Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,138)

Search Parameters:
Keywords = hybrid deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3459 KB  
Article
Lignin Biosynthesis Driven by CAD Genes Underpins Drought Tolerance in Sugarcane: Genomic Insights for Crop Improvement
by Yue Wang, Weitong Zhao, Peiting Li, Junjie Zhao, Zhiwei Yang, Chaohua Huang, Guoqiang Huang, Liangnian Xu, Jiayong Liu, Yong Zhao, Yuebin Zhang, Zuhu Deng and Xinwang Zhao
Plants 2025, 14(17), 2735; https://doi.org/10.3390/plants14172735 - 2 Sep 2025
Abstract
Sugarcane (Saccharum spp.), a vital economic crop, suffers significant yield losses from drought. This study elucidates the genetic regulation of lignin biosynthesis—a key drought-resistance mechanism—by analyzing three contrasting accessions: drought-sensitive Saccharum officinarum (Badila), drought-resistant hybrid (XTT22), and drought-tolerant wild Saccharum spontaneum (SES-208) [...] Read more.
Sugarcane (Saccharum spp.), a vital economic crop, suffers significant yield losses from drought. This study elucidates the genetic regulation of lignin biosynthesis—a key drought-resistance mechanism—by analyzing three contrasting accessions: drought-sensitive Saccharum officinarum (Badila), drought-resistant hybrid (XTT22), and drought-tolerant wild Saccharum spontaneum (SES-208) under progressive drought (7–21 days). Physiological analyses revealed pronounced lignin accumulation in XTT22 roots/leaves, driven by elevated coniferyl/sinapyl alcohol substrates, while Badila showed minimal deposition. Genomic characterization of cinnamyl/sinapyl alcohol dehydrogenase (CAD/SAD) families across six sugarcane genomes identified 322 genes phylogenetically clustered into three clades. Class I members (CAD1, CAD5, etc.) were critical for lignin biosynthesis, with tandem/segmental duplications driving family expansion and promoters enriched in stress-responsive cis-elements (ABA, MeJA, light). Transcriptomics and qRT-PCR confirmed strong correlations between Class I CAD expression, lignin content, and drought tolerance. These findings establish CAD Class I genes as novel molecular targets for enhancing drought resilience in sugarcane breeding programs. Full article
(This article belongs to the Special Issue Sugarcane Breeding and Biotechnology for Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 3153 KB  
Review
Fabrication and Properties of Hard Coatings by a Hybrid PVD Method
by Rui Zhang, Qimin Wang, Yuxiang Xu, Lisheng Li and Kwang Ho Kim
Lubricants 2025, 13(9), 390; https://doi.org/10.3390/lubricants13090390 - 1 Sep 2025
Viewed by 188
Abstract
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition [...] Read more.
By integrating cathodic arc evaporation (CAE) with magnetron sputtering (MS) or high-power impulse magnetron sputtering (HiPIMS), hard coatings with diverse multicomponent compositions can be fabricated. Depending on the deposition conditions, the coatings with nano-composite or nano-multilayered microstructures are produced. During the mixing deposition conditions, nano-composite coatings are fabricated, which can be tailored to possess combining properties of super hardness, low friction coefficient, and excellent thermal/chemical stability. For the deposition with larger rotating periods, layer-by-layer deposition was observed. By the nano-multilayered coating design, superior mechanical properties (hardness ≥ 35 GPa), modulated residual stresses, and enhanced high-temperature properties can be obtained. In addition, lubricious elements, low friction (friction coefficient < 0.4), and low wear (<10−5 mm3/N∙m) both at ambient temperature and high temperature can be realized. Among these coatings, some have been specifically designed to achieve outstanding cutting performance in high-speed cutting applications. Several nitride and oxide hard coatings, such as AlTiN, TiAlN/TiSiN, AlCrN/Cu, and AlCrO, were deposited using a hybrid industrial physical vapor deposition (PVD) coating system. The microstructure, mechanical properties, and cutting performance of these coatings will be discussed. Full article
(This article belongs to the Special Issue Wear and Friction of High-Performance Coatings and Hardened Surfaces)
Show Figures

