Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,203)

Search Parameters:
Keywords = human coronavirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 809 KB  
Review
Pulmonary and Immune Dysfunction in Pediatric Long COVID: A Case Study Evaluating the Utility of ChatGPT-4 for Analyzing Scientific Articles
by Susanna R. Var, Nicole Maeser, Jeffrey Blake, Elise Zahs, Nathan Deep, Zoey Vasilakos, Jennifer McKay, Sether Johnson, Phoebe Strell, Allison Chang, Holly Korthas, Venkatramana Krishna, Manojkumar Narayanan, Tuhinur Arju, Dilmareth E. Natera-Rodriguez, Alex Roman, Sam J. Schulz, Anala Shetty, Mayuresh Vernekar, Madison A. Waldron, Kennedy Person, Maxim Cheeran, Ling Li and Walter C. Lowadd Show full author list remove Hide full author list
J. Clin. Med. 2025, 14(17), 6011; https://doi.org/10.3390/jcm14176011 - 25 Aug 2025
Abstract
Coronavirus disease 2019 (COVID-19) in adults is well characterized and associated with multisystem dysfunction. A subset of patients develop post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID), marked by persistent and fluctuating organ system abnormalities. In children, distinct clinical and pathophysiological features [...] Read more.
Coronavirus disease 2019 (COVID-19) in adults is well characterized and associated with multisystem dysfunction. A subset of patients develop post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID), marked by persistent and fluctuating organ system abnormalities. In children, distinct clinical and pathophysiological features of COVID-19 and long COVID are increasingly recognized, though knowledge remains limited relative to adults. The exponential expansion of the COVID-19 literature has made comprehensive appraisal by individual researchers increasingly unfeasible, highlighting the need for new approaches to evidence synthesis. Large language models (LLMs) such as the Generative Pre-trained Transformer (GPT) can process vast amounts of text, offering potential utility in this domain. Earlier versions of GPT, however, have been prone to generating fabricated references or misrepresentations of primary data. To evaluate the potential of more advanced models, we systematically applied GPT-4 to summarize studies on pediatric long COVID published between January 2022 and January 2025. Articles were identified in PubMed, and full-text PDFs were retrieved from publishers. GPT-4-generated summaries were cross-checked against the results sections of the original reports to ensure accuracy before incorporation into a structured review framework. This methodology demonstrates how LLMs may augment traditional literature review by improving efficiency and coverage in rapidly evolving fields, provided that outputs are subjected to rigorous human verification. Full article
(This article belongs to the Section Epidemiology & Public Health)
19 pages, 4709 KB  
Article
The Tetraspanin CD9 Facilitates SARS-CoV-2 Infection and Brings Together Different Host Proteins Involved in SARS-CoV-2 Attachment and Entry into Host Cells
by Vanessa Rivero, María Laura Saiz, Daniel Torralba, Carlos López-Larrea, Beatriz Suarez-Alvarez and Marta L. DeDiego
Viruses 2025, 17(8), 1141; https://doi.org/10.3390/v17081141 - 20 Aug 2025
Viewed by 308
Abstract
CD9 protein belongs to a family of proteins called tetraspanins, so named for their four-transmembrane-spanning architectures. These proteins are located in domains in the plasmatic membrane, called tetraspanin-enriched microdomains (TEMs). Several proteases and cellular receptors for virus entry cluster into TEMs, suggesting that [...] Read more.
CD9 protein belongs to a family of proteins called tetraspanins, so named for their four-transmembrane-spanning architectures. These proteins are located in domains in the plasmatic membrane, called tetraspanin-enriched microdomains (TEMs). Several proteases and cellular receptors for virus entry cluster into TEMs, suggesting that TEMs are preferred virus entry portals. Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates virus attachment and entry into cells by binding to human angiotensin-converting enzyme 2 (ACE-2). In addition, the secretory, type-I membrane-bound SARS-CoV-2 S protein is synthesized as a precursor (proS) that undergoes posttranslational cleavages by host cell proteases, such as furin and TMPRSS2. Moreover, it has been shown that neuropilin-1 (NRP1), which is known to bind furin-cleaved substrates, potentiates SARS-CoV-2 infectivity. Our results indicate that CD9 facilitates SARS-CoV-2 infection. In addition, we show how knocking out CD9 leads to a decrease in the expression of NRP1, a protein that improves SARS-CoV-2 infection. Furthermore, we show that CD9 colocalizes with ACE-2, NRP1, furin, and TMPRSS2 at the plasma membrane; that the absence of CD9 decreases the expression of these proteins on the plasma membrane CD9-enriched microdomains, and that CD9 interacts with ACE2. In conclusion, our data suggest that CD9 facilitates SARS-CoV-2 infection and that CD9 brings together different host proteins involved in SARS-CoV-2 attachment and entry into host cells, such as ACE2, NRP1, furin, and TMPRSS2. Importantly, the fact that a blocking antibody targeting CD9 can effectively reduce SARS-CoV-2 titers highlights not only the mechanistic role of CD9 in viral entry but also offers translational potential, suggesting that tetraspanin-targeting antibodies could be developed as therapeutic agents against SARS-CoV-2 and possibly other coronaviruses, with meaningful implications for clinical intervention. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

