Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,609)

Search Parameters:
Keywords = high-temperature XRD diffraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9045 KB  
Article
Weld Power, Heat Generation and Microstructure in FSW and SFSW of 11Cr-1.6W-1.6Ni Martensitic Stainless Steel: The Impact of Tool Rotation Rate
by Mohamed Ragab, Naser Alsaleh, Mohamed M. El-Sayed Seleman, Mohamed M. Z. Ahmed, Sabbah Ataya and Yousef G. Y. Elshaghoul
Crystals 2025, 15(10), 845; https://doi.org/10.3390/cryst15100845 (registering DOI) - 28 Sep 2025
Abstract
Friction stir welding (FSW) is a leading technique for joining high-strength steel. This study investigates the relationship between weld power, heat generation (HG), cooling medium, and parent austenite grain (PAG) size during both FSW and submerged FSW (SFSW) processes on 11Cr-1.6W-1.6Ni Martensitic Stainless [...] Read more.
Friction stir welding (FSW) is a leading technique for joining high-strength steel. This study investigates the relationship between weld power, heat generation (HG), cooling medium, and parent austenite grain (PAG) size during both FSW and submerged FSW (SFSW) processes on 11Cr-1.6W-1.6Ni Martensitic Stainless Steel. Weld power and HG were determined by measuring plunge force and tool torque at various tool rotation rates (350–550 rpm). Additionally, the PAG size and microstructural phases in the base metal (BM), thermo-mechanically affected zone (TMAZ), and stir zone (SZ) were examined using scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). The results indicated that the SFSW of martensitic steel required a plunge force twice that of the FSW process, along with greater weld power. The heat generated during SFSW was 130% higher than in FSW at 550 rpm. Despite this, the peak temperatures in the SZ were lower in SFSW as a result of the surrounding water’s high heat absorption. This difference in thermal behavior significantly affected the microstructure. While FSW resulted in a complete phase transformation to fine PAG, SFSW showed only minimal or partial transformation and a higher strain rate. Consequently, the SZ and TMAZ in SFSW exhibited a higher hardness than in FSW. Full article
Show Figures

Figure 1

13 pages, 25374 KB  
Article
Low-Temperature Formation of Aluminum Nitride Powder from Amorphous Aluminum Oxalate via Carbothermal Reduction
by Wenjing Tang, Yaling Yu, Zixuan Huang, Weijie Wang, Shaomin Lin, Ji Luo, Chenyang Zhang and Zhijie Zhang
Inorganics 2025, 13(10), 317; https://doi.org/10.3390/inorganics13100317 - 25 Sep 2025
Abstract
Aluminum nitride (AlN) powder, a cornerstone material for advanced ceramics. This study examines the low-temperature formation of AlN crystals as well as their phase transformation by employing amorphous aluminum oxalate (AAO) as a novel precursor for carbothermal reduction, contrasting it with conventional aluminum [...] Read more.
Aluminum nitride (AlN) powder, a cornerstone material for advanced ceramics. This study examines the low-temperature formation of AlN crystals as well as their phase transformation by employing amorphous aluminum oxalate (AAO) as a novel precursor for carbothermal reduction, contrasting it with conventional aluminum hydroxide (Al(OH)3). Through characterization using X-ray diffraction (XRD), scanning electron microscopy (SEM), High-Resolution Transmission Electron Microscope (HRTEM), 27Al Magic-Angle Spinning Nuclear Magnetic Resonance (27Al-MAS-NMR) energy-dispersive spectroscopy (EDS), and Fourier-transform infrared spectroscopy (FTIR), we unraveled the phase evolution pathways and the formation of AlN. Key findings reveal striking differences between the two precursors. When Al(OH)3 was used, no AlN phase was detected at 1350 °C, and even at 1500 °C, the AlN obtained with significant residual alumina impurities. In contrast, the AAO precursor demonstrated exceptional efficiency: nano-sized α-Al2O3 formed at 1050 °C, followed by the emergence of AlN phases at 1200 °C, ultimately gaining the pure AlN at 1500 °C. The phase transformation sequence—Al(OH)3 → γ-Al2O3 (950 °C) → (α-Al2O3 + δ-Al2O3) (1050 °C) → (AlN + α-Al2O3) (1200 °C~ 1350 °C) → AlN (≥1500 °C)—highlights the pivotal role of nano-sized α-Al2O3 in enabling low-temperature nano AlN synthesis. By leveraging the unique properties of AAO, we offer a transformative strategy for synthesizing nano-sized AlN powders, with profound implications for the ceramics industry. Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides, 3rd Edition)
Show Figures