Figure 1

19 pages, 10042 KB  
Review
Recent Progress of Powering IoT Based on Thermoelectric Technology
by Jinhong Dai, Haitao Deng, Jingwen Huang and Xiaosheng Zhang
Micromachines 2025, 16(9), 1017; https://doi.org/10.3390/mi16091017 - 31 Aug 2025
Viewed by 324
Abstract
With the rapid advancement of electronic devices, Internet of Things (IoT) technology has become increasingly integrated into everyday life. However, its broader development has been restricted by challenges related to long-term maintenance and the frequent need for power source replacements. Among the available [...] Read more.
With the rapid advancement of electronic devices, Internet of Things (IoT) technology has become increasingly integrated into everyday life. However, its broader development has been restricted by challenges related to long-term maintenance and the frequent need for power source replacements. Among the available power supply solutions, thermoelectric power generation has garnered significant interest due to its high reliability. Nevertheless, the widespread application of thermoelectric generators (TEGs) in IoT remains limited due to their relatively low conversion efficiency and structural fragility. This review systematically summarizes recent strategies aimed at enhancing the output performance and durability of TEGs through improvements in manufacturing processes and performance optimization techniques. It highlights several fabrication methods capable of endowing devices with superior flexibility and reliability, including screen printing, chemical vapor deposition (CVD), and electrospray deposition. Additionally, we discuss two key approaches for improving power generation performance: advanced material selection and multi-mechanism hybridization. Finally, the article explores the applications of TEGs in thermal energy harvesting from wearable devices, ambient environments, and aerospace fields, demonstrating their substantial potential to provide sustainable energy for IoT devices. Full article
(This article belongs to the Special Issue Research Progress in Energy Harvesters and Self-Powered Sensors)
Show Figures

Figure 1

44 pages, 1456 KB  
Review
A Review of Machine Learning Applications on Direct Energy Deposition Additive Manufacturing—A Trend Study
by Syamak Pazireh, Seyedeh Elnaz Mirazimzadeh and Jill Urbanic
Metals 2025, 15(9), 966; https://doi.org/10.3390/met15090966 - 29 Aug 2025
Viewed by 422
Abstract
This review explores the evolution and current state of machine learning (ML) and artificial intelligence (AI) applications in direct energy deposition (DED) and wire arc additive manufacturing (WAAM) processes. A Python-based automated search script was developed to systematically retrieve relevant literature using the [...] Read more.
This review explores the evolution and current state of machine learning (ML) and artificial intelligence (AI) applications in direct energy deposition (DED) and wire arc additive manufacturing (WAAM) processes. A Python-based automated search script was developed to systematically retrieve relevant literature using the Crossref API, yielding around 370 papers published between 2010 and July 2025. The study identifies significant growth in ML-related DED research starting in 2020, with increasing adoption of advanced techniques such as deep learning, fuzzy logic, and hybrid physics-informed models. A year-by-year trend analysis is presented, and a comprehensive categorization of the literature is provided to highlight dominant application areas, including process optimization, real-time monitoring, defect detection, and melt pool prediction. Key challenges, such as limited closed-loop control, lack of generalization across systems, and insufficient modeling of deposition-location effects, are discussed. Finally, future research directions are outlined, emphasizing the need for integrated thermo-mechanical models, uncertainty quantification, and adaptive control strategies. This review serves as a resource for researchers aiming to advance intelligent control and predictive modeling in DED-based additive manufacturing. Full article
(This article belongs to the Special Issue Machine Learning in Metal Additive Manufacturing)
Show Figures