24 pages, 2608 KB  
Article
Dynamic Evolution and Drivers of Modernization of Harmonious Coexistence Between Humans and Nature: A Case Study in Nanping Counties (Cities and Districts)
by Chuanmao Hua, Weiping Hua and Baoyin Li
Sustainability 2025, 17(16), 7298; https://doi.org/10.3390/su17167298 - 12 Aug 2025
Viewed by 410
Abstract
This study builds an evaluation index system for the modernization of harmonious coexistence between man and nature from 2014 to 2024, including three criteria for ecological environmental protection, green economic transformation, and enhancement of people’s livelihood, to help Nanping City’s sustainable development and [...] Read more.
This study builds an evaluation index system for the modernization of harmonious coexistence between man and nature from 2014 to 2024, including three criteria for ecological environmental protection, green economic transformation, and enhancement of people’s livelihood, to help Nanping City’s sustainable development and build a “Pilot Demonstration Zone for the Modernization of Harmonious Coexistence between Humans and Nature”. Despite the 2020 coronavirus pandemic, the study area’s modern development of harmonious coexistence between humans and nature increased from 2014 to 2024, narrowing the development gap between counties. The coupling coordination degree of the criterion layer is “high in the middle, low in the east and west, high in the south and low in the north”. Under the spatial spillover effect, counties with higher development stages radiate driving force on surrounding counties with lower development stages. In 2014, 2019, and 2024, resource agglomeration, social civilization progress, economic development, and government policy regulation drove harmonious coexistence between humans and nature in Nanping City. Full article
Show Figures

Figure 1

20 pages, 2450 KB  
Article
Hypoxia Exacerbates Inflammatory Signaling in Human Coronavirus OC43-Infected Lung Epithelial Cells
by Jarod Zvartau-Hind, Hassan Sadozai, Hateem Z. Kayani, Animesh Acharjee, Rory Williams, Phillip Gould, Christopher A. Reynolds and Bernard Burke
Biomolecules 2025, 15(8), 1144; https://doi.org/10.3390/biom15081144 - 8 Aug 2025
Viewed by 556
Abstract
Cytokine storm (CS) is associated with poor prognosis in COVID-19 patients. Hypoxic signaling has been proposed to influence proinflammatory pathways and to be involved in the development of CS. Here, for the first time, the role of hypoxia in coronavirus-mediated inflammation has been [...] Read more.
Cytokine storm (CS) is associated with poor prognosis in COVID-19 patients. Hypoxic signaling has been proposed to influence proinflammatory pathways and to be involved in the development of CS. Here, for the first time, the role of hypoxia in coronavirus-mediated inflammation has been investigated, using transcriptomic and proteomic approaches. Analysis of the transcriptome of A549 lung epithelial cells using RNA sequencing revealed 191 mRNAs which were synergistically upregulated and 43 mRNAs which were synergistically downregulated by the combination of human Betacoronavirus OC43 (HCoV-OC43) infection and hypoxia. Synergistically upregulated mRNAs were strongly associated with inflammatory pathway activation. Analysis of the expression of 105 cytokines and immune-related proteins using antibody arrays identified five proteins (IGFBP-3, VEGF, CCL20, CD30, and myeloperoxidase) which were markedly upregulated in HCoV-OC43 infection in hypoxia compared to HCoV-OC43 infection in normal oxygen conditions. Our findings show that COVID-19 patients with lung hypoxia may face increased risk of inflammatory complications. Two of the proteins we have identified as synergistically upregulated, the cytokines VEGF and CCL20, represent potential future therapeutic targets. These could be targeted directly or, based on the novel findings described here by inhibiting hypoxia signaling pathways, to reduce excessive inflammatory cytokine responses in patients with severe infections. Full article
Show Figures