Figure 1

14 pages, 4132 KB  
Article
Pore-Engineered Magnetic Biochar: Optimizing Pyrolysis and Fe3O4 Loading for Targeted Chlorinated Aliphatic Hydrocarbon (CAH) Adsorption
by Fengyuan Zhang, Zixuan Li, Xiaohan Dou, Zhengwei Liu, Yan Xie, Jingru Liu and Shucai Zhang
Separations 2025, 12(10), 260; https://doi.org/10.3390/separations12100260 - 24 Sep 2025
Viewed by 28
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) are some of the most widely distributed organic pollutants in underground environments and have high biological toxicity. This research aims to prepare an effective adsorbent comprising biochar and magnetite (MBC) to remove CAH pollution from soil. Optimization of the [...] Read more.
Chlorinated aliphatic hydrocarbons (CAHs) are some of the most widely distributed organic pollutants in underground environments and have high biological toxicity. This research aims to prepare an effective adsorbent comprising biochar and magnetite (MBC) to remove CAH pollution from soil. Optimization of the preparation and adsorption performance of MBC was investigated. The results of the adsorption experiment, combined with scanning electron microscopy (SEM) observations, show that the best raw material and pyrolysis temperature were coconut shell and 500 °C respectively. The Fourier transform infrared (FTIR) and X-ray diffraction (XRD) pattern characterizations, as well as the adsorption results, demonstrated the successful synthesis and enhancement effect of MBC for CAHs. The adsorption of CAHs on Fe3O4-loaded biochar was improved by 34.40–222.25% during pyrolysis at 500–900 °C. Additionally, MBC with a 10% Fe3O4 content had the best effect on three types of CAHs at low concentrations. A comparative pore analysis of MBC with different doses of Fe3O4 was carried out to reveal the relationship between the pore characteristics and adsorption properties. Furthermore, competitive adsorption experiments demonstrated that 4 wt% MBC addition significantly reduced the soil-bound TCE by 48.6%. Overall, these results indicated that MBC was an effective adsorbent for CAH removal from the polluted underground environment. Full article
(This article belongs to the Special Issue Removal of Environmental Pollutants and Bioremediation Strategies)
Show Figures

Figure 1

16 pages, 1418 KB  
Article
Mesoporous Silica Xerogels Prepared by p-toluenesulfonic Acid-Assisted Synthesis: Piperazine-Modification and CO2 Adsorption
by Stela Grozdanova, Ivalina Trendafilova, Agnes Szegedi, Pavletta Shestakova, Yavor Mitrev, Ivailo Slavchev, Svilen Simeonov and Margarita Popova
Nanomaterials 2025, 15(19), 1459; https://doi.org/10.3390/nano15191459 - 23 Sep 2025
Viewed by 120
Abstract
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction [...] Read more.
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction (XRD), solid-state NMR and thermal analysis. The results demonstrated that both the drying temperature and quantity of the pTSA significantly influenced the pore structure of the xerogels. The utilization of such strong acids like pTSA yielded high surface area and pore volume, as well as narrow pore size distribution. Environmentally friendly template removal by solvent extraction produced materials with superior textural properties compared to traditional calcination, enabling the recovery and reuse of pTSA with over 95% efficiency. A selected mesoporous silica xerogel was modified by a simple two-step post-synthesis procedure with 1-(2-Hydroxyethyl) piperazine (HEP). High CO2 adsorption capacity was determined for the HEP-modified material in dynamic conditions. The isosteric heat of adsorption revealed the stronger interaction between functional groups and CO2 molecules. Total CO2 desorption could be achieved at 60 °C. Leaching of the silica functional groups could not be detected even after four consecutive adsorption cycles. These findings provide valuable insights into the sustainable synthesis of tunable piperazine-modified mesoporous silica xerogels with potential applications in CO2 capture. Full article
Show Figures

