced by target movement, limits the applicability of shortest path [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly favored for emergency search and rescue operations due to their high adaptability to harsh environments and low operational costs. However, the dynamic nature of search path endpoints, influenced by target movement, limits the applicability of shortest path models between fixed points in moving target search problems. Consequently, the moving target search problem using UAVs in complex environments presents considerable challenges, constituting an NP-hard problem. The Grey Wolf Optimizer (GWO) is known for addressing such problems. However, it suffers from limitations, including premature convergence and instability. To resolve these constraints, a Grey Wolf Optimizer with variable population and strategy (GWO-VPS) is developed in this work. GWO-VPS implements a variable encoding scheme for UAV movement patterns, combining motion-based encoding with path-based encoding. The algorithm iteratively alternates between global optimization and local smoothing phases. The global optimization phase incorporates: (1) a Q-learning-based strategy selection; (2) position updates with obstacle avoidance and energy consumption reduction; and (3) adaptive exploration factor. The local smoothing phase employs four path smoothing operators and Q-learning-based strategy selection. Experimental results demonstrate that GWO-VPS outperforms both enhanced GWO variants and standard algorithms, confirming the algorithm’s effectiveness in UAV-based moving target search simulations. Full article
Show Figures

Figure 1

22 pages, 12710 KB  
Article
Research and Experimental Verification of the Static and Dynamic Pressure Characteristics of Aerospace Porous Media Gas Bearings
by Xiangbo Zhang, Yi Tu, Nan Jiang, Wei Jin, Yongsheng Liang, Xiao Guo, Xuefei Liu, Zheng Xu and Longtao Shao
Aerospace 2025, 12(9), 788; https://doi.org/10.3390/aerospace12090788 - 31 Aug 2025
Viewed by 105
Abstract
Porous media gas bearings utilize gas as a lubricating medium to achieve non-contact support technology. Compared with traditional liquid-lubricated bearings or rolling bearings, they are more efficient and environmentally friendly. With the uniform gas film pressure of gas bearings, the rotating shaft can [...] Read more.
Porous media gas bearings utilize gas as a lubricating medium to achieve non-contact support technology. Compared with traditional liquid-lubricated bearings or rolling bearings, they are more efficient and environmentally friendly. With the uniform gas film pressure of gas bearings, the rotating shaft can achieve mechanical motion with low friction, high rotational speed, and long service life. They have significant potential in improving energy efficiency and reducing carbon emissions, enabling oil-free lubrication. By eliminating the friction losses of traditional oil-lubricated bearings, porous media gas bearings can reduce the energy consumption of industrial rotating machinery by 15–25%, directly reducing fossil energy consumption, which is of great significance for promoting carbon neutrality goals. They have excellent prospects for future applications in the civil and military aviation fields. Based on the three-dimensional flow characteristics of the bearing’s fluid domain, this paper considers the influences of the transient flow field in the variable fluid domain of the gas film and the radial pressure gradient of the gas film, establishes a theoretical model and a three-dimensional simulation model for porous media gas bearings, and studies the static–dynamic pressure coupling mechanism of porous media gas bearings. Furthermore, through the trial production of bearings and performance tests, the static characteristics are verified, and the steady-state characteristics are studied through simulation, providing a basis for the application of gas bearings made from porous media materials in the civil and military aviation fields. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 10525 KB  
Article
Numerical Study of Transverse Jet in Supersonic Flowfield Using Reynolds Stress Model Based Detached Eddy Simulation
by Zhi-Kan Liu, Yi-Lun Liu, Gang Wang and Tian-Yu Lin
Fluids 2025, 10(9), 229; https://doi.org/10.3390/fluids10090229 - 29 Aug 2025
Viewed by 133
Abstract
This study investigated the aerodynamic structures generated by transverse jet injection in supersonic flows around high-speed vehicles. The unsteady evolution of these structures was analyzed using an improved delayed detached Eddy simulation (IDDES) approach based on the Reynolds stress model (RSM). The simulations [...] Read more.
This study investigated the aerodynamic structures generated by transverse jet injection in supersonic flows around high-speed vehicles. The unsteady evolution of these structures was analyzed using an improved delayed detached Eddy simulation (IDDES) approach based on the Reynolds stress model (RSM). The simulations successfully reproduced experimentally observed shock systems and vortical structures. The time-averaged flow characteristics were compared with the experimental results, and good agreement was observed. The flow characteristics were analyzed, with particular emphasis on the formation of counter-rotating vortex pairs in the downstream region, as well as complex near-field phenomena, such as flow separation and shock wave/boundary layer interactions. Time-resolved spectral analysis at multiple monitoring locations revealed the presence of a global oscillation within the flow dynamics. Within these regions, pressure fluctuations in the recirculation zone lead to periodic oscillations of the upstream bow shock. This dynamic interaction modulates the instability of the windward shear layer and generates large-scale vortex structures. As these shed vortices convect downstream, they interact with the barrel shock, triggering significant oscillatory motion. To further characterize this behavior, dynamic mode decomposition (DMD) was applied to the pressure fluctuations. The analysis confirmed the presence of a coherent global oscillation mode, which was found to simultaneously govern the periodic motions of both the upstream bow shock and the barrel shock. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

