Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,164)

Search Parameters:
Keywords = hydrophilic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3213 KB  
Article
Mechanical Ball Milling-Assisted Synthesis of Esterified Starch for Polybutylene Succinate Blend with Improved Performance
by Wenjing Cai, Canqi Huo, Jisuan Tan, Zirun Chen, Yanzhen Yin and Yong Jin
Molecules 2025, 30(20), 4088; https://doi.org/10.3390/molecules30204088 (registering DOI) - 15 Oct 2025
Abstract
Polybutylene succinate (PBS), as one of the most promising multi-application polymer, still suffers from low toughness, poor miscibility, and high crystallinity. Blending with starch is an effective strategy to improve the properties of PBS, but the compatibility and dispersity between starch and PBS [...] Read more.
Polybutylene succinate (PBS), as one of the most promising multi-application polymer, still suffers from low toughness, poor miscibility, and high crystallinity. Blending with starch is an effective strategy to improve the properties of PBS, but the compatibility and dispersity between starch and PBS still need to be optimized. In this study, mechanical ball milling was carried out to synthesize esterified starch and the subsequent PBS/esterified starch blend. The FT-IR and XPS analyses confirmed the existence of molecular interactions between PBS and esterified starch. SEM images showed a homogeneous surface for the PBS/esterified starch blend, highlighting the favorable compatibility and good dispersion of starch within the PBS matrix. TGA, DSC, and VSP tests indicated that the introduction of esterified starch into PBS lowered the thermal transition temperatures, thereby enhancing the processability. WCA measurements displayed that the water contact angle of the PBS/esterified starch blends gradually decreased with increasing esterified starch content, proving the improved hydrophilicity of PBS/esterified starch blends. Mechanical testing indicated that incorporating 5 wt% esterified starch into PBS significantly improved the tensile strength to 36.35 ± 2.16 MPa and the breaking elongation to 27.18 ± 5.08%, surpassing those of the pure PBS, PBS/esterified starch mixture, and PBS/starch blend. Our study indicates that mechanical ball milling is an efficient method to improve the properties of PBS composites. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

18 pages, 3511 KB  
Article
Nb2CTx Mxene—Pistachio Shell-Filled Chitosan Coatings on Zn Biomaterial for In Vitro Corrosion and Bioactivity Improvement
by Mehmet Topuz and Fatma Coskun Topuz
Coatings 2025, 15(10), 1210; https://doi.org/10.3390/coatings15101210 - 14 Oct 2025
Abstract
This study aims to enhance the corrosion resistance and bioactivity of zinc surfaces through the development of chitosan–pistachio shell (CPM) coatings reinforced with Nb2CTx MXene. The approach introduces a sustainable pathway by incorporating waste pistachio shells as a natural, eco-friendly [...] Read more.
This study aims to enhance the corrosion resistance and bioactivity of zinc surfaces through the development of chitosan–pistachio shell (CPM) coatings reinforced with Nb2CTx MXene. The approach introduces a sustainable pathway by incorporating waste pistachio shells as a natural, eco-friendly additive within a biopolymer matrix. Comprehensive structural and surface characterizations confirmed the homogeneous dispersion of Nb2CTx and the successful fabrication of the hybrid coating. Electrochemical analyses in simulated body fluid demonstrated that the CPM coatings markedly improved the corrosion protection of zinc by shifting the corrosion potential to more noble values, reducing current density and increasing polarization resistance. Impedance results further indicated enhanced charge transfer resistance and stable diffusion-controlled behavior. The coatings also exhibited stronger adhesion, higher hydrophilicity, and improved surface compatibility. After immersion in simulated body fluid, the formation of a dense apatite layer on the CPM surface confirmed the coating’s excellent bioactivity. These findings demonstrate that Nb2CTx-reinforced CPM coatings significantly enhance the functional performance of zinc, combining corrosion resistance, biocompatibility, and mechanical stability. Moreover, the use of pistachio shell waste underscores the potential of sustainable biomaterials in developing environmentally friendly coatings for biomedical applications. Full article
Show Figures