Figure 1

13 pages, 2592 KB  
Article
Reduction Study of Carbon-Bearing Briquettes in the System of Multiple Reductants
by Xiaojun Ning, Zheng Ren, Nan Zhang, Guangwei Wang, Xueting Zhang, Junyi Wu, Jiangbin Liu, Andrey Karasev and Chuan Wang
Materials 2025, 18(18), 4408; https://doi.org/10.3390/ma18184408 - 21 Sep 2025
Viewed by 196
Abstract
Against the backdrop of escalating global carbon emissions, the steel industry urgently requires a transition toward green and low-carbon practices. As a conditionally carbon-neutral renewable energy source, biochar holds potential for replacing traditional fossil-based reducing agents. This study aims to investigate the mechanism [...] Read more.
Against the backdrop of escalating global carbon emissions, the steel industry urgently requires a transition toward green and low-carbon practices. As a conditionally carbon-neutral renewable energy source, biochar holds potential for replacing traditional fossil-based reducing agents. This study aims to investigate the mechanism and performance differences between biochar (wood char, bamboo char) and conventional reducing agents (semi-coke, coke powder, anthracite) in the direct reduction process of carbon-bearing briquettes. Through reduction experiments simulating rotary kiln conditions, combined with analysis of reducing agent gasification characteristics, carbon-to-oxygen (C/O) molar ratio control, X-ray diffraction (XRD), and microstructural examination, the high-temperature behavior of different reducing agents was systematically evaluated. Results indicate that biochar exhibits superior gasification reactivity due to its high specific surface area and developed pore structure: wood char and bamboo char show significantly enhanced reaction rates above 1073 K, approaching complete conversion at 1173 K. In contrast, anthracite and coke powder, characterized by dense structures and low specific surface areas, failed to achieve complete gasification even at 1273 K. Pellets containing bamboo char achieved the highest metallization rate (90.16%) after calcination at 1373 K. The compressive strength of the pellets first decreased and then increased with rising temperature, consistent with the trend in metallization rate. The mechanism analysis indicates that the high reactivity and porous structure of biochar promote rapid CO diffusion and synergistic gas–solid reactions, significantly accelerating the reduction of iron oxides and the formation of metallic iron. Full article
(This article belongs to the Special Issue Advances in Process Metallurgy and Metal Recycling)
Show Figures

Figure 1

12 pages, 3089 KB  
Article
Temperature-Dependent Microstructure and Tribological Performance of Boride Layers Formed on 40 Kh Steel Using Boric Acid-Based Boriding
by Laila Sulyubayeva, Daryn Baizhan, Nurbol Berdimuratov, Dastan Buitkenov and Balym Alibekova
Materials 2025, 18(18), 4342; https://doi.org/10.3390/ma18184342 - 17 Sep 2025
Viewed by 276
Abstract
Boriding is widely used in various industries due to the unique combination of high mechanical, corrosion, and tribological properties of boride layers formed on the surface of steel components. In this work, the powder boriding of 40 Kh steel was investigated in a [...] Read more.
Boriding is widely used in various industries due to the unique combination of high mechanical, corrosion, and tribological properties of boride layers formed on the surface of steel components. In this work, the powder boriding of 40 Kh steel was investigated in a closed capsule using a specially prepared powder mixture containing boric acid as the boron source. Boriding was carried out in a furnace at 850, 900, and 950 °C for 10 h. The resulting boride layers were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), which confirmed that all three coatings consist exclusively of the Fe2B phase. It was found that with increasing temperature, the thickness of the boride layer increased from 68 μm to 160 μm. The tribological properties were evaluated using the pin-on-disk method, followed by analysis of the wear surfaces using optical profilometry and SEM. The most significant reduction in wear rate was observed at 850 °C, where the wear decreased by a factor of 4.2—from 8.471 × 10−5 to 1.999 × 10−5 mm3·N−1·m−1. In addition, the hardness increased fivefold compared to the untreated material. These results demonstrate the high potential of diffusion boriding for enhancing the operational performance of parts subjected to severe wear conditions. Full article
Show Figures

