Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (397)

Search Parameters:
Keywords = hydrogen filling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4658 KB  
Article
Conformational and Intermolecular Interaction Analysis of Tiaprofenic Acid: A X-Ray Powder Diffraction and First Principle Modeling Analysis
by Mattia Lopresti, Luca Palin and Marco Milanesio
Molecules 2025, 30(17), 3593; https://doi.org/10.3390/molecules30173593 - 2 Sep 2025
Abstract
(±)-tiaprofenic acid (TA), marketed as (Surgam®), belongs to the family of NSAIDs, with the peculiarity of a reduced incidence of ulcer induction in rats compared with parent drugs. However, some adverse effects were observed, and better knowledge of its interaction with [...] Read more.
(±)-tiaprofenic acid (TA), marketed as (Surgam®), belongs to the family of NSAIDs, with the peculiarity of a reduced incidence of ulcer induction in rats compared with parent drugs. However, some adverse effects were observed, and better knowledge of its interaction with biologic substrates is needed. Unfortunately, unlike most commercial NSAIDs, suitable single crystals for an X-ray diffraction study could not be obtained. To fill the gap, the crystal structure of TA was solved by X-ray powder diffraction, and the molecular interactions stabilizing the structure were analyzed by Hirshfeld surface and energy framework analysis. TA crystallizes in the P21/c space group, with its two enantiomers in the asymmetric unit, further confirming the peculiarity of the crystal structure and the difficulty of solving it. TA packing is characterized by alternating enantiomers connected through hydrogen bonds, forming chains, arranged in layers, stabilized by π-stacking. First principle modeling revealed several stable conformations within 4 kJ/mol of the global minimum and the relaxed potential energy scans revealed modest (8 kJ/mol–15 kJ/mol) energy barriers. Such flat energy landscape suggests flexible and dynamic behavior of tiaprofenic acid in solution and in vivo conditions, with multiple suitable docking sites. Full article
17 pages, 8159 KB  
Article
Bangia fusco-purpurea Vegan Sausages: Orthogonal Experimental Optimization and Gel Formation Mechanism
by Xiaoting Chen, Shiqing Zhuo, Nan Pan, Yongchang Su, Zhiyu Liu and Jingna Wu
Foods 2025, 14(17), 3014; https://doi.org/10.3390/foods14173014 - 28 Aug 2025
Viewed by 262
Abstract
To develop highly nutritious Bangia fusco-purpurea (BFP) vegan sausages, we investigated the effects of BFP, gluten, and xanthan gum–konjac gum–carrageenan complex gel (CG) on the gel strength and sensory quality of the sausages. The formulation process was optimized through single-factor and orthogonal tests, [...] Read more.
To develop highly nutritious Bangia fusco-purpurea (BFP) vegan sausages, we investigated the effects of BFP, gluten, and xanthan gum–konjac gum–carrageenan complex gel (CG) on the gel strength and sensory quality of the sausages. The formulation process was optimized through single-factor and orthogonal tests, whereas the gel formation mechanism of the key factors was explored. The orthogonal test results showed that the optimal addition levels of BFP, gluten, and CG were 5%, 56%, and 37%, respectively. Variance analysis revealed that both gluten and CG significantly affected gel strength (p < 0.05), with gluten notably influencing the overall sensory quality (p < 0.05). Texture profile analysis (TPA) and rheological properties demonstrated that as gluten (33–37%) and CG (52–56%) concentrations increased, the gel strength and elastic modulus exhibited concentration-dependent enhancement. Further analysis of the sulfhydryl content, disulfide bonds, surface hydrophobicity, and microstructure revealed that higher gluten content promoted intermolecular disulfide crosslinking and hydrophobic group exposure, whereas CG contributed to physical filling via hydrogen and ionic bonds, resulting in a uniform and dense gel network structure. The synergistic effects of gluten and CG enhanced the gel properties of BFP vegan sausages, providing a theoretical foundation for the development of high-quality plant protein-based meat alternatives. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