17 pages, 2171 KB  
Article
Seismic Damage Assessment of SRC Frame-RC Core Tube High-Rise Structure Under Long-Period Ground Motions
by Lianjie Jiang, Guoliang Bai, Lu Guo and Fumin Li
Buildings 2025, 15(17), 3106; https://doi.org/10.3390/buildings15173106 - 29 Aug 2025
Viewed by 127
Abstract
To accurately assess the seismic damage of high-rise structures under long-period ground motions (LPGMs), a 36-story SRC frame-RC core tube high-rise structure was designed. Twelve groups of LPGMs and twelve groups of ordinary ground motions (OGMs) were selected and bidirectionally input into the [...] Read more.
To accurately assess the seismic damage of high-rise structures under long-period ground motions (LPGMs), a 36-story SRC frame-RC core tube high-rise structure was designed. Twelve groups of LPGMs and twelve groups of ordinary ground motions (OGMs) were selected and bidirectionally input into the structure. The spectral acceleration S90c considering the effect of higher-order modes was adopted as the intensity measure (IM) of ground motions, and the maximum inter-story drift angle θmax under bidirectional ground motions was taken as the engineering demand parameter (EDP). Structural Incremental Dynamic Analysis (IDA) was conducted, the structural vulnerability was investigated, and seismic vulnerability curves, damage state probability curves, vulnerability index curves, as well as the probabilities of exceeding performance levels and vulnerability index of the structure during 8-degree frequent, design, and rare earthquakes were obtained, respectively. The results indicate that structural damage is significantly aggravated under LPGMs, and the exceeding probabilities for all performance levels are greater than those under OGMs, failing to meet the seismic fortification target specified in the code. When encountering an 8-degree frequent earthquake, the structure is in a moderate or severe damage state under LPGMs and is basically intact or in a slight damage state under OGMs. When encountering an 8-degree design earthquake, the structure is in a severe damage or near-collapse state under LPGMs and is in a moderate damage state under OGMs. When encountering an 8-degree rare earthquake, the structure is in a near-collapse state under LPGMs and in a severe damage state under OGMs. Full article
(This article belongs to the Special Issue Building Safety Assessment and Structural Analysis)
Show Figures

Figure 1

35 pages, 15457 KB  
Article
The Impact of the Continental Environment on Boundary Layer Evolution for Landfalling Tropical Cyclones
by Gabriel J. Williams
J 2025, 8(3), 31; https://doi.org/10.3390/j8030031 - 28 Aug 2025
Viewed by 285
Abstract
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the [...] Read more.
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the land–ocean interface. This study examines the impact of different continental environments on the thermodynamic evolution of the TCBL during the landfall transition using high-resolution, full-physics numerical simulations. During landfall, the changes in the wind field within the TCBL due to the development of the internal boundary layer (IBL), combined with the formation of a surface cold pool, generates a pronounced thermal asymmetry in the boundary layer. As a result, the maximum thermodynamic boundary layer height occurs in the rear-right quadrant of the storm relative to its motion. In addition, azimuthal and vertical advection by the mean flow lead to enhanced turbulent kinetic energy (TKE) in front of the vortex (enhancing dissipative heating immediately onshore) and onshore precipitation to the left of the storm track (stabilizing the environment). The strength and depth of thermal asymmetry in the boundary layer depend on the contrast in temperature and moisture between the continental and storm environments. Dry air intrusion enhances cold pool formation and stabilizes the onshore boundary layer, reducing mechanical mixing and accelerating the decay of the vortex. The temperature contrast between the continental and storm environments establishes a coastal baroclinic zone, producing stronger baroclinicity and inflow on the left of the track and weaker baroclinicity on the right. The resulting gradient imbalance in the front-right quadrant triggers radial outflow through a gradient adjustment process that redistributes momentum and mass to restore dynamical balance. Therefore, the surface thermodynamic conditions over land play a critical role in shaping the evolution of the TCBL during landfall, with the strongest asymmetries in thermodynamic boundary layer height emerging when there are large thermal contrasts between the hurricane and the continental environment. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

26 pages, 2731 KB  
Article
Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study
by Artur Wodołażski
Energies 2025, 18(17), 4557; https://doi.org/10.3390/en18174557 - 28 Aug 2025
Viewed by 313
Abstract
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the [...] Read more.
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the slurry flow rate on dynamic biocrude oil production is investigated through full transient CFD analysis in a scaled-up CSTR study. The kinetics of the HTL mechanism as a function of temperature, pressure, and residence time distribution were employed in the model through a user-defined function (UDF). The multiphysics simulation of the HTL process in a stirred tank reactor using the Lagrangian–Eulerian (LE) approach, along with a standard k-ε turbulence model, integrated HTL kinetics. The simulation accounts for particle–fluid interactions by coupling CFD-derived hydrodynamic fields with discrete particle motion, enabling prediction of individual particle trajectories based on drag, buoyancy, and interphase momentum exchange. The three-phase flow using a compressible non-ideal gas model and multiphase interaction as design requirements increased process efficiency in high-pressure and high-temperature model conditions. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

Back to TopTop