Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (650)

Search Parameters:
Keywords = high-temperature resistant polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3410 KB  
Review
Application of Rejuvenators in Asphalt Binders: Classification and Micro- and Macro-Properties
by Chengwei Xing, Weichao Zhou, Bohan Zhu, Haozongyang Li and Shixian Tang
Coatings 2025, 15(10), 1177; https://doi.org/10.3390/coatings15101177 - 8 Oct 2025
Abstract
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. [...] Read more.
Rejuvenating aged asphalt is critical for sustainable road construction and resource utilization. This paper systematically reviews the current research on rejuvenators, focusing on their classification and the micro-, and macro-properties of rejuvenated asphalt. Rejuvenators are categorized into mineral oil-based, bio-based, and compound types. Each type offers distinct advantages in recovering the performance of aged asphalt. Mineral oil-based rejuvenators primarily enhance low-temperature cracking resistance through physical dilution, while bio-based rejuvenators demonstrate superior environmental sustainability and stability. Compound rejuvenators, particularly those incorporating reactive compounds, show the best results in repairing degraded polymer modifiers and improving both low- and high-temperature properties of aged, modified asphalt. Atomic Force Microscopy (AFM), Fluorescence Microscopy (FM), and Scanning Electron Microscopy (SEM) have been applied to analyze the micro-properties of rejuvenated asphalt. These techniques have revealed that rejuvenators can restore the microstructure of aged asphalt by dispersing agglomerated asphaltenes and promoting molecular mobility. Functional groups and molecular weight changes, characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Gel Permeation Chromatography (GPC), indicate that rejuvenators effectively reduce oxidation products and molecular weight of aged asphalt, restoring its physicochemical properties. Macro-property evaluations show that rejuvenators significantly improve penetration, ductility, and fatigue resistance. Finally, this review identifies the key characteristics and challenges associated with rejuvenator applications and provides an outlook on future research directions. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

24 pages, 8062 KB  
Article
Asphalt Binder Rheological Performance Properties Using Recycled Plastic Wastes and Commercial Polymers
by Hamad I. Al Abdul Wahhab, Waqas Rafiq, Mohammad Ahsan Habib, Ali Mohammed Babalghaith, Suleiman Abdulrahman and Shaban Shahzad
Constr. Mater. 2025, 5(4), 75; https://doi.org/10.3390/constrmater5040075 - 4 Oct 2025
Viewed by 158
Abstract
Polymer-based product usage in modern society is increasing day by day. Following usage, these inert products and hydrophobic materials contribute to environmental pollution, often accumulating as litter in ecosystems and contaminating water bodies. The rapid socio-economic development in the Kingdom of Saudi Arabia [...] Read more.
Polymer-based product usage in modern society is increasing day by day. Following usage, these inert products and hydrophobic materials contribute to environmental pollution, often accumulating as litter in ecosystems and contaminating water bodies. The rapid socio-economic development in the Kingdom of Saudi Arabia (KSA) has resulted in a significant increase in waste generation. This study was conducted on the utilization of recycled plastic waste (RPW) polymer along with commercial polymer (CP) for the modification of the local binder. The hot environmental conditions and increased traffic loading are the major reasons for the permanent deformation and thermal cracks on the pavements, which require improved and modified road performance materials. The Ministry of Transport and Logistical Support (MOTLS) in Saudi Arabia, along with other related agencies, spends a substantial amount of money each year on importing modifiers, including chemicals, hydrocarbons, and polymers, for modification purposes. This research was conducted to investigate and utilize available local recycled plastic materials. Comprehensive laboratory experiments were designed and carried out to enhance recycled plastic waste, including low-density polyethylene (rLDPE), high-density polyethylene (rHDPE), and polypropylene (rPP), combined with varying percentages of commercially available polymers such as Styrene-Butadiene-Styrene (SBS) and Polybilt (PB). The results indicated that incorporating recycled plastic waste expanded the binder’s susceptible temperature range from 64 °C to 70 °C, 76 °C, and 82 °C. The resistance to rutting was shown to have significantly improved by the dynamic shear rheometer (DSR) examination. Achieving the objectives of this research, combined with the intangible environmental benefits of utilizing plastic waste, provides a sustainable pavement development option that is also environmentally beneficial. Full article
Show Figures