Figure 1

17 pages, 4863 KB  
Article
Analysis of High Temperature Oxidation Process and Mechanism of Heterogeneous Titanium Alloy
by Xu Pei, Jiacheng Wu, Zhaomei Xu and Pengfei Li
Crystals 2025, 15(9), 810; https://doi.org/10.3390/cryst15090810 - 15 Sep 2025
Viewed by 380
Abstract
This study explores the differences in oxidation color, oxidation products, and high-temperature oxidation resistance between TA1 and Ti-6Al-4V (TC4) titanium alloys following a 50 h oxidation treatment at 450 °C and 750 °C. A combination of analytical techniques—optical microscopy, scanning electron microscopy (SEM), [...] Read more.
This study explores the differences in oxidation color, oxidation products, and high-temperature oxidation resistance between TA1 and Ti-6Al-4V (TC4) titanium alloys following a 50 h oxidation treatment at 450 °C and 750 °C. A combination of analytical techniques—optical microscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and micro-Vickers hardness testing—was employed to characterize the morphology of the oxide layers, elemental distribution, phase composition, and microhardness variations. The results reveal that at 450 °C, both alloys develop relatively compact oxide films. TA1 exhibits a yellow–gray coloration, while TC4 displays a characteristic blue–violet interwoven color. At 750 °C, however, the oxide layers become porous and prone to spallation, with a brown appearance and predominance of TiO2. XPS analysis confirms that Ti4+ (TiO2) is the dominant oxidation state on both alloy surfaces at 750 °C, with TC4 showing a significantly higher content of Al2O3. Microhardness measurements indicate that high-temperature oxidation increases the hardness of both alloys, with TC4 consistently exhibiting higher hardness than TA1. TC4 demonstrates superior oxidation resistance: at 450 °C, it forms a denser oxide layer with lower oxygen uptake, while at 750 °C, its oxide layer thickens more significantly, likely due to increased brittleness and spallation. This study underscores the profound impact of high-temperature oxidation on the microstructure and mechanical properties of titanium alloys and highlights the critical role of oxide layer density and stability in determining oxidation resistance. These findings provide valuable insights for the application of TA1 and Ti-6Al-4V alloys in high-temperature environments. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Alloys and Composites)
Show Figures