46 pages, 7349 KB  
Review
Convergence of Thermistor Materials and Focal Plane Arrays in Uncooled Microbolometers: Trends and Perspectives
by Bo Wang, Xuewei Zhao, Tianyu Dong, Ben Li, Fan Zhang, Jiale Su, Yuhui Ren, Xiangliang Duan, Hongxiao Lin, Yuanhao Miao and Henry H. Radamson
Nanomaterials 2025, 15(17), 1316; https://doi.org/10.3390/nano15171316 - 27 Aug 2025
Viewed by 204
Abstract
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) [...] Read more.
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) remains predominant, with Al-doped films via atomic layer deposition (ALD) achieving a temperature coefficient of resistance (TCR) of −4.2%/K and significant 1/f noise reduction when combined with single-walled carbon nanotubes (SWCNTs). Silicon-based materials, such as phosphorus-doped hydrogenated amorphous silicon (α-Si:H), exhibit a TCR exceeding −5%/K, while titanium oxide (TiOx) attains TCR values up to −7.2%/K through ALD and annealing. Emerging materials including GeSn alloys and semiconducting SWCNT networks show promise, with SWCNTs achieving a TCR of −6.5%/K and noise equivalent power (NEP) as low as 1.2 mW/√Hz. Advances in FPA technology feature pixel pitches reduced to 6 μm enabled by vertical nanotube thermal isolation, alongside the 3D heterogeneous integration of single-crystalline Si-based materials with readout circuits, yielding improved fill factors and responsivity. State-of-the-art VOx-based FPAs demonstrate noise equivalent temperature differences (NETD) below 30 mK and specific detectivity (D*) near 2 × 1010 cm⋅Hz 1/2/W. Future advancements will leverage materials-driven innovation (e.g., GeSn/SWCNT composites) and process optimization (e.g., plasma-enhanced ALD) to enable ultra-high-resolution imaging in both civil and military applications. This review underscores the central role of material innovation and system optimization in propelling microbolometer technology toward ultra-high resolution, high sensitivity, high reliability, and broad applicability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

20 pages, 2572 KB  
Article
Ball-Milling-Assisted Fe3O4 Loadings of Rice Straw Biochar for Enhanced Tetracycline Adsorption in Aquatic Systems
by Yuxin Liu, Haizhang Yu, Yuchen Xing, Qi Zhao, Rukeya Ashan, Bo Feng, Bo Tao, Qianyi Shangguan, Yucheng Liu, Haiyan Zhang and Guanya Ji
Agronomy 2025, 15(8), 1987; https://doi.org/10.3390/agronomy15081987 - 19 Aug 2025
Viewed by 380
Abstract
Antibiotic contaminants such as tetracycline (TC) from agricultural production have become widely distributed and persistently accumulated in aquatic environments (rivers, lakes, and oceans), posing severe threats to ecological security and human health. This study developed a modified rice-straw-derived biochar through NaOH activation and [...] Read more.
Antibiotic contaminants such as tetracycline (TC) from agricultural production have become widely distributed and persistently accumulated in aquatic environments (rivers, lakes, and oceans), posing severe threats to ecological security and human health. This study developed a modified rice-straw-derived biochar through NaOH activation and ball-milling-assisted Fe3O4 loading, which simultaneously enhanced TC adsorption capacity and enabled magnetic recovery. The Box–Behnken design (BBD) response surface methodology was employed to optimize three key preparation parameters: ball-milling time (A, 39.95 min), frequency (B, 57.23 Hz), and Fe3O4/biochar mass ratio (C, 2.85:1), with TC adsorption capacity as the response value. The modified biochar was systematically characterized using SEM, BET, FTIR, XRD, and XPS, while adsorption mechanisms were elucidated through kinetic studies, isotherm analyses, and pH-dependent experiments. The results demonstrate that modification via ball-milling with Fe3O4 loading significantly enhanced the biochar’s tetracycline adsorption capacity. The maximum adsorption capacity of the modified biochar reached 102.875 mg/g, representing a 114.85% increase from the initial value of 47.882 mg/g observed for the pristine biochar. Furthermore, the modified biochar exhibited excellent stability, maintaining robust adsorption performance across a wide pH range. The primary adsorption mechanisms involved metal coordination complexation, supplemented by hydrogen bonding, π-π interactions, and pore filling. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Graphical abstract

