Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,317)

Search Parameters:
Keywords = hybrid membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3778 KB  
Review
Peptide-Based Inorganic Nanoparticles as Efficient Intracellular Delivery Systems
by Amir Nasrolahi Shirazi, Rajesh Vadlapatla, Ajoy Koomer, Anthony Nguyen, Vian Khoury and Keykavous Parang
Pharmaceutics 2025, 17(9), 1123; https://doi.org/10.3390/pharmaceutics17091123 - 28 Aug 2025
Abstract
Background/Objectives: Peptide-based inorganic nanoparticles (PINPs) have emerged as promising candidates for intracellular delivery due to their unique structural and functional attributes. These hybrid nanostructures combine the high surface area and tunable optical/magnetic properties of metal cores (e.g., Au, Ag, Fe3O [...] Read more.
Background/Objectives: Peptide-based inorganic nanoparticles (PINPs) have emerged as promising candidates for intracellular delivery due to their unique structural and functional attributes. These hybrid nanostructures combine the high surface area and tunable optical/magnetic properties of metal cores (e.g., Au, Ag, Fe3O4) with the biocompatibility, targeting specificity, and responsive behavior of peptides. In particular, peptides with amphipathic or cell-penetrating features could facilitate efficient transport of molecular cargos across cellular membranes while enabling stimulus-responsive drug release in target tissues. Methods: We review key synthesis methods (especially green, peptide-mediated one-pot approaches), functionalization strategies (e.g., thiol-gold bonds, click chemistries), and characterization techniques (TEM, DLS, FTIR, etc.) that underpin PINP design. In addition, we highlight diverse peptide classes (linear, cyclic, amphipathic, self-assembling) and their roles (targeting ligands, capping/stabilizing agents, reducing agents) in constructing multifunctional nanocarriers. Results: The prospects of PINPs are considerable: they enable targeted drug delivery with imaging/theranostic capability, improve drug stability and cellular uptake, and harness peptide programmability for precision nanomedicine. However, challenges such as in vivo stability, immunogenicity, and standardization of evaluation must be addressed. Conclusions: Overall, PINPs represent multifunctional platforms that could significantly advance drug delivery and diagnostic applications in the future. Full article
(This article belongs to the Special Issue Metal Nanoparticles for Pharmaceutical Applications)
Show Figures

Figure 1

20 pages, 2725 KB  
Article
Sulfonated Poly(ether ether ketone)–Zirconia Organic–Inorganic Hybrid Membranes with Enhanced Ion Selectivity and Hydrophilicity for Vanadium Redox Flow Batteries
by Xiang Li, Tengling Ye, Wenfei Liu, Ge Meng, Wenxin Guo, Sergey A. Grigoriev, Dongqing He and Chuanyu Sun
Polymers 2025, 17(17), 2287; https://doi.org/10.3390/polym17172287 - 23 Aug 2025
Viewed by 372
Abstract
Proton-exchange membranes (PEMs) are the pivotal components of vanadium redox flow batteries (VRFBs) and play a critical role in the comprehensive output performance of VRFB systems. Currently, the most widely commercialized membranes are Nafion series membranes produced by DuPont, Wilmington, DE, USA, but [...] Read more.
Proton-exchange membranes (PEMs) are the pivotal components of vanadium redox flow batteries (VRFBs) and play a critical role in the comprehensive output performance of VRFB systems. Currently, the most widely commercialized membranes are Nafion series membranes produced by DuPont, Wilmington, DE, USA, but the high vanadium permeability and cost hinder their large-scale promotion. Hence, there is an active demand for developing a low-cost, high-performance, and energy-efficient PEM to promote the commercialization of VRFB systems. In this paper, sulfonated poly(ether ether ketone) (SPEEK) as matrix and zirconia nanoparticles as inorganic filler were used for composite modification to prepare a series of SPEEK–ZrO2 organic–inorganic hybrid membranes for VRFBs. The thickness of these membranes was 50–100 μm. Compared with Nafion 115 (thickness 128 μm), composite membranes demonstrated obvious cost advantages. The results showed that the SP–Z-X series membranes had higher water uptake (53.26–71.1%) and proton conductivity (0.11–0.24 S cm−1). SP–Z-5 displayed the best comprehensive output performance at 200 mA cm−2 (CE: 99.01%, VE: 81.95%, EE: 81.11%). These hybrid membranes are very cost-effective and exhibit high potential for application in VRFB applications, and are expected to lead to the industrial application of VRFBs on a large scale. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