Figure 1

14 pages, 2398 KB  
Article
Synthesis and Characterization of YSZ/Si(B)CN Ceramic Matrix Composites in Hydrogen Combustion Environment
by Yiting Wang, Chiranjit Maiti, Fahim Faysal, Jayanta Bhusan Deb and Jihua Gou
J. Compos. Sci. 2025, 9(10), 537; https://doi.org/10.3390/jcs9100537 - 2 Oct 2025
Viewed by 176
Abstract
Hydrogen energy offers high energy density and carbon-free combustion, making it a promising fuel for next-generation propulsion and power generation systems. Hydrogen offers approximately three times more energy per unit mass than natural gas, and its combustion yields only water as a byproduct, [...] Read more.
Hydrogen energy offers high energy density and carbon-free combustion, making it a promising fuel for next-generation propulsion and power generation systems. Hydrogen offers approximately three times more energy per unit mass than natural gas, and its combustion yields only water as a byproduct, making it an exceptionally clean and efficient energy source. Materials used in hydrogen-fueled combustion engines must exhibit high thermal stability as well as resistance to corrosion caused by high-temperature water vapor. This study introduces a novel ceramic matrix composite (CMC) designed for such harsh environments. The composite is made of yttria-stabilized zirconia (YSZ) fiber-reinforced silicoboron carbonitride [Si(B)CN]. CMCs were fabricated via the polymer infiltration and pyrolysis (PIP) method. Multiple PIP cycles, which help to reduce the porosity of the composite and enhance its properties, were utilized for CMC fabrication. The Si(B)CN precursor formed an amorphous ceramic matrix, where the presence of boron effectively suppressed crystallization and enhanced oxidation resistance, offering superior performance than their counter part. Thermogravimetric analysis (TGA) confirmed negligible mass loss (≤3%) after 30 min at 1350 °C. The real-time ablation performance of the CMC sample was assessed using a hydrogen torch test. The material withstood a constant heat flux of 185 W/cm2 for 10 min, resulting in a front-surface temperature of ~1400 °C and a rear-surface temperature near 700 °C. No delamination, burn-through, or erosion was observed. A temperature gradient of more than 700 °C between the front and back surfaces confirmed the material’s effective thermal insulation performance during the hydrogen torch test. Post-hydrogen torch test X-ray diffraction indicated enhanced crystallinity, suggesting a synergistic effect of the oxidation-resistant amorphous Si(B)CN matrix and the thermally stable crystalline YSZ fibers. These results highlight the potential of YSZ/Si(B)CN composites as high-performance materials for hydrogen combustion environments and aerospace thermal protection systems. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

22 pages, 3800 KB  
Article
Study on Carboxymethylation Modification of Konjac Gum and Its Effect in Drilling Fluid and Fracturing Fluid
by Yongfei Li, Pengli Guo, Kun Qu, Weichao Du, Yanling Wang and Gang Chen
Gels 2025, 11(10), 792; https://doi.org/10.3390/gels11100792 - 2 Oct 2025
Viewed by 231
Abstract
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum [...] Read more.
With the continuous progress and innovation of petroleum engineering technology, the development of new oilfield additives with superior environmental benefits has attracted widespread attention. Konjac glucomannan (KGM) is a natural resource characterized by abundant availability, low cost, biodegradability, and environmental compatibility. Konjac gum easily forms a weak gel network in water, but its water solubility and thermal stability are poor, and it is easily degraded at high temperatures. Therefore, its application in drilling fluid and fracturing fluid is limited. In this paper, a method of carboxymethyl modification of KGM was developed, and a carboxymethyl group was introduced to adjust KGM’s hydrogel forming ability and stability. Carboxymethylated Konjac glucomannan (CMKG) is a water-soluble anionic polysaccharide derived from natural Konjac glucomannan. By introducing carboxymethyl groups, CMKG overcomes the limitations of the native polymer, such as poor solubility and instability, while retaining its safe and biocompatible nature, making it an effective natural polymer additive for oilfield applications. The results show that when used as a drilling fluid additive, CMKG can form a stable three-dimensional gel network through molecular chain cross-linking, significantly improving the rheological properties of the mud. Its unique gel structure can enhance the encapsulation of clay particles and inhibit clay hydration expansion. When used as a fracturing fluid thickener, the viscosity of the gel system formed by CMKG at 0.6% (w/v) is superior to that of the weak gel system of KGM. The heat resistance/shear resistance tests confirm that the gel structure remains intact under high-temperature and high-shear conditions, meeting the sand-carrying capacity requirements for fracturing operations. The gel-breaking experiment shows that the system can achieve controlled degradation within 300 min, in line with on-site gel-breaking specifications. This modification process not only improves the rheological properties and water solubility of the CMKG gel but also optimizes the gel stability and controlled degradation through molecular structure adjustment. Full article
Show Figures

