Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (222)

Search Parameters:
Keywords = hydrophobic foam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4292 KB  
Article
Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials
by Min Qiao, Guofeng Chen, Yajie Fang, Yuxin Li and Mei Shi
Buildings 2025, 15(19), 3631; https://doi.org/10.3390/buildings15193631 - 9 Oct 2025
Viewed by 101
Abstract
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was [...] Read more.
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was also investigated. The results show that a synergy between GO’s hydrophobicity and the air-entraining agent’s hydrophobic chains drove more agent molecules to adsorb onto the GO surface, subsequently spreading and aggregating across the bubbles. GO effectively assisted the air entraining agent to refine the bubble size, improved the bubble stability of aqueous solutions, and had excellent air entraining performance in the fresh cement mortar, as well as the optimum air-void adjustment performance of hardened cement mortars. With the addition of 0.4‰ GO, the loss rate of gas content in the GO mixed mortar was 10.3%, which was 55.8% lower than that when only using AEA. The addition of 0.4‰ of GO effectively increased the volume fraction of the cement mortar system. GO reduced the pore volume in the mortar through the filling effect and nucleation effect to reduce the total porosity and refine the microstructure of the mortar. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 5884 KB  
Article
The Synthesis of Novel Glucosylamide Organosilicon Quaternary Ammonium Salts and Long-Lasting Modification of Different Materials
by Xiangji Meng, Yunkai Wang, Jingru Wang, Lifei Zhi, Linfei Li, Xiaoming Li, Chan Wu, Rui Jin, Ziyong Ma, Zhiwang Han and Xudong Liu
Molecules 2025, 30(19), 3934; https://doi.org/10.3390/molecules30193934 - 1 Oct 2025
Viewed by 220
Abstract
Using renewable D-gluconic acid δ-lactone as the starting material, two novel glucosamide-based organosilicon quaternary ammonium surfactants (2/3SiDDGPBH) were synthesized through an environmentally friendly three-step process involving amidation, hydrophobic modification, and quaternization. Comprehensive characterization demonstrated their exceptional performance: surface tension reduction to [...] Read more.
Using renewable D-gluconic acid δ-lactone as the starting material, two novel glucosamide-based organosilicon quaternary ammonium surfactants (2/3SiDDGPBH) were synthesized through an environmentally friendly three-step process involving amidation, hydrophobic modification, and quaternization. Comprehensive characterization demonstrated their exceptional performance: surface tension reduction to 33.4 mN/m (2SiDDGPBH) and 33.64 mN/m (3SiDDGPBH), uniform spherical micelles (1–10 nm and 30–100 nm) were formed, and outstanding foam properties with 3SiDDGPBH developed, showing superior foamability and stability. Material modification tests on polymethyl methacrylate (PMMA) plates, mature acacia leaves, oilpaper, vegetable-tanned top-grain leather, and melamine-formaldehyde resin (MFR) faced with plywood revealed excellent spreading performance and durability, particularly for 3SiDDGPBH-treated MFR plywood, which maintained excellent spreading performance even after 80 washing cycles. Scanning electron microscopy (SEM) analysis confirmed that the Si wt% of MFR plywood treated with 2/3SiDDGPBH and scrubbed MFR plywood both exhibited a significant increase, and the 3SiDDGPBH-treated MFR plywood demonstrated superior bonding properties. These surfactants combine low surface tension, excellent foaming properties, and outstanding spreading performance, demonstrating broad application prospects in fields such as pesticide adjuvants, industrial and household cleaning agents, cosmetics, oilfield extraction, textile printing and dyeing, and functional coatings. Full article
(This article belongs to the Topic Green and Sustainable Chemical Products and Processes)
Show Figures