Figure 1

17 pages, 2017 KB  
Article
Sustainable Recovery of Critical Metals from Spent Lithium-Ion Batteries Using Deep Eutectic Solvents
by Jafar Goudarzi, Zhi Chen, Gaixia Zhang, Jinguang Hu, Karim Zaghib, Sixu Deng, Afzal Ahmed Dar, Xiaolei Wang, Fariborz Haghighat, Catherine N. Mulligan, Chunjiang An and Antonio Avalos Ramirez
Batteries 2025, 11(9), 340; https://doi.org/10.3390/batteries11090340 - 14 Sep 2025
Viewed by 571
Abstract
The surging demand for lithium-ion batteries (LIBs) has intensified the need for sustainable recovery of critical metals such as lithium, manganese, cobalt, and nickel from spent cathodes. While conventional hydrometallurgical and pyrometallurgical methods are widely used, they involve high energy consumption, hazardous waste [...] Read more.
The surging demand for lithium-ion batteries (LIBs) has intensified the need for sustainable recovery of critical metals such as lithium, manganese, cobalt, and nickel from spent cathodes. While conventional hydrometallurgical and pyrometallurgical methods are widely used, they involve high energy consumption, hazardous waste generation, and complex processing steps, underscoring the urgency of developing eco-friendly alternatives. This study presents a novel, water-enhanced deep eutectic solvent (DES) system composed of choline chloride and D-glucose for the efficient leaching of valuable metals from spent LiMn-based battery cathodes. The DES was synthesized under mild conditions and applied to dissolve cathode powder, with leaching performance optimized by varying temperature and duration. Under optimal conditions (100 °C, 24 h), exceptional recovery efficiencies were achieved: 98.9% for lithium, 98.4% for manganese, and 71.7% for nickel. Material characterization using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and inductively coupled plasma mass spectrometer (ICP-MS) confirm effective phase dissolution and metal release. Although this DES system requires relatively higher temperature and longer reaction time compared to traditional acid leaching, it offers clear advantages in terms of non-toxicity, biodegradability, and elimination of strong oxidizing agents. These results demonstrate the potential of water-enhanced choline chloride–glucose DES as a green alternative for future development in sustainable battery recycling, supporting circular economy objectives. Full article
Show Figures

Figure 1

16 pages, 1864 KB  
Article
Influence of Temperature on the Structural Evolution of Iron–Manganese Oxide Nanoparticles in the Hydrothermal Method
by Oscar Eduardo Cigarroa-Mayorga, Indira Torres-Sandoval, María del Rosario Munguía-Fuentes and Yazmín Mariela Hernández-Rodríguez
Crystals 2025, 15(9), 808; https://doi.org/10.3390/cryst15090808 - 13 Sep 2025
Viewed by 320
Abstract
This study is focused on the hydrothermal synthesis of iron–manganese oxide nanostructures, focusing on the influence of Fe:Mn precursor ratios, temperature, and reaction time on phase formation, morphology, and structural characteristics. Three molar ratios (Fe:Mn = 2:1, 1:1, and 1:2) were explored under [...] Read more.
This study is focused on the hydrothermal synthesis of iron–manganese oxide nanostructures, focusing on the influence of Fe:Mn precursor ratios, temperature, and reaction time on phase formation, morphology, and structural characteristics. Three molar ratios (Fe:Mn = 2:1, 1:1, and 1:2) were explored under variable conditions (80 °C, 120 °C, and 200 °C; 4, 12, and 24 h). X-ray diffraction (XRD) analysis revealed distinct phase selectivity depending on precursor composition: FeMn2O4 was obtained with 1:2 ratio, Fe3Mn3O8 with 1:1, and Fe2MnO4 with 2:1, each without phase mixing. Scanning electron microscopy (FESEM) showed a pronounced effect of temperature and time on nanoparticle morphology, ranging from compact agglomerates to well-defined rod-like structures at 200 °C/24 h. Dynamic light scattering (DLS) indicated narrow size distributions for samples synthesized at 120 °C/12 h, with hydrodynamic diameters between 20 and 50 nm. Raman spectroscopy confirmed the presence of characteristic vibrational modes of spinel-type structures and validated structural integrity. High-resolution transmission electron microscopy (HRTEM) evidenced well-ordered lattice fringes with interplanar spacings of ~0.48–0.52 nm, consistent with spinel phases and indicative of high crystallinity. These findings demonstrate that controlled atomic binding and thermal parameters enable selective synthesis of pure iron–manganese oxide phases with tailored morphologies, offering a scalable route for designing advanced functional materials in catalysis, energy, and biomedical applications. Full article
Show Figures