Graphical abstract

13 pages, 4003 KB  
Article
Research and Development of New Conductive Cement-Based Grouting Materials and Performance Studies
by Shen Zuo, Meisheng Shi, Junwei Bi, Menghan Zhang and Qingluan Li
Coatings 2025, 15(10), 1119; https://doi.org/10.3390/coatings15101119 - 25 Sep 2025
Viewed by 342
Abstract
In this study, cement, short-cut carbon fibers, and polymer water-absorbing resin were used as the main materials, with high-performance water-reducing polycarboxylic acid agent as the modified material. A new conductive cement-based grouting material was developed by incorporating functional additives. Its mix design was [...] Read more.
In this study, cement, short-cut carbon fibers, and polymer water-absorbing resin were used as the main materials, with high-performance water-reducing polycarboxylic acid agent as the modified material. A new conductive cement-based grouting material was developed by incorporating functional additives. Its mix design was optimized based on initial setting time, fluidity, bleeding rate, and compressive strength. The optimal ratio of the grouting material was determined as follows: 0.4 wt% of high water-absorbent resin, 0.25 wt% of high-efficiency water reducer, 0.8 wt% of short-cut carbon fibers, and a water–cement ratio of 0.8:1. The electrical conductivity of the grouting material was studied in depth under different dosages of short-cut carbon fibers, considering factors such as curing age, temperature, and pressure conditions. The results show that with the increase in curing age, the volume resistivity of the specimen gradually increases; the resistivity of the conductive cementitious grouting material decreases with the rise in temperature, showing a negative temperature coefficient effect; additionally, the doping of an appropriate amount of short-cut carbon fibers enables the conductive cementitious grouting specimen to exhibit good pressure-sensitive properties. Field test verification indicates that the new cementitious conductive grouting material has excellent conductive properties, and the grouting quality can be effectively evaluated via high-density electrical testing. Full article
(This article belongs to the Special Issue Advanced Functional Cement-Based Materials for Smart Applications)
Show Figures

Figure 1

22 pages, 4623 KB  
Article
Performance and Characteristics of Low-Molecular-Weight Cross-Linked Grafting Terpolymers as Thickening Agents in Reservoir Fracturing Processes
by Kai Wang, Chenye Guo, Qisen Gong, Gen Li, Cuilan Zhang and Teng Jiang
Processes 2025, 13(10), 3032; https://doi.org/10.3390/pr13103032 - 23 Sep 2025
Viewed by 239
Abstract
A novel fracture fluid based on a grafting polymer, PAM-co-PAMS-g-PEG (PAM-AMS-AEG), cross-linked by an organic Zr reagent was successfully produced via free-radical polymerization and an in situ cross-linking reaction with a high conversion rate of 96%, resulting in a low molecular weight of [...] Read more.
A novel fracture fluid based on a grafting polymer, PAM-co-PAMS-g-PEG (PAM-AMS-AEG), cross-linked by an organic Zr reagent was successfully produced via free-radical polymerization and an in situ cross-linking reaction with a high conversion rate of 96%, resulting in a low molecular weight of 250 kg·mol−1. The effect of fluid constitution on the rheological behavior demonstrates that the P(AM10-AMS2-AEG1.4)/[Zr]0.35/TBAC0.1 (PASG/[Zr]) aqueous solution has the best comprehensive performance. The PASG/[Zr] solution with a low critical associating concentration (CAC) of 0.15 wt% showed faster and steadier disassociation–reassociation processes. The synergy of ionic hydrogen bonds between sulfonic and amine groups and Zr4+-coordination results in steady interactions and fast reconstitution of association, leading to remarkable temperature resistance from 30 to 120 °C and a fast response during thixotropic processes. The PASG/[Zr] solution reduces the damage under high pressure based on the rheological characteristics and compatibility with sand, leading to a low filtration loss of the artificial cores. The PASG/[Zr] solution exhibits a good sand-carrying ability based on the rheological and interfacial performance, resulting in slow settlement and fast suspension. The filtration performance of the PASG/[Zr] fracturing fluid showed that it is not sensitive to the shearing rate, core permeability, or pressure. The comprehensive performance of the PASG/[Zr] fracture fluid is better than that of traditional guar fluid, suggesting that it can be used under various conditions for stratum protection and shale gas extraction. Full article
Show Figures