27 pages, 3086 KB  
Article
Trimetazidine–Profen Hybrid Molecules: Synthesis, Chemical Characterization, and Biological Evaluation of Their Racemates
by Diyana Dimitrova, Stanimir Manolov, Iliyan Ivanov, Dimitar Bojilov, Nikol Dimova, Gabriel Marc, Smaranda Oniga and Ovidiu Oniga
Pharmaceuticals 2025, 18(9), 1251; https://doi.org/10.3390/ph18091251 - 23 Aug 2025
Viewed by 284
Abstract
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel [...] Read more.
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel trimetazidine–profen hybrid compounds were synthesized using N,N′-dicyclohexylcarbodiimide-mediated coupling and structurally characterized by NMR and high-resolution mass spectrometry. Their antioxidant activity was evaluated by hydroxyl radical scavenging assays (HRSA), and the anti-inflammatory potential was assessed via the inhibition of albumin denaturation (IAD). Lipophilicity was determined chromatographically. Molecular docking and 100 ns molecular dynamics simulations were performed to investigate the binding modes and stability in human serum albumin (HSA) binding sites. The acute toxicity of the hybrid molecules was predicted in silico using GUSAR software. Results: All synthesized hybrids demonstrated varying degrees of biological activity, with compound 3c exhibiting the most potent antioxidant (HRSA IC₅₀ = 71.13 µg/mL) and anti-inflammatory (IAD IC₅₀ = 108.58 µg/mL) effects. Lipophilicity assays indicated moderate membrane permeability, with compounds 3c and 3d showing favorable profiles. Docking studies revealed stronger binding affinities of S-enantiomers, particularly 3c and 3d, to Sudlow sites II and III in HSA. Molecular dynamics simulations confirmed stable ligand–protein complexes, highlighting compound 3c as maintaining consistent and robust interactions. The toxicity results indicate that most hybrids, particularly compounds 3b3d, exhibit a favorable safety profile compared to the parent trimetazidine. Conclusion: The hybrid trimetazidine–profen compounds synthesized herein, especially compound 3c, demonstrate promising dual antioxidant and anti-inflammatory therapeutic potential. Their stable interaction with serum albumin and balanced physicochemical properties support further development as novel agents for managing ischemic heart disease and associated inflammatory conditions. Full article
(This article belongs to the Special Issue Advances in the Medicinal Synthesis of Bioactive Compounds)
Show Figures

Figure 1

15 pages, 2314 KB  
Article
Techno-Economic Assessment (TEA) of a Minimal Liquid Discharge (MLD) Membrane-Based System for the Treatment of Desalination Brine
by Argyris Panagopoulos
Separations 2025, 12(9), 224; https://doi.org/10.3390/separations12090224 - 23 Aug 2025
Viewed by 242
Abstract
Desalination plays a critical role in addressing global water scarcity, yet brine disposal remains a significant environmental challenge. This study evaluates a minimal liquid discharge (MLD) membrane-based system integrating high-pressure reverse osmosis (HPRO) and membrane distillation (MD) for brine treatment, with a focus [...] Read more.
Desalination plays a critical role in addressing global water scarcity, yet brine disposal remains a significant environmental challenge. This study evaluates a minimal liquid discharge (MLD) membrane-based system integrating high-pressure reverse osmosis (HPRO) and membrane distillation (MD) for brine treatment, with a focus on the Eastern Mediterranean. A techno-economic assessment (TEA) was conducted to analyze the system’s feasibility, water recovery performance, energy consumption, and cost-effectiveness. The results indicate that the hybrid HPRO-MD system achieves a high water recovery rate of 78.65%, with 39.65 m3/day recovered from MD and 39 m3/day from HPRO. The specific energy consumption is 23.2 kWh/m3, with MD accounting for 89% of the demand. The system’s cost is USD 0.99/m3, generating daily revenues of USD 228 in Cyprus and USD 157 in Greece. Compared to conventional brine disposal methods, MLD proves more cost-effective, particularly when considering evaporation ponds. While MLD offers a sustainable alternative for brine management, challenges remain regarding energy consumption and the disposal of concentrated waste streams. Future research should focus on renewable energy integration, advanced membrane technologies, and resource recovery through brine mining. The findings highlight the HPRO-MD MLD system as a promising approach for sustainable desalination and circular water resource management. Full article
Show Figures