26 pages, 11995 KB  
Article
Research on Hydrogen/Deuterium Permeation Behavior and Influencing Factors of X52MS Pipeline Steel
by Ning Liu, Ke Jin, Junqiang Ren, Jie Sheng, Xuefeng Lu and Xingchang Tang
Metals 2025, 15(8), 881; https://doi.org/10.3390/met15080881 - 7 Aug 2025
Viewed by 416
Abstract
The hydrogen/deuterium permeation behavior of X52MS pipeline steel with three thicknesses was investigated using the gas/liquid phase permeation method by changing the current density and regulating the surface roughness. The permeation curves under different conditions were obtained, the hydrogen/deuterium diffusion coefficients and related [...] Read more.
The hydrogen/deuterium permeation behavior of X52MS pipeline steel with three thicknesses was investigated using the gas/liquid phase permeation method by changing the current density and regulating the surface roughness. The permeation curves under different conditions were obtained, the hydrogen/deuterium diffusion coefficients and related important parameters were calculated, and the surface morphology of the hydrogen-filled side was observed using scanning electron microscopy. It is found that the hydrogen diffusion coefficient and diffusion flux increase gradually with an increase in the hydrogen charging current density, while the hydrogen infiltration lag time gradually decreases. With the increase in surface roughness of the specimen, the corrosion degree of the surface after hydrogen penetration decreases, the hydrogen diffusion coefficient gradually decreases, and the penetration time, lag time, and hydrogen concentration on the cathode side gradually increase. Full article
Show Figures

Figure 1

23 pages, 6098 KB  
Article
Performance Optimization of Stacked Weld in Hydrogen Production Reactor Based on Response Surface Methodology–Genetic Algorithm
by Yu Liu, Hongtao Gu, Jincheng Zhang, Zhiyi Leng, Ziguang Wang and Shengfang Zhang
Coatings 2025, 15(8), 889; https://doi.org/10.3390/coatings15080889 - 31 Jul 2025
Viewed by 630
Abstract
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials [...] Read more.
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials to enhance weld performance. Given the varying performance requirements of different weld layers in the stacked weld, a gradient performance optimization method for the stacked weld of hydrogen production reactors based on the response surface methodology (RSM)–genetic algorithm (GA) is proposed. Using tensile strength, the hydrogen embrittlement sensitivity index, fatigue strain strength, creep rate and weld performance evaluation indices, a high-precision regression model for Si and Mo contents and weld performance indices was established through RSM and analysis of variance (ANOVA). A multi-objective optimization mathematical model for gradient improvement of the stacked weld was also established. This model was solved using a GA to obtain the optimal element content combination added to the welding wire and the optimal weld thickness for each weld layer. Finally, submerged arc welding experiments of the stacked weld were conducted according to the optimization results. The results show that the tensile strength of the base layer, filling layer and cover layer of the stacked weld increased by 5.60%, 6.16% and 4.53%, respectively. Hydrogen embrittlement resistance increased by 70.56%, 52.40% and 45.16%, respectively. The fatigue and creep resistance were also improved. The experimental results validate the feasibility and accuracy of the proposed optimization method. Full article
Show Figures

Figure 1

41 pages, 1344 KB  
Article
Strengthening Smart Specialisation Strategies (S3) Through Network Analysis: Policy Insights from a Decade of Innovation Projects in Aragón
by David Rodríguez Ochoa, Nieves Arranz and Marta Fernandez de Arroyabe
Economies 2025, 13(8), 218; https://doi.org/10.3390/economies13080218 - 26 Jul 2025
Viewed by 534
Abstract
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, [...] Read more.
This paper applies a multi-level social network analysis to examine Aragón’s innovation ecosystem, focusing on a decade of competitive public projects (2014–2023) aligned with the region’s Smart Specialisation Strategy (S3) 2021–2027. By mapping and weighting the participation of regional entities across regional, national, and European calls, the study uncovers how all types of local actors organise themselves around key specialisation areas. Moreover, a comparative benchmark is introduced by analysing more than 33,000 Horizon 2020 and Horizon Europe initiatives without Aragonese partners, revealing how to fill structural gaps and enrich the regional ecosystem through international collaboration. Results show strong funding concentration in four fields—Energy, Health, Agri-Food, and Advanced Technologies—while other historically strategic areas like Hydrogen and Water remain underrepresented. Although leading institutions (UNIZAR, CIRCE, ITA, AITIIP) play central roles in connecting academia and industry, direct collaboration among them is limited, pointing to missed synergies. Expanding previous SNA-based assessments, this study introduces a diagnostic tool to guide policy, proposing targeted actions such as challenge-driven calls, dedicated support programs, and cross-border consortia with top EU partners. Applied to two contrasting specialisation areas, the method offers sector-specific recommendations, helping policymakers align Aragón’s innovation capabilities with EU priorities and strengthen its position in both established and emerging domains. Full article
Show Figures