Figure 1

12 pages, 3009 KB  
Article
Molnupiravir Inhibits Replication of Multiple Alphacoronavirus suis Strains in Feline Cells
by Tomoyoshi Doki, Kazuki Shinohara, Kaito To and Tomomi Takano
Pathogens 2025, 14(8), 787; https://doi.org/10.3390/pathogens14080787 - 7 Aug 2025
Viewed by 328
Abstract
The cross-species spillover of coronaviruses is considered a serious public health risk. Feline coronavirus (FCoV), canine coronavirus (CCoV), and transmissible gastroenteritis virus (TGEV) are all classified under Alphacoronavirus suis and infect companion animals and livestock. Due to their frequent contact with humans, these [...] Read more.
The cross-species spillover of coronaviruses is considered a serious public health risk. Feline coronavirus (FCoV), canine coronavirus (CCoV), and transmissible gastroenteritis virus (TGEV) are all classified under Alphacoronavirus suis and infect companion animals and livestock. Due to their frequent contact with humans, these viruses pose a potential risk of future cross-species transmission. Molnupiravir, a prodrug of N4-hydroxycytidine, exhibits potent antiviral activity against SARS-CoV-2, a member of the Betacoronavirus genus, and has been approved for the treatment of COVID-19. Molnupiravir was recently shown to be effective against FCoV, suggesting broad-spectrum antiviral activity across coronavirus lineages. Based on these findings, the present study investigated whether molnupiravir is also effective against CCoV and TGEV, which belong to the same Alphacoronavirus suis species as FCoV. We examined the in vitro antiviral effects of molnupiravir using four viral strains: FCoV-1 and -2, CCoV-2, and TGEV. Molnupiravir inhibited plaque formation, viral antigen expression, the production of infectious viral particles, and viral RNA replication in a dose-dependent manner in all strains. IC50 values for CCoV-2 and TGEV, calculated using a feline-derived cell line (fcwf-4), were significantly lower than those for FCoV, suggesting higher sensitivity to molnupiravir. These results demonstrate that molnupiravir exhibited broad antiviral activity against animal coronaviruses classified under Alphacoronavirus suis, providing a foundation for antiviral strategies to mitigate the future risk of cross-species transmission. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

22 pages, 2192 KB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Viewed by 315
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