Figure 1

20 pages, 4193 KB  
Article
Influence of Carboxylated Styrene–Butadiene Rubber on Gas Migration Resistance and Fluid Loss in Cement Slurries
by Guru Prasad Panda, Thotakura Vamsi Nagaraju, Gottumukkala Sri Bala and Saride Lakshmi Ganesh
ChemEngineering 2025, 9(5), 100; https://doi.org/10.3390/chemengineering9050100 - 19 Sep 2025
Viewed by 289
Abstract
The majority of downhole monitoring methods currently available for well cement projects, which are used to assess the quality of cement placement and monitor well integrity over time, are primarily qualitative in nature and rely on surface signs. Obviously, there is a need [...] Read more.
The majority of downhole monitoring methods currently available for well cement projects, which are used to assess the quality of cement placement and monitor well integrity over time, are primarily qualitative in nature and rely on surface signs. Obviously, there is a need for a practical quantitative downhole monitoring method to ensure proper cement placement and long-term performance. One potential resolution to address this enduring problem would involve enhancing the designs of the cement slurry and transforming the cement into durable downhole logging equipment, thereby facilitating real-time observation of operations. To address this issue, in this work, carboxylated styrene butadiene rubber (XSBR) polymer-treated cement was used to understand the gas migration and fluid loss mechanism. The experimental findings indicate that the electrical resistivity of polymer-treated cement is significantly influenced by applied loads and stresses. The unconfined compressive strength test with XSBR-blended cement showed a significant improvement from 22.5 MPa to 33.31 MPa when XSBR increased from 0% to 3%. Additionally, in the high pressure and high temperature (HPHT) chamber, the latex polymer used as a migration additive control, the total fluid loss is found to be about 59.2 mL under 30 min of testing. Also, to emulate the accuracy, nonlinear predictive models based on the resistivity index correlation were developed to forecast polymer-treated cement performance for all the tests performed in this study. Hence, the utilization of polymer-treated cement systems proves to be a valuable method for monitoring the placement and post-placement performance of cement, as well as for visualizing real-time operational issues associated with cementing. This will also allow operators to provide immediate solutions, saving time and operational costs. Full article
Show Figures