Figure 1

19 pages, 4906 KB  
Article
Laboratory Investigation and Mechanical Evaluation on Xanthan Gum-Reinforced Clay: Unconfined Compression Test, Triaxial Shear Test, and Microstructure Characterization
by Liangbo Ying, Mengqi Xu, Jiale Luo and Wei Wang
Buildings 2025, 15(14), 2438; https://doi.org/10.3390/buildings15142438 - 11 Jul 2025
Viewed by 374
Abstract
Xanthan gum (XG) has potential application prospects as a biopolymer in soil reinforcement engineering. However, there remains a lack of relevant research on its influence on the mechanical properties, microscopic mechanism, and pH value changes in clay. In this study, the effects of [...] Read more.
Xanthan gum (XG) has potential application prospects as a biopolymer in soil reinforcement engineering. However, there remains a lack of relevant research on its influence on the mechanical properties, microscopic mechanism, and pH value changes in clay. In this study, the effects of different XG dosages (0%, 5%, 10%, 15%, and 20%) on the microscopic mechanism, pH value, and mechanical strength of clay at the 7-day curing age were investigated through tests including Zeta potential, infrared spectroscopy, scanning electron microscopy (SEM), pH value, unconfined compressive strength, and triaxial shear strength. The results show that the addition of XG can not only promote charge exchange to generate hydrogen bonds and increase the bonding force between clays but can also form flocculent aggregates between the matrices, cementing the clay, filling the pores, and reducing the porosity of the samples. It can significantly increase the mechanical strength of the sample. When the content of XG is 20%, the unconfined compressive strength (UCS) and cohesion of the sample reach their maximum, increasing by 296% and 806%, respectively, compared with the reference group without XG. The conclusions drawn from this research can not only provide a theoretical reference for improving soft clay foundations but also expand the application research of XG in clay. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 3320 KB  
Article
Numerical Simulation Research on Thermoacoustic Instability of Cryogenic Hydrogen Filling Pipeline
by Qidong Zhang, Yuan Ma, Fushou Xie, Liqiang Ai, Shengbao Wu and Yanzhong Li
Cryo 2025, 1(3), 9; https://doi.org/10.3390/cryo1030009 - 9 Jul 2025
Cited by 1 | Viewed by 239
Abstract
This article uses FLUENT to construct a two-dimensional axisymmetric numerical model of a cryogenic hydrogen charging pipeline. By loading with initial temperature gradient and transient initial pressure disturbance, the basic characteristics of low-temperature hydrogen Taconis thermoacoustic oscillation are calculated, including temperature, heat flux [...] Read more.
This article uses FLUENT to construct a two-dimensional axisymmetric numerical model of a cryogenic hydrogen charging pipeline. By loading with initial temperature gradient and transient initial pressure disturbance, the basic characteristics of low-temperature hydrogen Taconis thermoacoustic oscillation are calculated, including temperature, heat flux density distribution, pressure amplitude, and frequency. The instability boundary of hydrogen TAO is also obtained. The results show that (1) the temperature distribution and flow characteristics of the gas inside the pipeline exhibit significant periodic changes. In the first half of the oscillation period, the cold-end gas moves towards the end of the pipeline. Low-viscosity cold hydrogen is easily heated and rapidly expands. In the second half of the cycle, the expanding cold gas pushes the hot-end gas to move towards the cold end, forming a low-pressure zone and causing gas backflow. (2) Thermoacoustic oscillation can also cause additional thermal leakage on the pipeline wall. The average heat flux during one cycle is 1150.1 W/m2 for inflow and 1087.7 W/m2 for outflow, with a net inflow heat flux of 62.4 W/m2. (3) The instability boundary of the system is mainly determined by the temperature ratio of the cold and hot ends α, temperature gradient β, and length ratio of the cold and hot ends ξ. Increasing the pipe diameter and minimizing the pipe length can effectively weaken the amplitude of thermoacoustic oscillations. This study provides theoretical support for predicting thermoacoustic oscillations in low-temperature hydrogen transport pipeline systems and offers insights for system stability control and design verification. Full article
Show Figures