Graphical abstract

27 pages, 1603 KB  
Review
Cell-Based Drug Delivery Systems: Innovative Drug Transporters for Targeted Therapy
by Shynggys Sergazy, Kulzhan Berikkhanova, Alexandr Gulyayev, Zarina Shulgau, Assiya Maikenova, Ruslan Bilal, Milan Terzic, Zhaxybay Zhumadilov and Mohamad Aljofan
Int. J. Mol. Sci. 2025, 26(17), 8143; https://doi.org/10.3390/ijms26178143 - 22 Aug 2025
Viewed by 284
Abstract
Significant progress has been made in developing cell-based drug delivery systems that utilize the intrinsic biological properties of various cell types—erythrocytes, leukocytes, platelets, stem cells, and even spermatozoa—to improve drug targeting, bioavailability, and biocompatibility. This review presents an integrative analysis of the latest [...] Read more.
Significant progress has been made in developing cell-based drug delivery systems that utilize the intrinsic biological properties of various cell types—erythrocytes, leukocytes, platelets, stem cells, and even spermatozoa—to improve drug targeting, bioavailability, and biocompatibility. This review presents an integrative analysis of the latest advances in cell-based drug delivery systems, focusing on their design, pharmacokinetics, cellular interactions, and therapeutic potential. We specifically focus on hybrid microrobots and membrane-coated nanocarriers as emerging biohybrid platforms. Despite these advances, translation to the clinical phase remains constrained by persistent limitations, such as immune clearance, loss of membrane integrity during cargo loading, limited tissue penetration of carrier cells, and manufacturing challenges. Finally, we highlight future directions, including CAR-cell combinations and artificial cell engineering, that promise to expand the clinical utility of cell-based drug delivery systems in oncology, infectious diseases, and regenerative medicine. Full article
Show Figures

Figure 1

22 pages, 1058 KB  
Review
Recent Advances in Organic Pollutant Removal Technologies for High-Salinity Wastewater
by Jun Dai, Yun Gao, Kinjal J. Shah and Yongjun Sun
Water 2025, 17(16), 2494; https://doi.org/10.3390/w17162494 - 21 Aug 2025
Viewed by 353
Abstract
Industrial processes like farming, food processing, petroleum refinery, and leather manufacturing produce a lot of high-salinity wastewater. This wastewater presents serious environmental risks, such as soil degradation, eutrophication, and water salinization, if it is released without adequate treatment. The sources and features of [...] Read more.
Industrial processes like farming, food processing, petroleum refinery, and leather manufacturing produce a lot of high-salinity wastewater. This wastewater presents serious environmental risks, such as soil degradation, eutrophication, and water salinization, if it is released without adequate treatment. The sources and features of high-salinity wastewater are outlined in this review, along with the main methods for removing organic pollutants, such as physicochemical, biological, and combined treatment approaches. Membrane separation, coagulation–flocculation, and advanced oxidation processes are the primary physicochemical techniques. Anaerobic and aerobic technologies are the two categories into which biological treatments fall. Physicochemical–biological combinations and the fusion of several physicochemical techniques are examples of integrated technologies. In order to achieve sustainable and effective treatment and resource recovery of high-salinity wastewater, this review compares the effectiveness and drawbacks of each method and recommends that future research concentrate on the development of salt-tolerant catalysts, anti-fouling membrane materials, halophilic microbial consortia, and optimized hybrid treatment systems. Full article
Show Figures