Figure 1

12 pages, 2381 KB  
Article
Interface Stabilization of Aqueous Aluminum Batteries via Non-Flammable Co-Solvent
by Keun-il Kim
Batteries 2025, 11(9), 324; https://doi.org/10.3390/batteries11090324 - 29 Aug 2025
Viewed by 280
Abstract
Aqueous aluminum-ion batteries (AAIBs) face significant challenges due to interfacial instability and parasitic side reactions during the reversible deposition of aluminum. Here, we introduce a hybrid electrolyte incorporating triethyl phosphate (TEP), a non-flammable co-solvent that reconstructs the Al3+ solvation environment by suppressing [...] Read more.
Aqueous aluminum-ion batteries (AAIBs) face significant challenges due to interfacial instability and parasitic side reactions during the reversible deposition of aluminum. Here, we introduce a hybrid electrolyte incorporating triethyl phosphate (TEP), a non-flammable co-solvent that reconstructs the Al3+ solvation environment by suppressing water activity. This design extends the electrochemical stability window and enables uniform Al–Zn alloy formation at the anode interface. As a result, symmetric Al–Zn cells achieve over 4000 h of stable cycling. In full-cell configurations with V2O5/C cathodes, the system demonstrates high capacity retention (~96% over 450 cycles at 2 A g−1) and coulombic efficiency. This work underscores the potential of solvation structure engineering via functional, flame-retarding co-solvent to advance the development of safe and durable aqueous electrolytes. Full article
(This article belongs to the Special Issue Research on Aqueous Rechargeable Batteries—2nd Edition)
Show Figures

Figure 1

29 pages, 5957 KB  
Article
Multistage Fluid Evolution and P-T Path at Ity Gold Deposit and Dahapleu Prospect (Western Ivory Coast)
by Yacouba Coulibaly, Michel Cathelineau and Marie-Christine Boiron
Minerals 2025, 15(9), 918; https://doi.org/10.3390/min15090918 - 28 Aug 2025
Viewed by 314
Abstract
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite [...] Read more.
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite or as a Bi–Te–Au–Ag telluride assemblage. Fluid inclusion data indicate that Ity formed through a hybrid model: a mesothermal orogenic gold system dominated by CO2–CH4 fluids at >350 °C, superimposed on earlier skarn mineralisation characterised by saline fluids. At Dahapleu, no skarn fluids were identified, but volatile-rich inclusions with more variable signatures (CO2, CO2–CH4, CO2–N2) indicate metamorphic fluids circulating in convective, fault-related systems and recording distinct fluid–rock interactions. The Ity–Dahapleu mineralising system thus displays fluid inclusion characteristics typical of mesothermal orogenic gold systems, likely at higher temperatures than most West African Birimian deposits. Overall, the Ity system reflects a long-lived thermal anomaly driving fluid circulation and metal deposition, with successive favourable events: rapid exhumation of hot lithospheric crust, granite intrusion, and skarn formation, followed by shear deformation and hydrothermal activity. Full article
Show Figures

Figure 1

39 pages, 27477 KB  
Review
Three-Dimensional Printing and Bioprinting Strategies for Cardiovascular Constructs: From Printing Inks to Vascularization
by Min Suk Kim, Yuri Choi and Keel Yong Lee
Polymers 2025, 17(17), 2337; https://doi.org/10.3390/polym17172337 - 28 Aug 2025
Viewed by 427
Abstract
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that [...] Read more.
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that support surgical planning and biomedical applications. In contrast, 3D bioprinting has emerged as a transformative biofabrication technology that allows for the spatially controlled deposition of living cells and biomaterials to construct functional tissues in vitro. Bioinks—derived from natural biomaterials such as collagen and decellularized matrix, synthetic polymers such as polyethylene glycol (PEG) and polycaprolactone (PCL), or hybrid combinations—have been engineered to replicate extracellular environments while offering tunable mechanical properties. These formulations ensure biocompatibility, appropriate mechanical strength, and high printing fidelity, thereby maintaining cell viability, structural integrity, and precise architectural resolution in the printed constructs. Advanced bioprinting modalities, including extrusion-based bioprinting (such as the FRESH technique), droplet/inkjet bioprinting, digital light processing (DLP), two-photon polymerization (TPP), and melt electrowriting (MEW), enable the fabrication of complex cardiovascular structures such as vascular patches, ventricle-like heart pumps, and perfusable vascular networks, demonstrating the feasibility of constructing functional cardiac tissues in vitro. This review highlights the respective strengths of these technologies—for example, extrusion’s ability to print high-cell-density bioinks and MEW’s ultrafine fiber resolution—as well as their limitations, including shear-induced cell stress in extrusion and limited throughput in TPP. The integration of optimized bioink formulations with appropriate printing and bioprinting platforms has significantly enhanced the replication of native cardiac and vascular architectures, thereby advancing the functional maturation of engineered cardiovascular constructs. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Graphical abstract