Figure 1

14 pages, 1775 KB  
Article
Characterization of Recycled Aggregates from Building Demolition Waste for Use in Road Infrastructures
by Majid Ahmadpour, Davood Akbarimehr, Mohammad Rahai and Ali Momeni
Infrastructures 2025, 10(7), 167; https://doi.org/10.3390/infrastructures10070167 - 1 Jul 2025
Viewed by 369
Abstract
In light of rising environmental concerns, the rapid industrial recycling of building demolition waste material (BDWM) is now capable of supporting sustainable development in metropolitan regions. From this perspective, the current study investigated the geotechnical properties and applications of BDWMs as substitutes for [...] Read more.
In light of rising environmental concerns, the rapid industrial recycling of building demolition waste material (BDWM) is now capable of supporting sustainable development in metropolitan regions. From this perspective, the current study investigated the geotechnical properties and applications of BDWMs as substitutes for natural materials (NMs) in road engineering infrastructures. For this purpose, the physical and geotechnical characteristics of both types of materials were initially examined, and then compared using laboratory-scale material comprehensive assessments such as sieve analysis (SA), the flakiness index (FI), the specific gravity test (Gs), the Los Angeles abrasion test (LAAT), Atterberg limits (AL), the water absorption test (WAT), the California bearing ratio (CBR), the direct shear test (DST), and the Proctor soil compaction test (PSCT). The BDWMs were collected from two locations in Iran. According to the results, the collected samples consisted of concrete, bricks, mortar, tile materials, and others. The CBR values for the waste material from the two sites were 69 and 73%, respectively. Furthermore, the optimum water content (OWC) and maximum dry unit weight (MDD) from the two sites were reported as 9.3 and 9.9% and 20.8 and 21 kN/m3, respectively, and the hydrogen potential (pH) as 9 and 10. The shear strength and CBR values indicated that the BDWM had a suitable strength compared to the NM. In terms of road infrastructure applications, the shear strengths were adequate for the analysis of common sub-base materials used in filling and road construction. Furthermore, the study’s findings revealed that BDWMs were suitable replacements for the NM used in road engineering operations and could make a significant contribution to sustainable development. Full article
Show Figures

Figure 1

24 pages, 5788 KB  
Review
Removal of Tetracycline from Water by Biochar: Mechanisms, Challenges, and Future Perspectives
by Lin Zhang, Wentao Yang, Yonglin Chen and Liyu Yang
Water 2025, 17(13), 1960; https://doi.org/10.3390/w17131960 - 30 Jun 2025
Cited by 1 | Viewed by 906
Abstract
Tetracycline (TC) is widely used in medicine and livestock farming. TC is difficult to degrade and tends to persist and accumulate in aquatic environments, and it has gradually become an emerging pollutant. Biochar (BC) has strong potential for removing TC from water. This [...] Read more.
Tetracycline (TC) is widely used in medicine and livestock farming. TC is difficult to degrade and tends to persist and accumulate in aquatic environments, and it has gradually become an emerging pollutant. Biochar (BC) has strong potential for removing TC from water. This potential arises from its excellent surface properties, low-cost raw materials, and renewable nature. However, raw biomass materials are highly diverse, and their preparation conditions vary significantly. Modification methods differ in specificity and the application scenarios are complex. These factors collectively cause unstable TC removal efficiency by biochar. The chemical activation process using KOH/H3PO4 significantly enhanced porosity and surface functionality, transforming raw biochar into an activated carbon material with targeted adsorption capacity. Adjusting the application dosage and environmental factors (particularly pH) further enhanced the removal performance. Solution pH critically governs the adsorption efficiency: optimal conditions (pH 5–7) increased removal by 35–40% through strengthened electrostatic attraction, whereas acidic/alkaline extremes disrupted ionizable functional groups. The dominant adsorption mechanisms of biochar involved π–π interactions, pore filling, hydrophobic interactions, hydrogen bonding, electrostatic interactions, and surface complexation. In addition, the main challenges currently hindering the large-scale application of biochar for the removal of TC from water are highlighted: (i) secondary pollution risks of biochar application from heavy metals, persistent free radicals, and toxic organic leaching; (ii) economic–environmental conflicts due to high preparation/modification costs; and (iii) performance gaps between laboratory studies and real water applications. Full article
Show Figures