Figure 1

29 pages, 1391 KB  
Review
Nanocurcumin and Curcumin-Loaded Nanoparticles in Antimicrobial Photodynamic Therapy: Mechanisms and Emerging Applications
by Edith Dube and Grace Emily Okuthe
Micro 2025, 5(3), 39; https://doi.org/10.3390/micro5030039 - 18 Aug 2025
Viewed by 277
Abstract
The growing threat of antimicrobial resistance has necessitated the development of alternative, non-antibiotic therapies for effective microbial control. Antimicrobial photodynamic therapy, which uses photosensitizers activated by light to generate reactive oxygen species, offers a promising solution. Among natural photosensitizers, curcumin, a polyphenolic compound [...] Read more.
The growing threat of antimicrobial resistance has necessitated the development of alternative, non-antibiotic therapies for effective microbial control. Antimicrobial photodynamic therapy, which uses photosensitizers activated by light to generate reactive oxygen species, offers a promising solution. Among natural photosensitizers, curcumin, a polyphenolic compound from Curcuma longa, has demonstrated broad-spectrum antimicrobial activity through reactive oxygen species-mediated membrane disruption and intracellular damage. However, curcumin’s poor water solubility, low stability, and limited bioavailability hinder its clinical utility. Nanotechnology has emerged as a transformative strategy to overcome these limitations. This review comprehensively explores advances in nanocurcumin- and curcumin-loaded nanoparticles, highlighting their physicochemical enhancements, photodynamic mechanisms, and antimicrobial efficacy against multidrug-resistant and biofilm-associated pathogens. A range of nanocarriers, including chitosan, liposomes, nanobubbles, hybrid metal composites, metal–organic frameworks, and covalent organic frameworks, demonstrate improved microbial targeting, light activation efficiency, and therapeutic outcomes. Applications span wound healing, dental disinfection, food preservation, water treatment, and medical device sterilization. Conclusions and future directions are given, emphasizing the integration of smart nanocarriers and combinatorial therapies to enhance curcumin’s clinical translation. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials—2nd Edition)
Show Figures

Figure 1

19 pages, 1125 KB  
Review
Lignocellulosic Waste-Derived Nanomaterials: Types and Applications in Wastewater Pollutant Removal
by Farabi Hossain, Md Enamul Hoque, Aftab Ahmad Khan and Md Arifuzzaman
Water 2025, 17(16), 2426; https://doi.org/10.3390/w17162426 - 17 Aug 2025
Viewed by 657
Abstract
Industrial wastewater pollution has reached acute levels in the environment; consequently, scientists are developing new sustainable treatment methods. Lignocellulosic biomass (LB) stands as a promising raw material because it originates from agricultural waste, forestry residues, and energy crop production. This review examines the [...] Read more.
Industrial wastewater pollution has reached acute levels in the environment; consequently, scientists are developing new sustainable treatment methods. Lignocellulosic biomass (LB) stands as a promising raw material because it originates from agricultural waste, forestry residues, and energy crop production. This review examines the application of nanomaterials derived from lignocellulosic resources in wastewater management, highlighting their distinctive physical and chemical properties, including a large surface area, adjustable porosity structure, and multifunctional group capability. The collection of nanomaterials incorporating cellulose nanocrystals (CNCs) with lignin nanoparticles, as well as biochar and carbon-based nanostructures, demonstrates high effectiveness in extracting heavy metals, dyes, and organic pollutants through adsorption, membrane filtration, and catalysis mechanisms. Nanomaterials have benefited from recent analytical breakthroughs that improve both their manufacturing potential and eco-friendly character through hybrid catalysis methods and functionalization procedures. This review demonstrates the ability of nanomaterials to simultaneously turn waste into valuable product while cleaning up the environment through their connection to circular bioeconomic principles and the United Nations Sustainable Development Goals (SDGs). This review addresses hurdles related to feedstock variability, production costs, and lifecycle impacts, demonstrating the capability of lignocellulosic nanomaterials to transform wastewater treatment operations while sustaining global sustainability. Full article
Show Figures