33 pages, 20297 KB  
Article
Mechanical and Tribological Performance of Additively Manufactured Nanocrystalline Aluminum via Cryomilling and Cold Spray
by Amanendra K. Kushwaha, Manoranjan Misra and Pradeep L. Menezes
Lubricants 2025, 13(9), 386; https://doi.org/10.3390/lubricants13090386 - 28 Aug 2025
Viewed by 239
Abstract
In this study, nanocrystalline (NC) aluminum (Al) and magnesium (Mg)-doped Al bulk components were fabricated using a hybrid manufacturing process that combines cryomilling and high-pressure cold spray (HPCS) additive deposition techniques. Yttria-stabilized zirconia (YSZ) was also added during the HPCS process to improve [...] Read more.
In this study, nanocrystalline (NC) aluminum (Al) and magnesium (Mg)-doped Al bulk components were fabricated using a hybrid manufacturing process that combines cryomilling and high-pressure cold spray (HPCS) additive deposition techniques. Yttria-stabilized zirconia (YSZ) was also added during the HPCS process to improve deposition efficiency and build-up thickness via peening. The evolution of morphology, crystallite size, and elemental composition of both cryomilled powders and cold-sprayed (CS’ed) components was systematically characterized using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). Mechanical characterization was performed using Vickers microhardness and uniaxial tensile testing, while the tribological behavior was assessed using sliding wear tests under dry/lubricated conditions. XRD analysis revealed that increased cryomilling duration led to significant crystallite refinement, which directly correlated with enhanced hardness and strength. This mechanical strengthening was accompanied by an increase in coefficient of friction (COF) and lower wear rates. The results also showed that the Mg-doped Al exhibited superior hardness, tensile strength, and tribological performance compared to pure Al. The study further explores the underlying mechanisms responsible for these enhancements, highlighting the potential of solute-assisted grain boundary stabilization in tailoring high-performance NC Al alloys. Full article
(This article belongs to the Special Issue Wear and Friction in Hybrid and Additive Manufacturing Processes)
Show Figures

Figure 1

30 pages, 7450 KB  
Article
Surface Roughness Uniformity Improvement of Additively Manufactured Channels’ Internal Corners by Liquid Metal-Driven Abrasive Flow Polishing
by Yapeng Ma, Kaixiang Li, Baoqi Feng and Lei Zhang
Micromachines 2025, 16(9), 987; https://doi.org/10.3390/mi16090987 - 28 Aug 2025
Viewed by 327
Abstract
Additive manufacturing (AM) enables the production of complex components but often results in poor surface quality due to its layer-by-layer deposition process. To improve surface finish, postprocessing methods like abrasive flow machining (AFM) are necessary. However, conventional AFM struggles with achieving uniform polishing [...] Read more.
Additive manufacturing (AM) enables the production of complex components but often results in poor surface quality due to its layer-by-layer deposition process. To improve surface finish, postprocessing methods like abrasive flow machining (AFM) are necessary. However, conventional AFM struggles with achieving uniform polishing in intricate regions, especially at internal corners. This study proposes a liquid metal-driven abrasive flow (LM-AF) strategy designed for polishing complex internal channels in AM parts. By combining experimental and numerical simulations, the research investigates surface roughness variations, particularly focusing on the Sa (Arithmetic Average Surface Roughness) parameter. Experimental results show that conventional AFM leaves significant roughness at internal corners compared to adjacent areas. To address this, a hybrid GA-NN-GA (Genetic Algorithm–Neural Network-Genetic Algorithm) optimization model was developed. The model uses a neural network to predict Sa based on key parameters, with genetic algorithms applied for training and optimization. The optimal process parameters identified include a NaOH concentration of 1 mol/L, a voltage of 50 V, abrasive concentration of 10%, and a frequency of 428.3 Hz. With these parameters, LM-AF significantly reduced roughness at internal corners of flow channels, achieving uniformity with Sa values reduced from 25.365 μm to 15.780 μm, from 22.950 μm to 15.718 μm, and from 10.933 μm to 10.055 μm, outperforming traditional AFM methods. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