Figure 1

22 pages, 8657 KB  
Article
Synergistic Enhancement of Rhodamine B Adsorption by Coffee Shell Biochar Through High-Temperature Pyrolysis and Water Washing
by Xurundong Kan, Yao Suo, Bingfei Shi, Yan Zheng, Zaiqiong Liu, Wenhui Ma, Xianghong Li and Jianqiang Zhang
Molecules 2025, 30(13), 2769; https://doi.org/10.3390/molecules30132769 - 27 Jun 2025
Cited by 1 | Viewed by 554
Abstract
Biochar-based adsorbents synthesized from agricultural wastes have emerged as economical and environmentally sustainable materials for water purification. In this study, coffee shell-derived biochars were synthesized via pyrolysis at 500 and 700 °C, with and without water washing, and comprehensively characterized to evaluate their [...] Read more.
Biochar-based adsorbents synthesized from agricultural wastes have emerged as economical and environmentally sustainable materials for water purification. In this study, coffee shell-derived biochars were synthesized via pyrolysis at 500 and 700 °C, with and without water washing, and comprehensively characterized to evaluate their potential for removing Rhodamine B (RhB) from aqueous solution. Structural and surface analyses indicated that a higher pyrolysis temperature enhanced pore development and aromaticity, whereas water washing effectively removed inorganic ash, thereby exposing additional active sites. Among all samples, water-washed biochar pyrolyzed at 700 °C (WCB700) exhibited the highest surface area (273.6 m2/g) and adsorption capacity (193.5 mg/g). The adsorption kinetics conformed to a pseudo-second-order model, indicating chemisorption, and the equilibrium data fit the Langmuir model, suggesting monolayer coverage. Mechanism analysis highlighted the roles of π–π stacking, hydrogen bonding, electrostatic interaction, and pore filling. Additionally, WCB700 retained more than 85% of its original capacity after five regeneration cycles, demonstrating excellent stability and reusability. This study presents an economical approach to valorizing coffee waste as well as provides mechanistic insights into optimizing biochar surface chemistry for enhanced dye removal. These findings support the application of engineered biochar in scalable and sustainable wastewater treatment technologies. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

13 pages, 2159 KB  
Communication
NiCo(OH)2/NiCo2O4 as a Heterogeneous Catalyst for the Electrooxidation of 5-Hydroxymethylfurfural
by Wen Li, Di Yin, Wanxin Liu, Yi Li and Yijin Wu
Inorganics 2025, 13(7), 211; https://doi.org/10.3390/inorganics13070211 - 24 Jun 2025
Viewed by 547
Abstract
The electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) coupled with water electrolysis for green hydrogen production is a promising strategy to address energy crises and environmental pollution. Despite the suitable adsorption energy for HMF due to their partially filled d-band electronic structures, Ni- or [...] Read more.
The electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) coupled with water electrolysis for green hydrogen production is a promising strategy to address energy crises and environmental pollution. Despite the suitable adsorption energy for HMF due to their partially filled d-band electronic structures, Ni- or Co-based oxides/hydroxides still face challenges in insufficient activity and stability. In this study, a porous heterogeneous nickel cobalt oxide/hydroxide growth on nickel foam (NF), which is defined as NF@NiCo-H/O, was developed via immersion in concentrated alkali solution. Compared with the single-component NiCo oxides, the NF@NiCo-H/O catalyst exhibits a lower application potential of only 1.317 V, 1.395 V, and 1.443 V to achieve current densities of 20, 50, and 100 mA cm−2, respectively, in an alkaline solution containing HMF. Additionally, it demonstrates rapid reaction kinetics with a Tafel slope of 27.6 mV dec−1 and excellent cycling stability. Importantly, the presence of more high-valent Ni3+-O species on the catalyst surface contributes to its exceptional selectivity for 2,5-furandicarboxylic acid (86.7%), Faradaic efficiency (93.1%), and conversion rate (94.4%). This catalyst provides some theoretical guidance for the development of biomass electrooxidation catalysts for sustainable energy and chemical production. Full article
Show Figures