Figure 1

17 pages, 795 KB  
Review
Methodologies for Detoxifying Bivalves from Marine Paralytic Shellfish Toxins
by Adewale Aderogba, Joana F. Leal and Maria L. S. Cristiano
Mar. Drugs 2025, 23(10), 398; https://doi.org/10.3390/md23100398 (registering DOI) - 12 Oct 2025
Viewed by 48
Abstract
The marine environment emerges as a key provider of food and sustainable products. However, these benefits are accompanied by numerous challenges owing to harmful algal blooms (HAB) and their associated biotoxins, which accumulate in organisms, like bivalves, threatening seafood quality. Among the various [...] Read more.
The marine environment emerges as a key provider of food and sustainable products. However, these benefits are accompanied by numerous challenges owing to harmful algal blooms (HAB) and their associated biotoxins, which accumulate in organisms, like bivalves, threatening seafood quality. Among the various biotoxins, paralytic shellfish toxins (PST), the causative agents of paralytic shellfish poisoning (PSP), are among the most potent, lethal, and frequently reported instances of human intoxication. Removing PST from marine system is particularly challenging because of their hydrophilicity, susceptibility to biotransformation and the potential influence of other substances naturally present in the environment. Although there are several methods applied to mitigate HAB, to the best of our knowledge there are no proven effective methods for removing PST in marine environments. Consequently, there is a need to develop efficient removal technologies, especially envisaging fast, environmentally safe, inexpensive, and readily available solutions. Having examined several proposed methods for removing PST (e.g., thermal and industrial procedures, adsorption using different materials, photodegradation, AOPs) and comparing their efficacy, this study aims to streamline the current knowledge on PST removal, identify knowledge gaps, and provide valuable insights for researchers, environmental managers, and policymakers engaged in mitigating the risks associated with PST. Full article
Show Figures

Graphical abstract

17 pages, 2870 KB  
Article
Nitrogen-Doped Carbon Dots Alleviate Pesticide Toxicity in Tomato by Regulating Antioxidant Systems
by Xu Zhang, Yu Xin, Hao Wang, Yuting Dang, Wenhui Wang, Yi Gao, Yu Han, Rongrui Kang, Qinghua Shi and Han Du
Int. J. Mol. Sci. 2025, 26(20), 9916; https://doi.org/10.3390/ijms26209916 (registering DOI) - 12 Oct 2025
Viewed by 125
Abstract
The overuse of pesticides has raised serious food-safety and environmental concerns. Carbon dots (CDs) can act as biostimulants by enhancing photosynthesis, thereby promoting plant growth and stress tolerance. However, their roles in plant pesticide detoxification remain unclear. This study synthesized nitrogen-doped carbon dots [...] Read more.
The overuse of pesticides has raised serious food-safety and environmental concerns. Carbon dots (CDs) can act as biostimulants by enhancing photosynthesis, thereby promoting plant growth and stress tolerance. However, their roles in plant pesticide detoxification remain unclear. This study synthesized nitrogen-doped carbon dots (N-CDs) with strong blue fluorescence, excellent biocompatibility, and no cytotoxicity observed in HEK 293T cells. The N-CDs were synthesized from 1.025 g citric acid and 0.379 g urea, producing particles with a size of around 2.42 nm and abundant hydrophilic groups. When applied to tomato plants, N-CDs (especially at 150 mg·L−1) significantly reduced chlorothalonil (CHT) residues affecting tomato, by up to 66%. Importantly, N-CDs also improved tomato plant growth, reversing the negative effects of CHT on key parameters such as height, leaf area, and biomass. Indeed, under CHT conditions, N-CDs significantly reduced the contents of malondialdehyde, superoxide, and hydrogen peroxide. In contrast, N-CDs significantly increased the activities of superoxide dismutase, peroxidases, catalase, and ascorbate peroxidase to 117.57%, 158.53%, 162.79%, and 152.23%, respectively. Notably, N-CDs dramatically changed the glutathione pool for tomato detoxification. Overall, this study synthesized the non-cytotoxic N-CDs that not only promote tomato growth but also alleviate CHT toxicity by strengthening the tomato’s antioxidant defense system. Full article
Show Figures