Figure 1

24 pages, 1153 KB  
Review
Cryogenic Technologies for Biogas Upgrading: A Critical Review of Processes, Performance, and Prospects
by Dolores Hidalgo and Jesús M. Martín-Marroquín
Technologies 2025, 13(8), 364; https://doi.org/10.3390/technologies13080364 - 16 Aug 2025
Viewed by 488
Abstract
Cryogenic upgrading represents a promising route for the production of high-purity biomethane, aligning with current decarbonization goals and the increasing demand for renewable gases. This review provides a critical assessment of cryogenic technologies applied to biogas purification, focusing on process fundamentals, technological configurations, [...] Read more.
Cryogenic upgrading represents a promising route for the production of high-purity biomethane, aligning with current decarbonization goals and the increasing demand for renewable gases. This review provides a critical assessment of cryogenic technologies applied to biogas purification, focusing on process fundamentals, technological configurations, energy and separation performance, and their industrial integration potential. The analysis covers standalone cryogenic systems as well as hybrid configurations combining cryogenic separation with membrane or chemical pretreatment to enhance efficiency and reduce operating costs. A comparative evaluation of key performance indicators—including methane recovery, specific energy demand, product purity, and technology readiness level—is presented, along with a discussion of representative industrial applications. In addition, recent techno-economic studies are examined to contextualize cryogenic upgrading within the broader landscape of CO2 separation technologies. Environmental trade-offs, investment thresholds, and sensitivity to gas prices and CO2 taxation are also discussed. The review identifies existing technical and economic barriers, outlines research and innovation priorities, and highlights the relevance of process integration with natural gas networks. Overall, cryogenic upgrading is confirmed as a technically viable and environmentally competitive solution for biomethane production, particularly in contexts requiring liquefied biomethane or CO2 recovery. Strategic deployment and regulatory support will be key to accelerating its industrial adoption. The objectives of this review have been met by consolidating the current state of knowledge and identifying specific gaps that warrant further investigation. Future work is expected to address these gaps through targeted experimental studies and technology demonstrations. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

27 pages, 1605 KB  
Article
Using Hydro-Pneumatic Energy Storage for Improving Offshore Wind-Driven Green Hydrogen Production—A Preliminary Feasibility Study in the Central Mediterranean Sea
by Oleksii Pirotti, Diane Scicluna, Robert N. Farrugia, Tonio Sant and Daniel Buhagiar
Energies 2025, 18(16), 4344; https://doi.org/10.3390/en18164344 - 14 Aug 2025
Viewed by 451
Abstract
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant [...] Read more.
This paper presents a preliminary feasibility study for integrating hydro-pneumatic energy storage (HPES) with off-grid offshore wind turbines and green hydrogen production facilities—a concept termed HydroGenEration (HGE). This study compares the performance of this innovative concept system with an off-grid direct wind-to-hydrogen plant concept without energy storage, both under central Mediterranean wind conditions. Numerical simulations were conducted at high temporal resolution, capturing 10-min fluctuations of open field measured wind speeds at an equivalent offshore wind turbine (WT) hub height over a full 1-year, seasonal cycle. Key findings demonstrate that the HPES system of choice, namely the Floating Liquid Piston Accumulator with Sea Water under Compression (FLASC) system, significantly reduces Proton Exchange Membrane (PEM) electrolyser (PEMEL) On/Off cycling (with a 66% reduction in On/Off events), while maintaining hydrogen production levels, despite the integration of the energy storage system, which has a projected round-trip efficiency of 75%. The FLASC-integrated HGE solution also marginally reduces renewable energy curtailment by approximately 0.3% during the 12-month timeframe. Economic analysis reveals that while the FLASC HPES system does introduce an additional capital cost into the energy chain, it still yields substantial operational savings exceeding EUR 3 million annually through extended PEM electrolyser lifetime and improved operational efficiency. The Levelized Cost of Hydrogen (LCOH) for the FLASC-integrated HGE system, which is estimated to be EUR 18.83/kg, proves more economical than a direct wind-to-hydrogen approach with a levelized cost of EUR 21.09/kg of H2 produced. This result was achieved through more efficient utilisation of wind energy interfaced with energy storage as it mitigated the natural intermittency of the wind and increased the lifecycle of the equipment, especially that of the PEM electrolysers. Three scenario models were created to project future costs. As electrolyser technologies advance, cost reductions would be expected, and this was one of the scenarios envisaged for the future. These scenarios reinforce the technical and economic viability of the HGE concept for offshore green hydrogen production, particularly in the Mediterranean, and in regions having similar moderate wind resources and deeper seas for offshore hybrid sustainable energy systems. Full article
Show Figures