Figure 1

12 pages, 4882 KB  
Article
Mg-Doped P-Type AlN Thin Film Prepared by Magnetron Sputtering Using Mg-Al Alloy Targets
by Yulin Ma, Xu Wang and Kui Ma
Micromachines 2025, 16(9), 1035; https://doi.org/10.3390/mi16091035 - 10 Sep 2025
Viewed by 427
Abstract
Aluminum nitride (AlN), a III-V wide-bandgap semiconductor, has attracted significant attention for high-temperature and high-power applications. However, achieving p-type doping in AlN remains challenging. In this study, p-type AlN thin films were fabricated via magnetron sputtering using Mg-Al alloy targets with varying Mg [...] Read more.
Aluminum nitride (AlN), a III-V wide-bandgap semiconductor, has attracted significant attention for high-temperature and high-power applications. However, achieving p-type doping in AlN remains challenging. In this study, p-type AlN thin films were fabricated via magnetron sputtering using Mg-Al alloy targets with varying Mg concentrations (0.01 at.%, 0.02 at.%, and 0.5 at.%), followed by ex situ high-temperature annealing to facilitate Mg diffusion and electrical activation. The structural, morphological, and electrical properties of the films were systematically characterized using X-ray diffraction (XRD), white light interferometry (WLI), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Hall effect measurements. The results demonstrate that at a Mg doping concentration of 0.02 at.%, the films exhibit optimal crystallinity, uniform Mg distribution, and a favorable balance between carrier concentration and mobility, resulting in effective p-type conductivity. Increasing Mg doping leads to higher surface roughness and the formation of columnar and conical grain structures. While high Mg doping (0.5 at.%) significantly increases carrier concentration and decreases resistivity, it also reduces mobility due to enhanced impurity and carrier–carrier scattering, negatively impacting hole transport. XPS and EDS analyses confirm Mg incorporation and the formation of Mg-N and Al-Mg bonds. Overall, this study indicates that controlled Mg doping combined with high-temperature annealing can achieve p-type AlN films to a certain extent, though mobility and carrier activation remain limited, providing guidance for the development of high-performance AlN-based bipolar devices. Full article
Show Figures

Figure 1

19 pages, 10755 KB  
Article
Corrosion Performance of (TiAlZrTaNb)Nx High-Entropy Nitrides Thin Films Deposited on 304 Stainless Steel via HiPIMS
by Maria-Camila Castañeda, Oscar Piamba and Jhon Olaya
Metals 2025, 15(9), 988; https://doi.org/10.3390/met15090988 - 6 Sep 2025
Viewed by 413
Abstract
In this study, the electrochemical corrosion behavior of TiAlZrTaNb nitride thin films deposited on 304 stainless steel substrates was investigated. The thin films were synthesized using high-power impulse magnetron sputtering (HiPIMS) and are classified as high-entropy alloys (HEAs). The microstructure, morphology, and chemical [...] Read more.
In this study, the electrochemical corrosion behavior of TiAlZrTaNb nitride thin films deposited on 304 stainless steel substrates was investigated. The thin films were synthesized using high-power impulse magnetron sputtering (HiPIMS) and are classified as high-entropy alloys (HEAs). The microstructure, morphology, and chemical composition of the coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), respectively. Corrosion resistance was evaluated through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests, employing tap water, acetic acid, and citric acid solutions at room temperature as electrolytes. The results demonstrated that the TiAlZrTaNbN coating exhibits a dense and homogeneous structure with a uniform elemental distribution. XRD analysis revealed the presence of face-centered cubic (FCC) crystalline phases, which significantly contribute to the coating’s corrosion resistance. Furthermore, the coating displayed exceptional corrosion performance in both acetic acid and citric acid electrolytes—simulating food environments with a pH ≤ 4.5—as revealed by a substantial reduction in corrosion current density and a positive shift in corrosion potential. These findings provide valuable insights into the properties of TiAlZrTaNbN coatings and underscore their potential for enhancing the durability of mechanical components employed in the food industry. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