Figure 1

12 pages, 2637 KB  
Article
Comparative Study on the Effect of Carbon Existence Form and Sulfur on the Hydrophilicity of Coal Pyrite Surface Based on the Density Functional Theory
by Peng Xi, Xiaoyu Tang, Fengling Sun, Xiaoping Fan, Guangpei Cong and Qiming Zhuo
Processes 2025, 13(10), 3232; https://doi.org/10.3390/pr13103232 - 10 Oct 2025
Viewed by 132
Abstract
Density functional theory (DFT) calculations were employed to examine how carbon defects, symbiosis, and sulfur influence the wettability of coal pyrite by analyzing H2O adsorption on distinct surface configurations. The comparison results of adsorption energy, Mulliken population, charge density, and electronic [...] Read more.
Density functional theory (DFT) calculations were employed to examine how carbon defects, symbiosis, and sulfur influence the wettability of coal pyrite by analyzing H2O adsorption on distinct surface configurations. The comparison results of adsorption energy, Mulliken population, charge density, and electronic state density of water molecules on the surface of pyrite doped with carbon atoms show that the presence of carbon doping reduces the negative value of the adsorption energy of water molecules on the pyrite surface, the C atoms on the pyrite surface form weaker C-H bonds with the H atoms in the water molecules, the Fe-O bond strength weakens, and the thermodynamic trend weakens. And the bond of the pyrite surface with adsorbed carbon changes from an Fe-O bond to an Fe-C-O bond. The adsorption of water molecules on the pyrite surface is weakened, and there is a weaker thermodynamic trend. This is because the adsorption of carbon atoms changes from hydrophilic to nearly hydrophobic. The physical adsorption of sulfur atoms changes the adsorption energy of water molecules on the pyrite surface from negative to positive, and the bond changes from an Fe-O bond to an Fe-S-O bond, indicating that the adsorption intensity of water molecules on the pyrite surface with adsorbed sulfur is weakened, and there is no thermodynamic trend. The pyrite surface with adsorbed sulfur changes from hydrophilic to hydrophobic. Under the same impurity atom doping or adsorption concentration, the influence of sulfur on the adsorption of water molecules on the surface of pyrite is the greatest, followed by the adsorbed carbon, and the weakest is the carbon atom doping. Macroscopically, the overall hydrophobicity of the surface of coal-bearing pyrite covered with sulfur is greater than that of pyrite containing adsorbed carbon and even greater than that of coal-bearing pyrite doped with carbon atoms. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

41 pages, 11839 KB  
Review
Recent Progress in Cellulose-Based Aerogels for Sustainable Oil–Water Separation Technologies
by Karvembu Palanisamy, Gowthami Palanisamy, Yeong Min Im, Sadhasivam Thangarasu, Urmila Gupta Phutela and Tae Hwan Oh
Polymers 2025, 17(20), 2723; https://doi.org/10.3390/polym17202723 - 10 Oct 2025
Viewed by 156
Abstract
Polymer-based aerogels have recently received considerable research attention as a favorable option for oil–water separation due to their enhanced porous 3D structure with great specific surface area, low density and outstanding sorption behavior. Additionally, polymer-containing aerogels exhibit more favorable characteristic properties, such as [...] Read more.
Polymer-based aerogels have recently received considerable research attention as a favorable option for oil–water separation due to their enhanced porous 3D structure with great specific surface area, low density and outstanding sorption behavior. Additionally, polymer-containing aerogels exhibit more favorable characteristic properties, such as being lipophilic–hydrophobic (superhydrophobic–superoleophilic), hydrophilic–lipophobic (superhydrophilic–underwater oleophobic), or other specific wetness forms, including anisotropic and dual-wettability. In this review, cellulose and cellulose-based materials used as an aerogel for oil–water separation are comprehensively reviewed. This review highlights the significance of cellulose and cellulose-based combinations through structure–property interactions, surface modifications (using different hydrophilic and hydrophobic agents), and aerogel formation, focusing on the light density and high surface area of aerogels for effective oil–water separation. This article provides an in-depth review of four primary classifications of cellulose-based aerogels, namely, cellulose aerogels (regenerated cellulose and bacterial cellulose), cellulose with biopolymer-based aerogels (chitosan, lignin, and alginate), cellulose with synthetic polymer aerogels (polyvinyl alcohol, polyetherimide, polydopamine and others), and cellulose with organic/inorganic (such as SiO2, MTMS, and tannic acid) material-based aerogels. Furthermore, the aspects of performance, scalability, and durability have been explained, alongside potential prospect directions for the advancement of cellulose aerogels aimed at their widespread application. This review article stands apart from previously published review works and represents the comprehensive review on cellulose-based aerogels for oil–water separation, featuring wide-ranging classifications. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Energy and Environment Applications)
Show Figures