Figure 1

21 pages, 1693 KB  
Article
Calibration and Validation of a PEM Fuel Cell Hybrid Powertrain Model for Energy Management System Design
by Zihao Guo, Elia Grano, Francesco Mazzeo, Henrique de Carvalho Pinheiro and Massimiliana Carello
Designs 2025, 9(4), 94; https://doi.org/10.3390/designs9040094 - 12 Aug 2025
Viewed by 319
Abstract
This paper presents a calibrated and dynamically responsive simulation framework for hybrid energy systems that integrate Proton Exchange Membrane Fuel Cells (PEMFCs) and batteries, targeting applications in light commercial vehicles (LCVs). The aim is to support the design and assessment of energy management [...] Read more.
This paper presents a calibrated and dynamically responsive simulation framework for hybrid energy systems that integrate Proton Exchange Membrane Fuel Cells (PEMFCs) and batteries, targeting applications in light commercial vehicles (LCVs). The aim is to support the design and assessment of energy management strategies (EMS) under realistic operating conditions. A publicly available PEMFC model is used as the starting point. To improve its representativeness, calibration is performed using experimental polarization curve data, enhancing the accuracy of the stack voltage model, and the air compressor model—critical for maintaining stable fuel cell operation—is adjusted to reflect measured transient responses, ensuring realistic system behavior under varying load demands. Quantitatively, the calibration results are strong: the R2 values of both the fuel cell polarization curve and the overall system efficiency are around 0.99, indicating excellent agreement with experimental data. The calibrated model is embedded within a complete hybrid vehicle powertrain simulation, incorporating longitudinal dynamics and control strategies for power distribution between the battery and fuel cells. Simulations conducted under WLTP driving cycles confirm the model’s ability to replicate key behaviors of PEMFC-battery hybrid systems, particularly with respect to dynamic energy flow and system response. In conclusion, this work provides a reliable and high-fidelity simulation environment based on empirical calibration of key subsystems, which is well suited for the development and evaluation of advanced EMS algorithms. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

30 pages, 4173 KB  
Review
Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy
by Xiaoqing Wu, Yueli Shu, Yao Zheng, Peichuan Zhang, Hanwen Cong, Yingpei Zou, Hao Cai and Zhengyu Zha
Pharmaceutics 2025, 17(8), 1037; https://doi.org/10.3390/pharmaceutics17081037 - 10 Aug 2025
Viewed by 742
Abstract
Proteolysis-targeting chimeras (PROTACs) selectively degrade target proteins by recruiting intracellular E3 ubiquitin ligases, overcoming the limitations of traditional small-molecule inhibitors that merely block protein function. This approach has garnered significant interest in precision cancer therapy. However, the clinical translation of PROTACs is hindered [...] Read more.
Proteolysis-targeting chimeras (PROTACs) selectively degrade target proteins by recruiting intracellular E3 ubiquitin ligases, overcoming the limitations of traditional small-molecule inhibitors that merely block protein function. This approach has garnered significant interest in precision cancer therapy. However, the clinical translation of PROTACs is hindered by their typically high molecular weight, poor membrane permeability, and suboptimal pharmacokinetic properties. Nanodrug delivery technologies represent a promising approach to overcome the limitations of PROTACs. By encapsulating, conjugating, or integrating PROTACs into functionalized nanocarriers, these systems can substantially enhance solubility and biostability, enable tumor-targeted and stimuli-responsive delivery, and thereby effectively alleviate the “hook effect” and minimize off-target toxicity. This review systematically outlines the primary design strategies for current nano-PROTAC delivery systems, including physical encapsulation, chemical conjugation, carrier-free self-assembly systems, and intelligent “split-and-mix” delivery platforms. We provide an overview and evaluation of recent advances in diverse nanomaterial carriers—such as lipid-based nanoparticles, polymeric nanoparticles, inorganic nanoparticles, biological carriers, and hybrid nanoparticles—highlighting their synergistic therapeutic potential for PROTACs delivery. The clinical translation prospects of these innovative systems are also discussed. This comprehensive analysis aims to deepen the understanding of this rapidly evolving field, address current challenges and opportunities, promote the advancement of nano-PROTACs, and offer insights into their future development. Full article
(This article belongs to the Special Issue Prodrug Strategies for Enhancing Drug Stability and Pharmacokinetics)
Show Figures