Graphical abstract

14 pages, 3059 KB  
Article
Effect of Hydrogen and Hydrogen-Blended Natural Gas on Additive-Manufactured 316L Stainless Steel in Ambient Oil and Gas Environments
by Gerardo Gamboa, Ali Babakr and Marcus L. Young
Metals 2025, 15(7), 689; https://doi.org/10.3390/met15070689 - 20 Jun 2025
Viewed by 406
Abstract
For over five decades, blending hydrogen into existing natural gas pipelines has been explored as a potential solution to reduce greenhouse gas emissions. Despite its promise, implementing this approach has been slow due to concerns about hydrogen embrittlement (HE) and its interactions with [...] Read more.
For over five decades, blending hydrogen into existing natural gas pipelines has been explored as a potential solution to reduce greenhouse gas emissions. Despite its promise, implementing this approach has been slow due to concerns about hydrogen embrittlement (HE) and its interactions with various metals. Stainless steel alloys like 316L are commonly used in hydrogen service due to their superior resistance to HE. However, the impact of additive manufacturing (AM) on 316L’s susceptibility to HE when subjected to gas charging has not been thoroughly investigated. To fill this knowledge gap, we created conventionally manufactured and AM 316L tensile bars and solubility specimens, which were then exposed to hydrogen-blended natural gas at 10 MPa with a 50% blend and 100% pure H2. Both conventionally manufactured and additively manufactured specimens had as-received/printed samples that were used as controls. The samples underwent mechanical evaluation through tensile testing and hot chemical extraction to assess hydrogen solubility. Further analysis revealed significant changes in the microstructure near the fracture area of the soaked samples using scanning electron microscope fractography and metallography. These findings were compared with our previous work on traditionally produced 316L bar stock, which demonstrated that AM processing conditions can yield superior performance in terms of resistance to HE. Notably, this study provides valuable insights into the effects of AM on 316L’s susceptibility to HE when subjected to gas charging. The results have significant implications for the development and implementation of AM 316L for hydrogen/natural gas applications in pressure regulators when AM processing conditions are well-controlled. This article is a revised and expanded version of a paper entitled “Effect of Hydrogen-Blended Natural Gas on Additive Manufactured 316L Stainless Steel in Pressure Regulator Environments”, which was presented at TMS in Las Vegas, March 2025. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals and Alloys)
Show Figures

Figure 1

16 pages, 2807 KB  
Article
Enhancing Water Splitting Performance via NiFeP-CoP on Cobalt Foam: Synergistic Effects and Structural Optimization
by Shihu Zhu, Yingxing Yang, Mengyao Zhao, Hui Zhao, Siyuan Liu and Jinyou Zheng
Nanomaterials 2025, 15(12), 883; https://doi.org/10.3390/nano15120883 - 7 Jun 2025
Viewed by 661
Abstract
Hydrogen energy holds great promise for alleviating energy and environmental issues, with alkaline electrochemical water splitting being a key approach for hydrogen production. However, the high cost and limited availability of noble-metal catalysts hinder its widespread application. This study presents a novel method [...] Read more.
Hydrogen energy holds great promise for alleviating energy and environmental issues, with alkaline electrochemical water splitting being a key approach for hydrogen production. However, the high cost and limited availability of noble-metal catalysts hinder its widespread application. This study presents a novel method to fabricate a NiFeP-CoP/CF electrode. By growing CoOOH nanosheets on Co foam at low temperatures and filling the gaps between nanosheets with Ni and Fe phosphides, the prepared electrode exhibits outstanding electrocatalytic performance. For the oxygen evolution reaction (OER) in alkaline media, it requires overpotentials of only 235 mV and 290 mV to reach current densities of 10 mA cm−2 and 100 mA cm−2, respectively. In the case of the hydrogen evolution reaction (HER), overpotentials of 89 mV and 172 mV are needed to achieve current densities of −10 mA cm−2 and −100 mA cm−2. The NiFeP-CoP/CF-based electrolytic cell requires a cell voltage of only 1.70 V to achieve a current density of 100 mA cm−2 for overall water splitting. Moreover, during long-term continuous operation at 100 mA cm−2, the overpotential for OER remains constant while that for HER decreases. The low-temperature growth of CoOOH nanosheets on Co foam provides a new strategy for large-scale electrode production applicable in electrochemical processes and pollutant degradation. Significantly, filling the nanosheet gaps with phosphides effectively enhances the electrocatalytic performance of the system. This work offers a facile and cost-effective technique for the large-scale production of metallic (oxyhydr)hydroxides for electrocatalytic water splitting, showing great potential for industrial applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

Back to TopTop