Figure 1

22 pages, 26983 KB  
Article
Achieving Large-Area Hot Embossing of Anti-Icing Functional Microstructures Based on a Multi-Arc Ion-Plating Mold
by Xiaoliang Wang, Han Luo, Hongpeng Jiang, Zhenjia Wang, Ziyang Wang, Haibao Lu, Jun Xu, Debin Shan, Bin Guo and Jie Xu
Materials 2025, 18(19), 4643; https://doi.org/10.3390/ma18194643 - 9 Oct 2025
Viewed by 193
Abstract
Aluminum alloy surface microstructures possess functional characteristics such as hydrophilicity/hydrophobicity and anti-icing and have important applications in fields such as aerospace and power systems. In order to improve the filling quality of the microstructure and verify the anti-icing property of the microstructure, this [...] Read more.
Aluminum alloy surface microstructures possess functional characteristics such as hydrophilicity/hydrophobicity and anti-icing and have important applications in fields such as aerospace and power systems. In order to improve the filling quality of the microstructure and verify the anti-icing property of the microstructure, this work develops a scheme for achieving large-area hot embossing of anti-icing functional microstructures based on a multi-arc ion-plating mold. Compared with conventional steel, the hardness of the PVD-coated steel increases by 44.7%, the friction coefficient decreases by 66.2%, and the wear resistance is significantly enhanced. The PVD-coated punch-assisted embossing could significantly improve filling properties. While the embossing temperature is 300 °C, the PVD-coated punch-assisted embossing can ensure the complete filling of the micro-array channels. In contrast, under-filling defects occur in conventional hot embossing. Then, a large-area micro-channel specimen of 100 cm2 was precisely formed without warping, and the average surface roughness Ra was better than 0.8 µm. The maximum freezing fraction of the micro-array channel was reduced by about 53.2% compared with the planar, and the complete freezing time was delayed by 193.3%. The main reason is that the air layer trapped by the hydrophobic structures hinders heat loss at the solid–liquid interface. Full article
Show Figures

Figure 1

18 pages, 5645 KB  
Article
Cost-Effective and Durable Ceramic Membrane: Fabrication and Performance Optimization
by Ahmed H. El-Shazly and Yomna A. Fahmy
Membranes 2025, 15(10), 307; https://doi.org/10.3390/membranes15100307 - 9 Oct 2025
Viewed by 254
Abstract
The main objective of this work is to develop a cost-effective and durable ceramic membrane for water purification. The low-cost ceramic membrane was fabricated using readily available materials, such as clays, aluminum oxide, and calcium carbonate, The membrane was fabricated by uniaxial pressing [...] Read more.
The main objective of this work is to develop a cost-effective and durable ceramic membrane for water purification. The low-cost ceramic membrane was fabricated using readily available materials, such as clays, aluminum oxide, and calcium carbonate, The membrane was fabricated by uniaxial pressing at different pressures and sintering temperatures, then tested using a scanning electron microscope (SEM) and XRD. The porosity of the resulting membrane was 38.7%, and the contact angle was 65° indicating good hydrophilicity for filtration applications. The main composition was 70% clay, 25% CaCO3, and 5% alumina. The removal % for methylene blue was tested at varying concentrations, achieving up to 99% removal, an initial flux of 496.8 L m−2 h−1, and an average pore size of 2 µm. Furthermore, the research explores the effect of backwashing cycles and techniques on the membrane long-term performance. The results indicated that washing the membrane for four cycles to cleanness has achieved an improved efficiency of the membrane and % dye rejection. Back washing was achieved using no chemicals; only distilled water and drying were used. A preliminary costs assessment of the production for affordable membrane resulted in a value of 170 USD/m2. The findings demonstrate that optimizing backwashing cycles is essential for prolonging the membrane lifespan and lowering operation costs. Full article
(This article belongs to the Special Issue Ceramic Membranes for Wastewater and Water Reuse (2nd Edition))
Show Figures