12 pages, 1164 KB  
Case Report
Chronic Hyperplastic Candidiasis—An Adverse Event of Secukinumab in the Oral Cavity: A Case Report and Literature Review
by Ana Glavina, Bruno Špiljak, Merica Glavina Durdov, Ivan Milić, Marija Ana Perko, Dora Mešin Delić and Liborija Lugović-Mihić
Diseases 2025, 13(8), 243; https://doi.org/10.3390/diseases13080243 - 3 Aug 2025
Viewed by 358
Abstract
Secukinumab (SEC) is a recombinant, fully human monoclonal antibody that is selective for interleukin-17A (IL-17A). SEC may increase the risk of developing infections such as oral herpes and oral candidiasis. The aim of this case report and literature review was to describe chronic [...] Read more.
Secukinumab (SEC) is a recombinant, fully human monoclonal antibody that is selective for interleukin-17A (IL-17A). SEC may increase the risk of developing infections such as oral herpes and oral candidiasis. The aim of this case report and literature review was to describe chronic hyperplastic candidiasis (CHC) in a patient with psoriasis (PsO) and psoriatic arthritis (PsA) treated with SEC. CHC is a rare and atypical clinical entity. A definitive diagnosis requires biopsy of the oral mucosa for histopathological diagnosis (PHD). The differential diagnosis includes hairy tongue, hairy leukoplakia, oral lichen planus (OLP), oral lichenoid reaction (OLR), leukoplakia, frictional keratosis, morsication, oral psoriasis, syphilis, and oral lesions associated with coronavirus disease (COVID-19). In addition to the usual factors (xerostomia, smoking, antibiotics, vitamin deficiency, immunosuppression, comorbidities), the new biological therapies/immunotherapies are a predisposing factor for oral candidiasis. The therapeutic approach must be multidisciplinary and in consultation with a clinical immunologist. Dentists and specialists (oral medicine, dermatologists, rheumatologists) must be familiar with the oral adverse events of the new biological therapies. Simultaneous monitoring of patients by clinical immunology and oral medicine specialists is crucial for timely diagnosis and therapeutic intervention to avoid possible adverse events and improve quality of life (QoL). Full article
(This article belongs to the Special Issue Oral Health and Care)
Show Figures

Figure 1

17 pages, 1353 KB  
Article
Inhibition of Human Coronavirus 229E by Lactoferrin-Derived Peptidomimetics
by Maria Carmina Scala, Magda Marchetti, Martina Landi, Marialuigia Fantacuzzi, Fabiana Superti, Mariangela Agamennone, Pietro Campiglia and Marina Sala
Pharmaceutics 2025, 17(8), 1006; https://doi.org/10.3390/pharmaceutics17081006 - 1 Aug 2025
Viewed by 399
Abstract
Background/Objectives: Viral respiratory infections have a significant impact on global health and the economy. While vaccines are effective in preventing infection, they might not be available or sufficient when used alone and must be complemented by specific therapeutic strategies. The development of new [...] Read more.
Background/Objectives: Viral respiratory infections have a significant impact on global health and the economy. While vaccines are effective in preventing infection, they might not be available or sufficient when used alone and must be complemented by specific therapeutic strategies. The development of new antiviral agents is increasingly important due to the continual emergence of novel respiratory pathogens. Previously we identified bovine lactoferrin (bLf)-derived tetrapeptides and peptidomimetics that showed potent in vitro activity against the influenza A virus in the picomolar range. Methods: Inspired by these results, in this study, we evaluated the antiviral potential of these compounds against HCoV-229E, a human coronavirus that can cause severe disease in immunocompromised individuals, using a compound repositioning approach. Results: Functional studies revealed that SK(N-Me)HS (3) interferes with viral entry and replication, while compound SNKHS (5) primarily blocks infection in the early stages. Biophysical analyses confirmed the occurrence of high-affinity binding to the viral spike protein, and computational studies suggested that the compounds target a region involved in conformational changes necessary for membrane fusion. Conclusions: These findings highlight these compounds as promising candidates for coronavirus entry inhibition and underscore the value of compound repurposing in antiviral development. Full article
(This article belongs to the Special Issue Peptides-Based Antiviral Agents)
Show Figures

Figure 1

20 pages, 732 KB  
Review
AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review
by Achilleas Livieratos, George C. Kagadis, Charalambos Gogos and Karolina Akinosoglou
Pathogens 2025, 14(8), 748; https://doi.org/10.3390/pathogens14080748 - 30 Jul 2025
Viewed by 780
Abstract
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based [...] Read more.
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain—data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