Figure 1

21 pages, 6236 KB  
Article
Research on the Foaming Characteristics and Rheological Properties of Warm-Mix Foamed Polymer-Modified Bitumen Based on Waste Molecular Sieves
by Qiang Ye, Gongying Ding, Meng Yuan and Bei Chen
Polymers 2025, 17(18), 2516; https://doi.org/10.3390/polym17182516 - 17 Sep 2025
Viewed by 336
Abstract
Warm-mix foamed polyurethane modified bitumen (WPB) has been widely promoted due to its significant warm-mix effect and high viscosity. However, it still has problems such as too fast foam dissipation and unstable performance. Waste molecular sieves have an extremely fine pore structure that [...] Read more.
Warm-mix foamed polyurethane modified bitumen (WPB) has been widely promoted due to its significant warm-mix effect and high viscosity. However, it still has problems such as too fast foam dissipation and unstable performance. Waste molecular sieves have an extremely fine pore structure that can absorb moisture. The porous characteristics of waste molecular sieves are used to adsorb water and let it slowly release water in bitumen. If the foam dissipation time can be prolonged and the bitumen expansion speed can be reduced, it will help to stabilize the performance of foamed bitumen. This paper conducts a study on the foaming characteristics and rheological properties of WPB based on waste molecular sieves. First, the bitumen foaming test is used to analyze the foaming characteristics of WPB with waste molecular sieves. Second, the basic properties of warm-mix foamed polymer-modified bitumen, including penetration, softening point, ductility, and viscosity, are investigated. Finally, a dynamic shear rheometer (DSR) is employed to study the high-temperature rutting resistance and high-temperature permanent deformation resistance of warm-mix foamed polymer-modified bitumen. The research results show that the amount of foaming water is the primary factor influencing bitumen foaming. The addition of waste molecular sieves has a significant impact on the intensity and duration of the bitumen foaming reaction. WPB with waste molecular sieves has a greater consistency and better high-temperature performance, but its low-temperature performance is somewhat weakened. The high-temperature deformation resistance of WPB with waste molecular sieves is superior to that of ordinary WPB and is affected by the amount of foaming water. An appropriate amount of foaming water can enable WPB with waste molecular sieves to exhibit excellent high-temperature deformation resistance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 3172 KB  
Article
Development of a Novel Modified High-Modulus Asphalt Based on Waste Rubber Powder
by Maowen Li, Chao Pu, Ping Zheng, Waiti Litifu, Zhe Ma and Peng Yin
Materials 2025, 18(18), 4314; https://doi.org/10.3390/ma18184314 - 15 Sep 2025
Viewed by 342
Abstract
This study developed a novel waste rubber powder modified high-modulus asphalt based on composite modification technology. The preparation process was determined by orthogonal tests, and the mechanical properties of modified high-modulus asphalt were evaluated through rheological tests in comparison with three common high-modulus [...] Read more.
This study developed a novel waste rubber powder modified high-modulus asphalt based on composite modification technology. The preparation process was determined by orthogonal tests, and the mechanical properties of modified high-modulus asphalt were evaluated through rheological tests in comparison with three common high-modulus asphalts to verify its application potential. The modification mechanism of modified high-modulus asphalt was characterized by Fourier transform infrared spectroscopy and fluorescence microscopy tests. The results show that the recommended mixing ratio of modified high-modulus asphalt is 20% waste rubber, 6% ethylene-vinyl acetate copolymer, and 4% ammonium polyphosphate. Although the high temperature performance, rutting resistance, and fatigue performance of modified high-modulus asphalt are slightly inferior to those of high-modulus asphalts prepared with two polymer modifiers, they are significantly better than those of hard asphalt, and all mechanical properties meet the application requirements of high-modulus asphalt. Compared with other asphalts, modified high-modulus asphalt exhibits the most prominent low temperature performance. The microscopic test results indicate that the modification process of modified high-modulus asphalt is chemical modification with minimal swelling, and no obvious network structure is formed inside. Full article
(This article belongs to the Special Issue Advances in Road Materials and Pavement Design)
Show Figures

Figure 1

18 pages, 3264 KB  
Article
Road Performance Evaluation of Preventive Maintenance Techniques for Asphalt Pavements
by Fansheng Kong, Yalong Li, Ruilin Wang, Xing Hu, Miao Yu and Dongzhao Jin
Lubricants 2025, 13(9), 410; https://doi.org/10.3390/lubricants13090410 - 13 Sep 2025
Viewed by 459
Abstract
Preventive maintenance treatments are widely applied to asphalt pavements to mitigate deterioration and extend service life. This study evaluated four common technologies: a high-elasticity ultra-thin overlay, an Stone Mastic Asphalt (SMA)-10 thin overlay, micro-surfacing (MS-III), and a chip seal. Laboratory testing focused on [...] Read more.
Preventive maintenance treatments are widely applied to asphalt pavements to mitigate deterioration and extend service life. This study evaluated four common technologies: a high-elasticity ultra-thin overlay, an Stone Mastic Asphalt (SMA)-10 thin overlay, micro-surfacing (MS-III), and a chip seal. Laboratory testing focused on skid resistance, surface texture, and low-temperature cracking resistance. Skid resistance was measured with a tire–pavement dynamic friction analyzer under controlled load and speed, while surface macrotexture was assessed using a laser scanner. Low-temperature cracking resistance was determined through three-point bending beam tests at −10 °C. The results showed that chip seal achieved the highest initial friction and texture depth, immediately enhancing skid resistance but exhibiting rapid texture loss and gradual friction decay. Micro-surfacing also demonstrated good initial skid resistance but experienced a sharp reduction of over 30% due to fine aggregate polishing. By contrast, the high-elastic ultra-thin overlay and SMA thin overlay provided more stable skid resistance, lower long-term friction loss, and excellent crack resistance. The polymer-modified ultra-thin overlay achieved the highest low-temperature bending strain ≈40% higher than untreated pavement, indicating superior crack resistance, followed by the SMA thin overlay. Micro-surfacing with a chip seal layer only slightly improved low-temperature performance. Overall, the high-elastic ultra-thin overlay proved to be the most balanced preventive maintenance option under heavy-load traffic and cold climate conditions, combining durable skid resistance with enhanced crack resistance. Full article
Show Figures