Figure 1

18 pages, 3996 KB  
Article
Electropolymerization of 5-Indolylboronic Acid: Morphological, Spectroscopic, and Electrochemical Characterization with Perspective Toward Functional Applications
by Danilo Ramos, María Jesús Aguirre and Francisco Armijo
Polymers 2025, 17(19), 2702; https://doi.org/10.3390/polym17192702 - 8 Oct 2025
Viewed by 338
Abstract
Poly(5-indolylboronic acid) was synthesized electrochemically via cyclic voltammetry using various electrodes, including screen-printed carbon electrodes, glassy carbon electrodes, highly oriented pyrolytic graphite, and 304 stainless steel. This study provides a thorough analysis of the resulting conducting polymer’s electrochemical behavior, morphological and structural characteristics, [...] Read more.
Poly(5-indolylboronic acid) was synthesized electrochemically via cyclic voltammetry using various electrodes, including screen-printed carbon electrodes, glassy carbon electrodes, highly oriented pyrolytic graphite, and 304 stainless steel. This study provides a thorough analysis of the resulting conducting polymer’s electrochemical behavior, morphological and structural characteristics, and potential applications. The following techniques were employed: cyclic voltammetry, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and field-emission scanning electron microscopy. The polymer exhibits pH-dependent redox activity within the pH range of 4–10, displaying Nernstian behavior and achieving a specific areal capacitance of 0.234 mF∙cm−2 on an SPCE electrode. This result highlights the electrode’s efficiency in terms of charge storage. Impedance data indicate that the modified electrodes demonstrate a substantial decrease in charge transfer resistance and improved interfacial conductivity compared to bare electrodes. Contact angle measurements show that the presence of boronic acid groups makes the polymer hydrophilic. However, when 5PIBA was incubated in the presence of molecules containing hydroxyl groups or certain proteins, such as casein, no adsorption was observed. This suggests limited interaction with functional groups such as amino, hydroxide, and carboxyl groups present in these molecules, indicating the potential application of the polymer in biocorrosion. 5PIBA forms homogeneous, stable, and electroactive coatings on various substrates, making it a promising and versatile material for electrochemical technologies, and paving the way for future functionalization strategies. Full article
(This article belongs to the Special Issue Advanced Electrically Conductive Polymers and Composites)
Show Figures

Figure 1

12 pages, 3054 KB  
Article
The Influence of Y2O3 Nanoparticles on the Permeation Properties of Polyethersulfone Membranes
by Andreea Liliana Lazăr, Adrian Cîrciumaru, Gina Genoveva Istrate, Eliza Dănăilă and Ștefan Baltă
Separations 2025, 12(10), 272; https://doi.org/10.3390/separations12100272 - 7 Oct 2025
Viewed by 187
Abstract
Y2O3 nanoparticles were used in a polyethersulfone (PES) as additives to increase the permeation properties of the polymeric membranes. Membranes were manufactured by diffusion-induced phase inversion in N-methyl-pyrrolidone (NMP) using a different concentration of nanoparticles. Y2O3 is [...] Read more.
Y2O3 nanoparticles were used in a polyethersulfone (PES) as additives to increase the permeation properties of the polymeric membranes. Membranes were manufactured by diffusion-induced phase inversion in N-methyl-pyrrolidone (NMP) using a different concentration of nanoparticles. Y2O3 is used in polymeric membranes to enhance their functional properties, especially in wastewater treatment processes. Incorporating Y2O3 nanoparticles into the polymer matrix improves the membrane’s hydrophilicity, permeability, and mechanical strength. Additionally, Y2O3 provides better properties and reduces fouling. Recent studies highlight its potential as a modifying agent for advanced composite membranes. This paper investigated challenges in the synthesis of Y2O3-enhanced membranes and links synthesis with performance. It was observed that the composite membranes have better permeation properties by adding a small amount of Y2O3. For membranes at 21 wt.% PES permeability increase from 107 to 112 L/m2·h/bar. Fouling performance increases by adding nanoparticles, relative flux decreases by 30% for membranes without nanoparticles and by 10% for membranes with nanoparticles, both at a concentration of 25% PES. Rejection increases for membranes at 21%Pes from 21% for membranes without nanoparticles to 39% for membranes with nanoparticles. The influence of Y2O3 nanoparticles on the membranes’ performance was determined by filtration experiments to establish the permeability, fouling, retention, and the water flux; by contact angle to establish the surface hydrophilicity; and by SEM to investigate the membranes’ structures. Full article
Show Figures