17 pages, 4093 KB  
Article
4-Hydroxychalcone Inhibits Human Coronavirus HCoV-OC43 by Targeting EGFR/AKT/ERK1/2 Signaling Pathway
by Yuanyuan Huang, Jieyu Li, Qiting Luo, Yuexiang Dai, Xinyi Luo, Jiapeng Xu, Wei Ye, Xinrui Zhou, Jiayi Diao, Zhe Ren, Ge Liu, Zhendan He, Zhiping Wang, Yifei Wang and Qinchang Zhu
Viruses 2025, 17(8), 1028; https://doi.org/10.3390/v17081028 - 23 Jul 2025
Viewed by 389
Abstract
Human coronaviruses are a group of viruses that continue to threaten human health. In this study, we investigated the antiviral activity of 4-hydroxychalcone (4HCH), a chalcone derivative, against human coronavirus HCoV-OC43. We found that 4HCH significantly inhibited the cytopathic effect, reduced viral protein [...] Read more.
Human coronaviruses are a group of viruses that continue to threaten human health. In this study, we investigated the antiviral activity of 4-hydroxychalcone (4HCH), a chalcone derivative, against human coronavirus HCoV-OC43. We found that 4HCH significantly inhibited the cytopathic effect, reduced viral protein and RNA levels in infected cells, and increased the survival rate of HCoV-OC43-infected suckling mice. Mechanistically, 4HCH targets the early stages of viral infection by binding to the epidermal growth factor receptor (EGFR) and inhibiting the EGFR/AKT/ERK1/2 signaling pathway, thereby suppressing viral replication. Additionally, 4HCH significantly reduced the production of pro-inflammatory cytokines and chemokines in both HCoV-OC43-infected RD cells and a suckling mouse model. Our findings demonstrate that 4HCH exhibits potent antiviral activity both in vitro and in vivo, suggesting its potential as a therapeutic agent against human coronaviruses. This study highlights EGFR as a promising host target for antiviral drug development and positions 4HCH as a candidate for further investigation in the treatment of coronavirus infections. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

20 pages, 7204 KB  
Article
Structural Features and In Vitro Antiviral Activities of Fungal Metabolites Sphaeropsidins A and B Against Bovine Coronavirus
by Luca Del Sorbo, Maria Michela Salvatore, Clementina Acconcia, Rosa Giugliano, Giovanna Fusco, Massimiliano Galdiero, Violetta Iris Vasinioti, Maria Stella Lucente, Paolo Capozza, Annamaria Pratelli, Luigi Russo, Rosa Iacovino, Anna Andolfi and Filomena Fiorito
Int. J. Mol. Sci. 2025, 26(15), 7045; https://doi.org/10.3390/ijms26157045 - 22 Jul 2025
Viewed by 358
Abstract
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member [...] Read more.
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member of the genus β-CoV, represents a valuable virus model to study human β-CoVs, bypassing the risks of handling highly pathogenic and contagious viruses. Pimarane diterpenes are a significant group of secondary metabolites produced by phytopathogenic fungi, including several Diplodia species. Among the members of this class of natural products, sphaeropsidin A (SphA) and its analog sphaeropsidin B (SphB) are well known for their bioactivities, such as antimicrobial, insecticidal, herbicidal, and anticancer. In this study, the antiviral effects of SphA and SphB were evaluated for the first time on bovine (MDBK) cells infected with BCoV. Our findings showed that both sphaeropsidins significantly increased cell viability in infected cells. These substances also caused substantial declines in the virus yield and in the levels of the viral spike S protein. Interestingly, during the treatment, a cellular defense mechanism was detected in the downregulation of the aryl hydrocarbon receptor (AhR) signaling, which is affected by BCoV infection. We also observed that the presence of SphA and SphB determined the deacidification of the lysosomal environment in infected cells, which may be related to their antiviral activities. In addition, in silico investigations have been performed to elucidate the molecular mechanism governing the recognition of bovine AhR (bAhR) by Sphs. Molecular docking studies revealed significant insights into the structural determinants driving the bAhR binding by the examined compounds. Hence, in vitro and in silico results demonstrated that SphA and SphB are promising drug candidates for the development of efficient therapies able to fight a β-CoV-like BCoV during infection. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 3rd Edition)
Show Figures