23 pages, 4980 KB  
Article
A Study on the Removal of Phosphate from Water Environments by Synthesizing New Sodium-Type Zeolite from Coal Gangue
by Yiou Wang, Qiang Li, Muyuan Ma, Zekun Xu and Tianhui Zhao
Water 2025, 17(17), 2628; https://doi.org/10.3390/w17172628 - 5 Sep 2025
Viewed by 936
Abstract
Excessive phosphorus emissions are a significant driver of severe eutrophication in water bodies, and developing an efficient and cost-effective adsorbent for phosphorus removal is imperative. In this study, a Na-type zeolite was synthesized from coal gangue sourced from an open-pit mine in Xinjiang [...] Read more.
Excessive phosphorus emissions are a significant driver of severe eutrophication in water bodies, and developing an efficient and cost-effective adsorbent for phosphorus removal is imperative. In this study, a Na-type zeolite was synthesized from coal gangue sourced from an open-pit mine in Xinjiang province, China. The synthesis process involved drying, crushing, alkali activation, aging, hydrothermal crystallization, and Na+ ion exchange. Orthogonal design identified the optimal synthesis parameters: an alkali-to-ash ratio of 1:1, aging at 20 °C for 12 h, and crystallization at 130 °C for 12 h. Aging time exerted the greatest influence on the phosphate removal efficiency. The optimized zeolite exhibited excellent phosphate adsorption performance, achieving a removal efficiency of up to 96% and a capacity of 16 mg/g. The adsorption kinetics followed both pseudo-first-order and pseudo-second-order models, indicating processes governed by combined physical and chemical mechanisms. Isotherm data fitting with Freundlich and Langmuir models suggested the presence of both homogeneous and heterogeneous active sites. Thermodynamic studies confirmed a spontaneous and endothermic process, increasingly favorable at higher temperatures. Characterizations via scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy confirmed the formation of Na-type zeolite and revealed structural and compositional changes following phosphate adsorption. Aluminum and calcium binding played key roles in the chemical adsorption mechanisms. This work not only offers a high-efficiency, low-cost solution for phosphorus removal from wastewater but also provides a sustainable pathway for the valorization of coal gangue in the Zhundong area of Xinjiang, China. Full article
Show Figures

Figure 1

12 pages, 9524 KB  
Article
Effect of Heat Treatment on High-Temperature Tribological Behavior of WE54 Alloy: An Experimental Study
by Sudharsan Saravanan, Aditya Raman Hattimare, Atharva Bharat Mahadik, Arnav Singh, Uttamchand Narendra Kumar and A. Raja Annamalai
J. Manuf. Mater. Process. 2025, 9(9), 304; https://doi.org/10.3390/jmmp9090304 - 5 Sep 2025
Viewed by 453
Abstract
This study examines the high-temperature tribological behavior of WE54 Mg alloy under various conditions: as-cast, solution-treated (T4), age-hardened (T6), and secondary aged (S.A). Wear tests were performed using a pin-on-disc setup, applying a normal load of 10 N, with a sliding velocity of [...] Read more.
This study examines the high-temperature tribological behavior of WE54 Mg alloy under various conditions: as-cast, solution-treated (T4), age-hardened (T6), and secondary aged (S.A). Wear tests were performed using a pin-on-disc setup, applying a normal load of 10 N, with a sliding velocity of 1 m/s, a sliding distance of 1000 m, and temperatures from 25 °C to 150 °C. Responses such as the coefficient of friction and volumetric wear rate were recorded. The results indicate that heat treatment significantly influences the wear behavior of the WE54 alloy. The lowest volumetric wear rate (8.16 ± 1.47 mm3) and wear coefficient (0.112 ± 0.02) occurred in the as-cast sample at 100 °C, while the highest volumetric wear rate (14.68 ± 1.59 mm3) and wear coefficient (0.171 ± 0.02) were found in the S.A. sample at 150 °C. Surface characterization of worn samples was conducted using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The wear mechanisms identified include abrasive wear, oxidative wear, and delamination across all conditions, regardless of temperature. The elevated volumetric wear rate at 150 °C, irrespective of the sample condition, is attributed to oxidation and thermal softening of the material. Full article
Show Figures