Figure 1

15 pages, 3339 KB  
Article
Genome-Wide Identification and Expression Analysis of the SPL Gene Family in Phalaenopsis equestris
by Xule Zhang, Lei Feng, Qingdi Hu, Yaping Hu, Xiaohua Ma and Jian Zheng
Plants 2025, 14(19), 3090; https://doi.org/10.3390/plants14193090 - 7 Oct 2025
Viewed by 320
Abstract
The SQUAMOSA promoter-binding protein-like (SPL/SBP) family plays crucial roles in multiple developmental processes. Phalaenopsis equestris is a key ornamental and breeding species known for producing abundant colorful flowers on a single inflorescence. The SPL gene family in this species remains largely uncharacterized. In [...] Read more.
The SQUAMOSA promoter-binding protein-like (SPL/SBP) family plays crucial roles in multiple developmental processes. Phalaenopsis equestris is a key ornamental and breeding species known for producing abundant colorful flowers on a single inflorescence. The SPL gene family in this species remains largely uncharacterized. In this study, 15 SPL genes were identified, all encoding proteins that are bioinformatically predicted to be nuclear-localized, hydrophilic, and unstable, with conserved SBP domains. Phylogenetic and collinearity analyses revealed a closer evolutionary relationship with rice SPLs than Arabidopsis SPLs. Conserved motif and gene structure analyses showed that subfamily II members possess more motifs and introns, implying functional complexity. Five PeqSPLs contained transmembrane domains, suggesting potential dual nuclear/cytoplasmic roles. Promoter analysis revealed abundant cis-elements responsive to light, stress, and phytohormones. Expression profiling across tissues showed that PeqSPL2, PeqSPL3, and PeqSPL5 exhibited broad expression and PeqSPL10 exhibited predominantly high expression in flowers, indicating possible roles in normal growth and floral development. This study provides a foundation for further functional exploration of PeqSPL genes in P. equestris. Full article
(This article belongs to the Special Issue Orchid Conservation and Biodiversity)
Show Figures