Figure 1

17 pages, 2868 KB  
Article
Study on the Influence of ZM Modifier on the Rheological Properties and Microstructural Characteristics of Asphalt
by Yining Wang, Zhen Zang and Wenyuan Xu
Coatings 2025, 15(9), 1069; https://doi.org/10.3390/coatings15091069 - 11 Sep 2025
Viewed by 343
Abstract
As traffic load continuously rises and climatic conditions increasingly vary, the performance of conventional base asphalt can no longer satisfy the needs of modern road engineering in low-temperature cracking resistance, high-temperature stability, and long-term durability. Therefore, the development of novel and efficient asphalt [...] Read more.
As traffic load continuously rises and climatic conditions increasingly vary, the performance of conventional base asphalt can no longer satisfy the needs of modern road engineering in low-temperature cracking resistance, high-temperature stability, and long-term durability. Therefore, the development of novel and efficient asphalt modifiers holds significant engineering value and practical importance. In this study, modified asphalt was prepared using varying dosages of ZM modifier (direct-injection asphalt mixture modified polymer additive). A series of experiments was executed to assess its influence on asphalt properties. First, fundamental property tests were implemented to determine the regulating effect of the ZM modifier on basic physical performances, like the softening point and penetration of the base asphalt. Penetration tests at different temperatures were performed to calculate the penetration index, thereby assessing the material’s temperature sensitivity. Subsequently, focusing on temperature as a key factor, tests on temperature sweep, and multiple stress creep recovery (MSCR) were implemented to delve into the deformation resistance and creep recovery behavior of the modified asphalt under high-temperature conditions. In addition, bending beam rheometer (BBR) experiments were introduced to attain stiffness modulus and creep rate indices, which were applied to appraise the low-temperature rheological performance. Aside from Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) was utilized to explore the mechanism by which the ZM modifier influences the asphalt’s functional group composition and microstructure. Our findings reveal that the ZM modifier significantly increases the asphalt’s softening point and penetration index, reduces penetration and temperature sensitivity, and enhances high-temperature stability. Under high-temperature conditions, the ZM modifier adjusts the viscoelastic balance of asphalt, hence enhancing its resistance to flow deformation and its capacity for creep recovery. In low-temperature environments, the modifier increases the stiffness modulus of asphalt and improves its crack resistance. FTIR analyses reveal that the ZM modifier does not introduce new functional groups, indicating a physical modification process. However, by enhancing the cross-linked structure and increasing the hydrocarbon content within the asphalt, it strengthens the adhesion between the asphalt and aggregates. Overall, the asphalt’s performance improvement positively relates to the dosage of the ZM modifier, providing both theoretical basis and experimental support for its application in road engineering. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