16 pages, 3217 KB  
Article
Design of a Hybrid 3D-Printed Composite Material Based on Non-Woven Needle-Punched Fabrics with Radio-Absorbing Properties
by Victor Nazarov, Fedor Doronin, Alexander Dedov, Andrey Evdokimov, Georgy Rytikov and Mikhail Savel’ev
Polymers 2025, 17(17), 2324; https://doi.org/10.3390/polym17172324 - 27 Aug 2025
Viewed by 408
Abstract
The paper proposes a manufacturing technology for the non-woven/3D-printed (N3DP) hybrid material (HM) with improved radio-absorbing properties. We have fabricated the needle-punched non-woven felt and impregnated it with the carbon fibers containing UV-curable photopolymer resin. The functional 3D-printed layer was attached to the [...] Read more.
The paper proposes a manufacturing technology for the non-woven/3D-printed (N3DP) hybrid material (HM) with improved radio-absorbing properties. We have fabricated the needle-punched non-woven felt and impregnated it with the carbon fibers containing UV-curable photopolymer resin. The functional 3D-printed layer was attached to the highly porous, deformable polymer substrate by the fused deposition modeling (FDM) technique. The preliminary bulk modification of the filament was realized with the IR- and UV-pigment microcapsules filling. The combination of additive prototyping and non-woven needle-punched fabrics surface modification (by the electrically conductive elements 2D-periodic system applying) expands the frequency range of the electromagnetic radiation effective absorption. It provides the possibility of a reversible change in the color characteristics of the hybrid material surface under the influence of the UV and IR radiation. Full article
Show Figures

Figure 1

11 pages, 1821 KB  
Article
Patterned Growth of Photocatalytic Heterostructures via a Biomimetic Molecular Recognition Approach Using Solid-Binding Peptides
by Ana Castellanos-Aliaga, Laura San-Miguel, Marta Cama, David G. Calatayud, Amador C. Caballero, Teresa Jardiel and Marco Peiteado
Appl. Sci. 2025, 15(17), 9399; https://doi.org/10.3390/app15179399 - 27 Aug 2025
Viewed by 265
Abstract
The advancement of photocatalytic materials is critical for addressing environmental challenges such as water remediation, where efficient, robust, and reusable systems are in high demand. In this search, the development of hierarchically organized photocatalytic configurations with spatial control over active sites can significantly [...] Read more.
The advancement of photocatalytic materials is critical for addressing environmental challenges such as water remediation, where efficient, robust, and reusable systems are in high demand. In this search, the development of hierarchically organized photocatalytic configurations with spatial control over active sites can significantly enhance performance. With this in mind, we present here a novel biomimetic approach for the patterned growth of TiO2-ZnO photocatalytic heterostructures using solid-binding peptides (SBPs) as molecular linkers. Specifically, using bi-functional SBPs with selective affinity for both oxides, we achieve site-specific, molecularly guided deposition of TiO2 nanoparticles onto pre-patterned ZnO-coated substrates. Leveraging the specific recognition capabilities and strong binding affinities of the engineered SBPs, the proposed biomimetic methodology allows for the fabrication of well-organized hybrid nanostructures under sustainable conditions. Photocatalytic degradation assays employing methyl orange as a model contaminant indicate that the patterned architecture enhances both the accessibility of the active photocatalytic sites and the recoverability of the material. This reusability is a critical parameter for the practical deployment of photocatalytic systems in water purification technologies. The obtained results underscore the potential of SBP-mediated molecular recognition as a versatile tool for green nanofabrication of functional materials with advanced architectural and catalytic properties. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