Figure 1

22 pages, 1330 KB  
Review
Oleosome Delivery Systems: Enhancing Stability and Therapeutic Potential of Natural Products and Xenobiotics
by Marlon C. Mallillin III, Roi Martin B. Pajimna, Shengnan Zhao, Maryam Salami, Raimar Loebenberg and Neal M. Davies
Pharmaceutics 2025, 17(10), 1303; https://doi.org/10.3390/pharmaceutics17101303 - 7 Oct 2025
Viewed by 363
Abstract
Oleosomes are submicron oil bodies of a triacylglycerol core enveloped by a phospholipid monolayer and embedded proteins, forming a naturally assembled nanocarrier with exceptional oxidative resilience, interfacial stability, and biocompatibility. Their unique architecture supports solvent-free extraction, self-emulsification, and near-complete encapsulation of highly lipophilic [...] Read more.
Oleosomes are submicron oil bodies of a triacylglycerol core enveloped by a phospholipid monolayer and embedded proteins, forming a naturally assembled nanocarrier with exceptional oxidative resilience, interfacial stability, and biocompatibility. Their unique architecture supports solvent-free extraction, self-emulsification, and near-complete encapsulation of highly lipophilic compounds (log P > 4), including curcumin and cannabidiol, with reported efficiencies exceeding 95%. These plant-derived droplets enhance oral bioavailability through lymphatic uptake and enable targeted delivery strategies such as magnetically guided chemotherapy, which has reduced tumor burden by approximately 70% in vivo. The review critically examines recent advances in oleosome research, spanning botanical sourcing, green extraction technologies, interfacial engineering, xenobiotic encapsulation, pharmacokinetics, and therapeutic applications across oncology, dermatology, metabolic disease, and regenerative medicine. Comparative analyses demonstrate that oleosomes rival or surpass synthetic lipid nanocarriers in encapsulation efficiency, oxidative stability, and cost efficiency while offering a sustainable, clean-label alternative. Remaining challenges, including low loading of hydrophilic drugs, allergenicity, and regulatory standardization, are addressed through emerging strategies such as hybrid oleosome–liposome systems, recombinant oleosin engineering, and stimulus-responsive coatings. These advances position oleosomes as a versatile and scalable platform with significant potential for food, cosmetic, and pharmaceutical applications. Full article
(This article belongs to the Special Issue Natural Pharmaceuticals Focused on Anti-inflammatory Activities)
Show Figures

Graphical abstract

16 pages, 9917 KB  
Article
Controlled Hydrophilic–Hydrophobic Transition of PET Films via Fluorination and Drying
by Zhipeng He, Jae-Ho Kim and Susumu Yonezawa
Physchem 2025, 5(4), 43; https://doi.org/10.3390/physchem5040043 - 7 Oct 2025
Viewed by 172
Abstract
Polyethylene terephthalate (PET) films were modified by direct fluorination using fluorine gas at room temperature and 660 torr for reaction times ranging from 10 min to 5 h. Some of the fluorinated samples were dried at 70 °C for 7 days. FT-IR and [...] Read more.
Polyethylene terephthalate (PET) films were modified by direct fluorination using fluorine gas at room temperature and 660 torr for reaction times ranging from 10 min to 5 h. Some of the fluorinated samples were dried at 70 °C for 7 days. FT-IR and XPS analyses confirmed the successful incorporation of fluorine into the PET structure, with the formation of -CHF- and -CF2- groups. The degree of fluorination increased with the reaction time, but excessive reaction led to the formation and loss of CF4. Drying further decreased the fluorine content due to the continued CF4 formation. XRD revealed that fluorination increased the crystallinity of PET owing to increased polarity, whereas drying decreased the crystallinity owing to increased crosslinking. The DSC results showed an increase in the glass transition temperature (Tg) after fluorination and drying, which was attributed to increased polarity and crosslinking, respectively. The surface hydrophilicity of PET increased significantly with fluorination time, and the water contact angle decreased to as low as 3.35°. This was due to the introduction of polar fluorine atoms and the development of a rough and porous surface morphology, as observed by AFM. Interestingly, drying of the fluorinated samples led to an increase in the water contact angle, with a maximum of 85.95°, owing to increased crosslinking and particle formation on the surface. This study demonstrates a simple and effective method for controlling the hydrophilicity and hydrophobicity of PET surfaces via direct fluorination and drying. Full article
(This article belongs to the Section Surface Science)
Show Figures