27 pages, 4740 KB  
Article
Fabrication of Thixotropic Polymeric Gel System and Its Gelation Mechanism
by Zhilei Zhang, Yuan Geng, Ren Wang, Zhiyuan Yan, Minghao Sun, Sicong Meng, Yan Zhang, Hong Yang, Yaoxuan Li and Yuecheng Zhu
Polymers 2025, 17(17), 2397; https://doi.org/10.3390/polym17172397 - 3 Sep 2025
Viewed by 776
Abstract
To address the issues of traditional gels in high-temperature reservoir leakage plugging, such as injection–retention imbalance, poor high-temperature stability, and insufficient thixotropy, this study developed a thixotropic polymer gel system via molecular design and component optimization, aiming to achieve excellent thixotropy, high strength, [...] Read more.
To address the issues of traditional gels in high-temperature reservoir leakage plugging, such as injection–retention imbalance, poor high-temperature stability, and insufficient thixotropy, this study developed a thixotropic polymer gel system via molecular design and component optimization, aiming to achieve excellent thixotropy, high strength, and wide temperature adaptability (80–140 °C) while clarifying its gelation mechanism. First, the optimal polymer was selected by comparing the high-temperature stability and crosslinking activity of AM/AMPS copolymer (J-2), low-molecular-weight acrylamide polymers (J-3, J-4), and AM/AMPS/NVP terpolymer (J-1). Then, the phenolic crosslinking system was optimized: hexamethylenetetramine (HMTA) was chosen for controlled aldehyde release (avoiding poor stability/dehydration) and catechol for high crosslinking efficiency (enhancing strength via dense crosslinking sites). Urea–formaldehyde resin (UF) was introduced to form a “polymer-resin double network,” improving high-temperature compression resistance and long-term stability. Cyclic shear rheological tests showed the gel system had a larger hysteresis area than the polymer solution, indicating excellent thixotropy before gelation. It gelled completely at 80–140 °C (gelation time shortened with temperature). At 120 °C, its viscosity was 7500 mPa·s, storage modulus (G′) 51 Pa, and loss modulus (G″) 6 Pa, demonstrating good shear thixotropy. The final system (1% J-1, 0.3% catechol, 0.6% HMTA, 15% UF) is suitable for high-temperature reservoir leakage plugging. Full article
Show Figures

Graphical abstract

21 pages, 3262 KB  
Article
An Artificial Intelligence-Based Melt Flow Rate Prediction Method for Analyzing Polymer Properties
by Mohammad Anwar Parvez and Ibrahim M. Mehedi
Polymers 2025, 17(17), 2382; https://doi.org/10.3390/polym17172382 - 31 Aug 2025
Viewed by 983
Abstract
The polymer industry gained increasing importance due to the ability of polymers to replace traditional materials such as wood, glass, and metals in various applications, offering advantages such as high strength-to-weight ratio, corrosion resistance, and ease of fabrication. Among key performance indicators, melt [...] Read more.
The polymer industry gained increasing importance due to the ability of polymers to replace traditional materials such as wood, glass, and metals in various applications, offering advantages such as high strength-to-weight ratio, corrosion resistance, and ease of fabrication. Among key performance indicators, melt flow rate (MFR) plays a crucial role in determining polymer quality and processability. However, conventional offline laboratory methods for measuring MFR are time-consuming and unsuitable for real-time quality control in industrial settings. To address this challenge, the study proposes a leveraging artificial intelligence with machine learning-based melt flow rate prediction for polymer properties analysis (LAIML-MFRPPPA) model. A dataset of 1044 polymer samples was used, incorporating six input features such as reactor temperature, pressure, hydrogen-to-propylene ratio, and catalyst feed rate, with MFR as the target variable. The input features were normalized using min–max scaling. Two ensemble models—kernel extreme learning machine (KELM) and random vector functional link (RVFL)—were developed and optimized using the pelican optimization algorithm (POA) for improved predictive accuracy. The proposed method outperformed traditional and deep learning models, achieving an R2 of 0.965, MAE of 0.09, RMSE of 0.12, and MAPE of 3.4%. A SHAP-based sensitivity analysis was conducted to interpret the influence of input features, confirming the dominance of melt temperature and molecular weight. Overall, the LAIML-MFRPPPA model offers a robust, accurate, and deployable solution for real-time polymer quality monitoring in manufacturing environments. Full article
(This article belongs to the Special Issue Scientific Machine Learning for Polymeric Materials)
Show Figures