12 pages, 11445 KB  
Article
Thermal Characterisation of Hybrid Laser Welds Made of Conventionally and Additively Soft Martensitic Steel 1.4313
by Indira Dey, Thomas Mayer, Bianca Egli, Damian Klingler and Konrad Wegener
Metals 2025, 15(9), 950; https://doi.org/10.3390/met15090950 - 27 Aug 2025
Viewed by 295
Abstract
Part segmentation can be used to overcome limitations of additive manufacturing (AM) processes such as Direct Energy Deposition of Metals (DED). In this case subparts of soft martensitic steel 1.4313 produced by conventional manufacturing (CM) and AM are joined by laser welding. This [...] Read more.
Part segmentation can be used to overcome limitations of additive manufacturing (AM) processes such as Direct Energy Deposition of Metals (DED). In this case subparts of soft martensitic steel 1.4313 produced by conventional manufacturing (CM) and AM are joined by laser welding. This paper reports the difference in thermal conductivity of conventional and additive manufactured parts. The thermal conductivity was calculated from the thermal diffusivity, the specific heat, and the bulk density. Furthermore, the temperature was measured during welding and the microstructure analyzed. The far field temperature was measured using eight K-type thermocouples and the microstructure was analyzed by metallography and light microscopy. The results showed that the thermal conductivity of AM material is 8% lower and therefore the heating rate 5% lower compared to CM material. The lower thermal conductivity is explained in the literature by its higher dislocation density, unfavorable alloying element distribution and a lower rest austenite content. AM introduces structural complexity that hampers electron and phonon transport, thereby reducing the thermal conductivity despite similar base chemical compositions. The heat-affected zone is only clearly visible on the CM side due to carbide formation. In DED parts, it comes to different phases in non-equilibrium states, which complicates the identification of carbides and the HAZ. The findings are important for the design of hybrid components to improve the the joint integrity and functionality of hybrid parts. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Graphical abstract

17 pages, 5023 KB  
Article
Bio-Based Flame Retardant for Cotton Fabric Prepared from Eggshell Microparticles, Phytic Acid, and Chitosan: An Eco-Friendly Approach for Dry Use
by Raphael Ferreira dos Santos Baraldi, Eduardo Cividini Neiva, Afonso Henrique da Silva Júnior, Tania Maria Costa, Marcel Jefferson Gonçalves, Catia Lange de Aguiar, Thais Costa Nihues, Rodrigo Schlindwein, Maria Elisa Philippsen Missner and Carlos Rafael Silva de Oliveira
Processes 2025, 13(9), 2690; https://doi.org/10.3390/pr13092690 - 24 Aug 2025
Viewed by 571
Abstract
This study investigates the development of a sustainable flame-retardant treatment for cotton fabrics using a hybrid coating composed of chitosan, phytic acid, APTES, and eggshell powder at concentrations of 2% and 4%, applied in one and two cycles. FTIR confirmed the deposition of [...] Read more.
This study investigates the development of a sustainable flame-retardant treatment for cotton fabrics using a hybrid coating composed of chitosan, phytic acid, APTES, and eggshell powder at concentrations of 2% and 4%, applied in one and two cycles. FTIR confirmed the deposition of the organic–inorganic layer through the appearance of characteristic bands. Thermogravimetric analysis (TGA/dTGA) revealed enhanced thermal stability for all treated samples, with increased char yield and a shift in the main cellulose degradation peak. Vertical flammability tests demonstrated that all coated fabrics achieved self-extinguishing behavior within 12 s, meeting NFPA 701 criteria. The 2% eggshell formulation with two applications (S2%-II) exhibited the best balance between flame retardancy and mechanical performance. Tensile tests indicated improved fiber cohesion for treated samples, while SEM micrographs confirmed uniform coating deposition and particle integration. Colorimetric analysis showed that the treatment did not cause a significant change in the natural color of the cotton. Although washing resistance remains a limitation due to the natural origin of the components, the samples remained stable over time without microbial growth or staining, suggesting potential for upholstery and covering fabrics not subjected to domestic washing. The results highlight the feasibility of using agro-industrial waste to create eco-friendly flame-retardant finishes for cotton textiles. Full article
(This article belongs to the Special Issue High-Temperature Behavior of Polymers and Composites)
Show Figures