Figure 1

19 pages, 6153 KB  
Article
Copper–PLLA-Based Biopolymer Wrinkle Structures for Enhanced Antibacterial Activity
by Petr Slepička, Iva Labíková, Bára Frýdlová, Aneta Pagáčová, Nikola Slepičková Kasálková, Petr Sajdl and Václav Švorčík
Polymers 2025, 17(16), 2173; https://doi.org/10.3390/polym17162173 - 8 Aug 2025
Viewed by 406
Abstract
The increasing prevalence of antibiotic-resistant bacteria has intensified the need for innovative antibacterial surfaces, particularly in biomedical applications. Traditional approaches often rely on chemical agents alone, which may lead to diminishing efficacy over time. To address this, we investigated the development of a [...] Read more.
The increasing prevalence of antibiotic-resistant bacteria has intensified the need for innovative antibacterial surfaces, particularly in biomedical applications. Traditional approaches often rely on chemical agents alone, which may lead to diminishing efficacy over time. To address this, we investigated the development of a novel antibacterial surface by combining the inherent antimicrobial properties of copper with an engineered surface topography on a biopolymer matrix. A copper–poly-L-lactic acid (Cu-PLLA) composite system was fabricated using sputtering deposition followed by controlled thermal treatment to induce wrinkle-like micro- and nanostructures on the surface. The surface morphology was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), confirming the formation of hierarchical wrinkle patterns. The chemical composition and distribution of copper were analyzed via energy-dispersive X-ray spectroscopy (EDS). Antibacterial performance was assessed against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus using standard colony count reduction assays. The Cu-PLLA wrinkled surfaces demonstrated significantly enhanced bactericidal activity compared with flat PLLA and copper-free controls, a finding attributed to a synergistic effect of mechanical membrane disruption and copper-mediated chemical toxicity. These findings suggest that biopolymer–metal hybrid surfaces with engineered topography offer a promising strategy for developing next-generation antibacterial materials suitable for biomedical and clinical use. Full article
(This article belongs to the Special Issue Feature Papers in Polymer Science and Technology)
Show Figures

Graphical abstract

25 pages, 77176 KB  
Article
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
by Mohammed Essoufi, Mohammed Benzaouia, Bekkay Hajji, Abdelhamid Rabhi and Michele Calì
World Electr. Veh. J. 2025, 16(8), 444; https://doi.org/10.3390/wevj16080444 - 6 Aug 2025
Cited by 1 | Viewed by 428
Abstract
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring [...] Read more.
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency, hydrogen consumption, battery state-of-charge, and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution, while the fuzzy logic approach provides greater adaptability to dynamic driving conditions, leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

15 pages, 2632 KB  
Article
Treatment of Dairy Wastewater Retentate After Microfiltration: Evaluation of the Performance of the System Based on Activated Sludge and Activated Carbon
by Maciej Życki, Wioletta Barszcz and Monika Łożyńska
Membranes 2025, 15(8), 237; https://doi.org/10.3390/membranes15080237 - 6 Aug 2025
Viewed by 610
Abstract
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential [...] Read more.
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential batch reactor (SBR) and adsorption on activated carbon. The first stage involved cross-flow microfiltration using a 0.2 µm PVDF membrane at 0.5 bar, resulting in reductions of 99% in turbidity and 79% in chemical oxygen demand (COD), as well as a partial reduction in conductivity. The second stage involved 24-h biological treatment in a sequential batch reactor (SBR) with activated sludge (activated sludge index: 80 cm3/g, MLSS 2500 mg/dm3), resulting in further reductions in COD (62%) and TOC (30%), as well as the removal of 46% of total phosphorus (TP) and 35% of total nitrogen (TN). In the third stage, the decantate underwent adsorption in a column containing powdered activated carbon (PAC; 1 g; S_(BET) = 969 m2 g−1), reducing the concentrations of key indicators to the following levels: COD 84%, TOC 70%, TN 77%, TP 87% and suspended solids 97%. Total pollutant retention ranged from 24.6% to 97.0%. These results confirm that the MF–SBR–PAC system is an effective, compact solution that significantly reduces the load of organic and biogenic pollutants in MF retentates, paving the way for their reuse or safe discharge into the environment. Full article
Show Figures

Figure 1

Back to TopTop