Figure 1

29 pages, 807 KB  
Review
Microplastics in Dairy Products: Occurrence, Characterization, Contamination Sources, Detection Methods, and Future Challenges
by Hüseyin Ender Gürmeriç and Burhan Basaran
Appl. Sci. 2025, 15(17), 9411; https://doi.org/10.3390/app15179411 - 27 Aug 2025
Viewed by 1407
Abstract
In this study, data from 17 studies reporting the presence of microplastics in milk and dairy products in the literature were examined with a product-based systematic approach. In addition, geographical comparisons were made between different countries. In milk and dairy products, the concentration [...] Read more.
In this study, data from 17 studies reporting the presence of microplastics in milk and dairy products in the literature were examined with a product-based systematic approach. In addition, geographical comparisons were made between different countries. In milk and dairy products, the concentration of microplastics has been reported to exhibit a broad range, extending from non-detectable levels to as high as 10,040 MPs per kilogram, contingent upon the specific product types. Milk powder (especially baby milk powder) stands out as the riskiest product group in terms of microplastic content. Although the sizes and colors of the detected microplastics vary significantly, the fiber form is generally predominant. While polyethylene, polypropylene, polyamide and polyester are among the polymers frequently detected, high-temperature-resistant industrial polymers such as polytetrafluoroethylene, polysulfone, polyurethane were also encountered. In addition, the presence of some polymers (such polyvinyl chloride, polyurethane) that are toxicologically risky for human health was reported in the studies. In addition, the study evaluated the chemical, enzymatic and physical methods used for the separation and identification of MPs; the advantages and limitations of FT-IR, Raman and other analysis techniques were revealed. This study reveals that MP contamination in milk and dairy products is a multidimensional problem. The findings show that milk and dairy products are highly susceptible to plastic contamination at every stage of production. Full article
(This article belongs to the Special Issue Advanced Research on Microplastics, Human Exposure and Food Safety)
Show Figures

Figure 1

19 pages, 3163 KB  
Article
Hydrophobic, Durable, and Reprocessable PEDOT:PSS/PDMS-PUa/SiO2 Film with Conductive Self-Cleaning and De-Icing Functionality
by Jie Fang, Rongqing Dong, Meng Zhou, Lishan Liang, Mingna Yang, Huakun Xing, Yongluo Qiao and Shuai Chen
Coatings 2025, 15(9), 985; https://doi.org/10.3390/coatings15090985 - 23 Aug 2025
Viewed by 857
Abstract
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high [...] Read more.
Poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) stands out as a renowned commercial conducting polymer composite, boasting extensive and promising applications in the realm of film electronics. In this study, we have made a concerted effort to overcome the inherent drawbacks of PEDOT:PSS films (especially, high moisture absorption, mechanical damage vulnerability, insufficient substrate adhesion ability, etc.) by uniformly blending them with polydimethylsiloxane polyurea (PDMS-PUa) and silica (SiO2) nanoparticles through a feasible mechanical stirring process, which effectively harnesses the intermolecular interactions, as well as the morphological and structural characteristics, among the various components. The Si−O bonds within PDMS-PUa and the −CH3 groups attached to Si atoms significantly enhance the hydrophobicity of the composite film (as evidenced by a water contact angle of 132.89° under optimized component ratios). Meanwhile, SiO2 microscopically modifies the surface morphology, resulting in increased surface roughness. This composite film not only maintains high conductivity (1.21 S/cm, in contrast to 0.83 S/cm for the PEDOT:PSS film) but also preserves its hydrophobicity and electrical properties under rigorous conditions, including high-temperature exposure (60–200 °C), ultraviolet (UV) aging (365.0 nm, 1.32 mW/cm2), and abradability testing (2000 CW abrasive paper, drag force of approximately 0.98 N, 40 cycles). Furthermore, the film demonstrates enhanced resistance to both acidic (1 mol/L, 24 h) and alkaline (1 mol/L, 24 h) environments, along with excellent self-cleaning and de-icing capabilities (−6 °C), and satisfactory adhesion (Level 2). Notably, the dried composite film can be re-dispersed into a solution with the aid of isopropanol through simple magnetic stirring, and the sequentially coated films also exhibit good surface hydrophobicity (136.49°), equivalent to that of the pristine film. This research aims to overcome the intrinsic performance drawbacks of PEDOT:PSS-based materials, enabling them to meet the demands of complex application scenarios in the field of organic electronics while endowing them with multifunctionality. Full article
Show Figures

Graphical abstract

Back to TopTop