Figure 1

40 pages, 3825 KB  
Review
Three-Dimensional SERS Substrates: Architectures, Hot Spot Engineering, and Biosensing Applications
by Xiaofeng Zhou, Siqiao Liu, Hailang Xiang, Xiwang Li, Chunyan Wang, Yu Wu and Gen Li
Biosensors 2025, 15(9), 555; https://doi.org/10.3390/bios15090555 - 22 Aug 2025
Viewed by 648
Abstract
Three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates have demonstrated remarkable abilities of ultrasensitive and reproducible molecular detection. The combination of both electromagnetic and chemical enhancement processes, light trapping, and multiple scattering effects of 3D structures are what enhance their performance. The principles of [...] Read more.
Three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates have demonstrated remarkable abilities of ultrasensitive and reproducible molecular detection. The combination of both electromagnetic and chemical enhancement processes, light trapping, and multiple scattering effects of 3D structures are what enhance their performance. The principles of underlying enhancements are summarized systematically, and the main types of 3D substrates—vertically aligned nanowires, dendritic and fractal nanostructures, porous frameworks and aerogels, core–shell and hollow nanospheres, and hierarchical hybrid structures—are categorized in this review. Advances in fabrication techniques, such as template-assisted growth, electrochemical and galvanic deposition, dealloying and freeze-drying, self-assembly, and hybrid integration, are critically evaluated in terms of structural tunability and scalability. Novel developments in the field of biosensing are also highlighted, including non-enzymatic glucose sensing, tumor biomarker sensing, and drug delivery. The remaining limitations, such as low reproducibility, mechanical stability, and substrate standardization, are also noted, and future directions, such as stimuli-responsive designs, multifunctional hybrid platforms, and data-driven optimization strategies of SERS technologies, are also included. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

30 pages, 4096 KB  
Review
New Frontiers in 3D Printing Using Biocompatible Polymers
by Nagireddy Poluri, Jacob Carter, John Grasso, Walter Miller, Matthew Leinbach, Frederick Durant, Riley Benbrook, Assa John, Allan Wang and Xiao Hu
Int. J. Mol. Sci. 2025, 26(16), 8016; https://doi.org/10.3390/ijms26168016 - 19 Aug 2025
Viewed by 559
Abstract
Biocompatible polymers have emerged as essential materials in medical 3D printing, enabling the fabrication of scaffolds, tissue constructs, drug delivery systems, and biosensors for applications in and on the human body. This review aims to provide a comprehensive overview of the current state [...] Read more.
Biocompatible polymers have emerged as essential materials in medical 3D printing, enabling the fabrication of scaffolds, tissue constructs, drug delivery systems, and biosensors for applications in and on the human body. This review aims to provide a comprehensive overview of the current state of 3D-printable biocompatible polymers and their composites, with an emphasis on their processing methods, properties, and biomedical uses. The scope of this work includes both natural and synthetic biocompatible polymers, polymer–nanocomposite systems, and bioinks that do not require photo initiators. The relevant literature was critically examined to classify materials by type, evaluate their compatibility with major 3D printing techniques such as stereolithography, selective laser sintering, and fused deposition modeling, and assess their performance in various medical applications. Key findings highlight that reinforced polymer composites, tailored surface chemistries, and hybrid printing strategies significantly expand the range of functional, customizable, and affordable biomedical devices. This review concludes by discussing present-day applications and emerging trends, underscoring that 3D-printable biocompatible polymers are rapidly transitioning from research to clinical practice, offering transformative potential for patient-specific healthcare solutions. Full article
(This article belongs to the Special Issue Latest Review Papers in Macromolecules 2025)
Show Figures

Figure 1

Back to TopTop