Graphical abstract

15 pages, 2411 KB  
Article
The PAT Gene Family in Citrus: Genome-Wide Identification and Its Potential Implications for Organic Acid Metabolism
by Yinchun Li, Ziyi Huang, Ziyan Jiang, Yijing Fan, Lifang Sun and Shaojia Li
Agronomy 2025, 15(10), 2350; https://doi.org/10.3390/agronomy15102350 - 6 Oct 2025
Viewed by 179
Abstract
Protein palmitoylation, a key post-translational modification (PTM) regulating protein transport and function, is catalyzed by palmitoyl transferases (PATs). PATs play vital roles in plant growth, development, and stress responses, yet their characterization in citrus remains limited. This study identified 23 PAT genes (CitPATs) [...] Read more.
Protein palmitoylation, a key post-translational modification (PTM) regulating protein transport and function, is catalyzed by palmitoyl transferases (PATs). PATs play vital roles in plant growth, development, and stress responses, yet their characterization in citrus remains limited. This study identified 23 PAT genes (CitPATs) possessing the conserved DHHC domain in the citrus genome through comprehensive genome-wide analysis. Analysis revealed that most CitPAT proteins are hydrophilic, basic, and stable, with significant variations in sequence length. Gene structure and motif analysis confirmed 10 conserved motifs, with the DHHC domain being the most conserved among all 23 members. The CitPAT genes were unevenly distributed across nine chromosomes and exhibit high evolutionary conservation. Promoter analysis identified numerous cis-acting elements associated with abiotic stress and hormone responses, including basic regulatory elements, light-responsive elements, and stress-responsive elements, with light-responsive elements being predominant. Expression profiling during fruit development revealed distinct correlation patterns with citric acid dynamics: CitPAT6, CitPAT18, and CitPAT23 showed positive correlations with acid accumulation, while CitPAT1, CitPAT10, and CitPAT13 exhibited negative correlations. Further RT-qPCR experiments revealed that CitPAT1 and CitPAT10 consistently demonstrated strong negative correlations with citrate content throughout fruit development. This functional diversification suggests roles in regulating citric acid metabolism. These findings provide novel insights into quality formation in facility-cultivated citrus and establish a foundation for understanding PAT-mediated regulation of fruit development. Full article
(This article belongs to the Special Issue The Dynamics of Fruit Quality: From Formation to Regulation)
Show Figures

Figure 1

18 pages, 1472 KB  
Article
Cassava Starch–Onion Peel Powder Biocomposite Films: Functional, Mechanical, and Barrier Properties for Biodegradable Packaging
by Assala Torche, Toufik Chouana, Soufiane Bensalem, Meyada Khaled, Fares Mohammed Laid Rekbi, Elyes Kelai, Şükran Aşgın Uzun, Furkan Türker Sarıcaoğlu, Maria D’Elia and Luca Rastrelli
Polymers 2025, 17(19), 2690; https://doi.org/10.3390/polym17192690 - 4 Oct 2025
Viewed by 888
Abstract
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution [...] Read more.
This study valorizes onion peel, an agro-industrial by-product rich in phenolic compounds and structural carbohydrates, for the development of cassava starch-based biodegradable films. The films were prepared using the solution casting method; a cassava starch matrix was mixed with a 2.5% glycerol solution and heated to 85 °C for 30 min. A separate solution of onion peel powder (OPP) in distilled water was prepared at 25 °C. The two solutions were then combined and stirred for an additional 2 min before 25 mL of the final mixture was cast to form the films. Onion peel powder (OPP) incorporation produced darker and more opaque films, suitable for packaging light-sensitive foods. Film thickness increased with OPP content (0.138–0.218 mm), while moisture content (19.2–32.6%) and solubility (24.0–25.2%) decreased. Conversely, water vapor permeability (WVP) significantly increased (1.69 × 10−9–2.77 × 10−9 g·m−1·s−1·Pa−1; p < 0.0001), reflecting the hydrophilic nature of OPP. Thermal analysis (TGA/DSC) indicated stability up to 245 °C, supporting applications as food coatings. Morphological analysis (SEM) revealed OPP microparticles embedded in the starch matrix, with FTIR and XRD suggesting electrostatic and hydrogen–bond interactions. Mechanically, tensile strength improved (up to 2.71 MPa) while elongation decreased (14.1%), indicating stronger but less flexible films. Biodegradability assays showed slightly reduced degradation (29.0–31.8%) compared with the control (38.4%), likely due to antimicrobial phenolics inhibiting soil microbiota. Overall, OPP and cassava starch represent low-cost, abundant raw materials for the formulation of functional biopolymer films with potential in sustainable food packaging. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

Back to TopTop