Figure 1

20 pages, 5622 KB  
Article
Thermal Performance of Concrete Containing Graphite at High Temperatures for the Application in a TES
by Seung-Tae Jeong, Ji-Hun Park, Tuan-Kiet Tran and In-Hwan Yang
Energies 2025, 18(17), 4685; https://doi.org/10.3390/en18174685 - 3 Sep 2025
Viewed by 721
Abstract
Thermal energy storage (TES) technology is pivotal for storing thermal energy and has numerous applications in buildings and industrial processes. Graphite is a potential additive for improving TES materials because of its high-temperature resistance and thermal conductivity. This study presents an examination of [...] Read more.
Thermal energy storage (TES) technology is pivotal for storing thermal energy and has numerous applications in buildings and industrial processes. Graphite is a potential additive for improving TES materials because of its high-temperature resistance and thermal conductivity. This study presents an examination of TES concrete with 5%, 10%, and 15% (by volume of binder) compared to concrete that contains only ordinary Portland cement (OPC). Notably, increasing graphite content reduced the unit weight by 0.3%, 2.0%, and 2.6%. Additionally, the graphite mixture exhibited less strength loss than the OPC mixture. Specifically, the G15 mixture achieved a 38.3% cut in compressive strength compared to 51.9% for OPC and a 51.8% cut in splitting tensile strength compared to 56.1% for OPC. Additionally, the thermal conductivity of graphite mixtures was greater than that of the OPC concrete under high-temperature conditions. Microstructural analysis through scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed reduced portlandite content and fewer voids in graphite-integrated samples, suggesting increased thermal stability and matrix densification. Thermogravimetric analysis (TGA) further confirmed the effect of graphite on thermal behavior, revealing distinct mass loss patterns at increased temperatures. Based on the findings, numerical simulations were conducted. The results confirm trends in thermal conductivity and heat propagation in the experiment, revealing the potential of graphite concrete in TES design by obtaining temperature distributions under thermal cycling. Overall, this study confirms the feasibility and efficiency of using graphite to improve the thermal properties of concrete for TES applications. Full article
(This article belongs to the Special Issue Advanced Technologies and Materials for Thermal Energy Storage)
Show Figures

Figure 1

13 pages, 9181 KB  
Article
Characterization of Submicron Ni-, Co-, and Fe-Doped ZnO Fibers Fabricated by Electrospinning and Atomic Layer Deposition
by Blagoy Spasov Blagoev, Borislava Georgieva, Albena Paskaleva, Ivalina Avramova, Peter Tzvetkov, Kirilka Starbova, Nikolay Starbov, Krastyo Buchkov, Vladimir Mehandzhiev, Lyubomir Slavov, Penka Terziyska and Dencho Spasov
Coatings 2025, 15(9), 1022; https://doi.org/10.3390/coatings15091022 - 2 Sep 2025
Viewed by 452
Abstract
Hollow coaxial double-shell submicron fibers were fabricated by combining electrospinning and atomic layer deposition (ALD). Polyvinyl alcohol (PVA) fibers were electrospun to serve as templates for the subsequent atomic layer deposition (ALD) of ZnO doped with transition metals (TM: Ni, Co, and Fe). [...] Read more.
Hollow coaxial double-shell submicron fibers were fabricated by combining electrospinning and atomic layer deposition (ALD). Polyvinyl alcohol (PVA) fibers were electrospun to serve as templates for the subsequent atomic layer deposition (ALD) of ZnO doped with transition metals (TM: Ni, Co, and Fe). An inner shell of amorphous Al2O3 was first deposited at low-temperature ALD to protect the polymer template. The PVA core was then removed through high-temperature annealing in air. Finally, a top shell of TM-doped ZnO was deposited at an elevated temperature within the ALD window for ZnO. The morphology, microstructure, elemental composition, and crystallinity of these submicron hollow double-shell fibers were thoroughly investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

Back to TopTop