Figure 1

27 pages, 1269 KB  
Review
Old and New Analgesic Acetaminophen: Pharmacological Mechanisms Compared with Non-Steroidal Anti-Inflammatory Drugs
by Hironori Tsuchiya and Maki Mizogami
Future Pharmacol. 2025, 5(3), 40; https://doi.org/10.3390/futurepharmacol5030040 - 22 Jul 2025
Viewed by 1006
Abstract
Although it is more than a century since it was first marketed, acetaminophen remains one of the most popular analgesic agents. In addition, acetaminophen has recently been applied to multimodal analgesia in combination with non-steroidal anti-inflammatory drugs, and its consumption significantly increased during [...] Read more.
Although it is more than a century since it was first marketed, acetaminophen remains one of the most popular analgesic agents. In addition, acetaminophen has recently been applied to multimodal analgesia in combination with non-steroidal anti-inflammatory drugs, and its consumption significantly increased during the pandemic of coronavirus disease 2019 as well as diclofenac and ibuprofen. However, the detailed mode of analgesic action of acetaminophen is still unclear. In the present study, we comprehensively discuss conventional, recognized, and postulated mechanisms of analgesic acetaminophen and highlight the current mechanistic concepts while comparing with diclofenac and ibuprofen. Acetaminophen inhibits cyclooxygenase with selectivity for cyclooxygenase-2, which is higher than that of ibuprofen but lower than that of diclofenac. In contrast to diclofenac and ibuprofen, however, anti-inflammatory effects of acetaminophen depend on the extracellular conditions of inflamed tissues. Since the discovery of cyclooxygenase-3 in the canine brain, acetaminophen had been hypothesized to inhibit such a cyclooxygenase-1 variant selectively. However, this hypothesis was abandoned because cyclooxygenase-3 was revealed not to be physiologically and clinically relevant to humans. Recent studies suggest that acetaminophen is deacetylated to 4-aminophenol in the liver and after crossing the blood–brain barrier, it is metabolically converted into N-(4-hydroxyphenyl)arachidonoylamide. This metabolite exhibits bioactivities by targeting transient receptor potential vanilloid 1 channel, cannabinoid receptor 1, Cav3.2 calcium channel, anandamide, and cyclooxygenase, mediating acetaminophen analgesia. These targets may be partly associated with diclofenac and ibuprofen. The perspective of acetaminophen as a prodrug will be crucial for a future strategy to develop analgesics with higher tolerability and activity. Full article
Show Figures

Figure 1

21 pages, 407 KB  
Review
Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates
by Krystal J. Vail, Brittany N. Macha, Linh Hellmers and Tracy Fischer
Int. J. Mol. Sci. 2025, 26(14), 6886; https://doi.org/10.3390/ijms26146886 - 17 Jul 2025
Viewed by 674
Abstract
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with [...] Read more.
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with a unique set of challenges. First, because brain biopsies are rarely necessary to diagnose viral-associated neurological disorders, antemortem tissue samples are not readily available for study and human pathological studies must rely on end-stage, postmortem evaluations. Second, in vitro models fail to fully capture the nuances of an intact immune system, necessitating the use of animal models to fully characterize pathogenesis and identify potential therapeutic approaches. Non-human primates (NHP) represent a particularly attractive animal model in that they overcome many of the limits posed by more distant species and most closely mirror human disease pathogenesis and susceptibility. Here, we review NHP infection models of viruses known to infect and/or replicate within cells of the CNS, including West Nile virus, the equine encephalitis viruses, Zika virus, and herpesviruses, as well as those known to alter the immune status of the brain in the absence of significant CNS penetrance, including human immunodeficiency virus (HIV) in the current era of combination antiretroviral therapy (cART) and the coronavirus of severe acute respiratory syndrome (SARS)-CoV−2. This review focuses on viruses with an established role in causing CNS disease, including encephalitis, meningitis, and myelitis and NHP models of viral infection that are directly translatable to the human condition through relevant routes of infection, comparable disease pathogenesis, and responses to therapeutic intervention. Full article
(This article belongs to the Special Issue Animal Research Model for Neurological Diseases, 2nd Edition)
17 pages, 3448 KB  
Article
Entry Inhibitors of SARS-CoV-2 Targeting the Transmembrane Domain of the Spike Protein
by Kristin V. Lyles, Shannon Stone, Priti Singh, Lila D. Patterson, Janhavi Natekar, Heather Pathak, Rohit K. Varshnaya, Amany Elsharkawy, Dongning Liu, Shubham Bansal, Oluwafoyinsola O. Faniyi, Sijia Tang, Xiaoxiao Yang, Nagaraju Mulpuri, Donald Hamelberg, Congbao Kang, Binghe Wang, Mukesh Kumar and Ming Luo
Viruses 2025, 17(7), 989; https://doi.org/10.3390/v17070989 - 16 Jul 2025
Viewed by 692
Abstract
Despite current vaccines and therapeutics targeting SARS-CoV-2, the causative agent of the COVID-19 pandemic, cases remain high causing a burden on health care systems. Spike-protein mediated membrane fusion of SARS-CoV-2 is a critical step in viral entry. Herein, we describe entry inhibitors identified [...] Read more.
Despite current vaccines and therapeutics targeting SARS-CoV-2, the causative agent of the COVID-19 pandemic, cases remain high causing a burden on health care systems. Spike-protein mediated membrane fusion of SARS-CoV-2 is a critical step in viral entry. Herein, we describe entry inhibitors identified by first screening a library of about 160 compounds and then analogue synthesis. Specifically, compound 261 was found to inhibit SARS-CoV-2 infection in a tissue model with IC50 of 0.3 µM. Using NMR, we found that 261 interacts with key residues in the aromatic-rich region of the spike protein directly next to the transmembrane domain. Molecular dynamic simulations of the 261 binding pocket in the spike protein was also mapped to the transmembrane domain, consistent with NMR findings. The amino acids in the binding site are conserved among different coronaviruses known to infect humans; therefore, inhibitors targeting this conserved binding site could be a useful addition to current therapeutics and may have pan-coronavirus antiviral activities. Full article
Show Figures

Figure 1

17 pages, 1667 KB  
Article
C-Terminal Analogues of Camostat Retain TMPRSS2 Protease Inhibition: New Synthetic Directions for Antiviral Repurposing of Guanidinium-Based Drugs in Respiratory Infections
by Bill T. Ferrara, Elinor P. Thompson, Giovanni N. Roviello and Thomas F. Gale
Int. J. Mol. Sci. 2025, 26(14), 6761; https://doi.org/10.3390/ijms26146761 - 15 Jul 2025
Viewed by 440
Abstract
The recent global coronavirus pandemic highlighted the ever-present threat of respiratory virus outbreaks and the consequent need for ongoing research into antiviral therapy. To this end, structural analogues of the guanidinium-based drug camostat mesylate have been synthesised to probe their potential inhibition of [...] Read more.
The recent global coronavirus pandemic highlighted the ever-present threat of respiratory virus outbreaks and the consequent need for ongoing research into antiviral therapy. To this end, structural analogues of the guanidinium-based drug camostat mesylate have been synthesised to probe their potential inhibition of Transmembrane Serine Protease 2 (TMPRSS2), a human protease that is essential for infection by many respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Our in vitro fluorescence-based protease assays and supporting computational docking studies suggest that C-terminal camostat analogues retain TMPRSS2 inhibition potencies (IC50 = 1–3 nM, BE = −6.6 to −7.0 kcal/mol) that match or exceed that of the parent drug. Analogues 1c and 1d emerge as lead candidates in this regard, thereby validating the rationale behind C-terminal structural modifications and highlighting these derivatives as promising scaffolds for the future development of targeted antiviral therapeutics. Replacement of camostat’s ester functionality with peptide linkages largely preserves non-covalent binding but disrupts in vitro protease inhibition, findings consistent with the parent drug’s known role as an acylating suicide inhibitor. Docking studies confirm that the replacement of aromatic residues with flexible, equivalent-length alkyl chains is detrimental to drug binding. These function and binding data offer new directions for the synthesis of further analogues of camostat and of other guanidinium-based protease inhibitors that have yet to be refined via structure–activity relationship studies. Further investigation will support tailoring this class of drugs for repurposing in antiviral therapy. Full article
(This article belongs to the Special Issue Novel Antivirals against Respiratory Viruses)
Show Figures

Figure 1

Back to TopTop