Figure 1

16 pages, 3518 KB  
Article
Transparent Polyurethane Elastomers with Excellent Foamability and Self-Healing Property via Molecular Design and Dynamic Covalent Bond Regulation
by Rongli Zhu, Mingxi Linghu, Xueliang Liu, Liang Lei, Qi Yang, Pengjian Gong and Guangxian Li
Polymers 2025, 17(19), 2639; https://doi.org/10.3390/polym17192639 - 30 Sep 2025
Viewed by 393
Abstract
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable [...] Read more.
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable materials (named as PU-S) with high light transmittance possessing two dynamic covalent bonds (oxime bond and disulfide bond) in different ratios were fabricated by the one-pot method, and then the prepared PU-S were foamed utilizing the green and efficient supercritical carbon dioxide (scCO2) foaming technology. The PU-S foams possess multiple dynamic covalent bonds as well as porous structures, and the effect of the dynamic covalent bonds endows the materials with excellent self-healing properties and recyclability. Owing to the tailored design of dynamic covalent bonding synergies and micron-sized porous structures, PU-S5 exhibits hydrophobicity (97.5° water contact angle), low temperature flexibility (Tg = −30.1 °C), high light transmission (70.6%), and light weight (density of 0.12 g/cm3) together with high expansion ratio (~10 folds) after scCO2 foaming. Furthermore, PU-S5 achieves damage recovery under mild thermal conditions (60 °C). Accordingly, self-healing PU-S based on multiple dynamic covalent bonds will realize a wide range of potential applications in biomedical, new energy automotive, and wearable devices. Full article
(This article belongs to the Special Issue Advances in Cellular Polymeric Materials)
Show Figures

Figure 1

14 pages, 784 KB  
Article
Fabrication of Biochar-Based Marine Buoy Composites from Sargassum horneri: A Case Study in Korea
by Chae-ho Kim and Dong-chul Shin
J. Mar. Sci. Eng. 2025, 13(10), 1870; https://doi.org/10.3390/jmse13101870 - 27 Sep 2025
Viewed by 338
Abstract
The recurrent influx of invasive Sargassum horneri along the coasts of South Korea poses significant ecological and economic challenges, including habitat disruption, aquaculture damage, and shoreline pollution. This study investigates a sustainable valorization pathway by converting SH into functional biochar through slow pyrolysis [...] Read more.
The recurrent influx of invasive Sargassum horneri along the coasts of South Korea poses significant ecological and economic challenges, including habitat disruption, aquaculture damage, and shoreline pollution. This study investigates a sustainable valorization pathway by converting SH into functional biochar through slow pyrolysis and utilizing the product as a core material for eco-friendly marine buoys. Biochars were produced at pyrolysis temperatures ranging from 300 °C to 700 °C and characterized for elemental composition, FT-IR spectra, leachability (CODcr), and biodegradability. Higher pyrolysis temperatures resulted in lower H/C and O/C molar ratios, indicating enhanced aromaticity and hydrophobicity. The biochar produced at 700 °C (SFBW-700) exhibited the highest structural and environmental stability, with minimal leachability and resistance to microbial degradation. A composite buoy was fabricated by mixing SFBW-700 with natural binders (beeswax and rosin), forming solid specimens without synthetic polymers or foaming agents. The optimized composition (biochar:beeswax:rosin = 85:10:5) showed excellent performance in density, buoyancy, and impact resistance, while fully meeting the Korean eco-friendly buoy certification criteria. This work presents a circular and scalable approach to mitigating marine macroalgal blooms and replacing plastic-based marine infrastructure with biochar-based eco-friendly composite alternatives. The findings suggest strong potential for the deployment of SH-derived biochar in marine engineering applications. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

12 pages, 1433 KB  
Article
The Impact of Gallic Acid Binding on the Foam and Interfacial Properties of Whey Protein Isolate Under Weak Acidic Conditions
by Fuchao Zhan, Jing Li and Bin Li
Foods 2025, 14(18), 3209; https://doi.org/10.3390/foods14183209 - 15 Sep 2025
Viewed by 357
Abstract
The interfacial and foam properties of proteins can be enhanced by altering the interactions between polyphenols and proteins. The aim of this study was to determine the influence of gallic acid (GA) on the structural properties of whey protein isolate (WPI), specifically focusing [...] Read more.
The interfacial and foam properties of proteins can be enhanced by altering the interactions between polyphenols and proteins. The aim of this study was to determine the influence of gallic acid (GA) on the structural properties of whey protein isolate (WPI), specifically focusing on particle size, potential, and surface hydrophobicity, as well as the subsequent alterations in its interfacial and foam properties when utilized as a foaming agent. An increase in turbidity and a decrease in particle size suggested the formation of a soluble complex between GA and WPI at a pH of 6. The results from fluorescence spectroscopy and surface hydrophobicity analyses indicated that the primary interactions between GA and WPI are characterized by hydrogen bonding and hydrophobic interactions. The reduction in particle size enhances the capacity of WPI/GA complexes to lower the surface pressure, thereby demonstrating significant efficacy at the macroscopic scale. Furthermore, the structural connectivity of GA facilitates the formation of a stable interfacial film at the air–water interface by WPI/GA, resulting in high foam stability at a macroscopic level. This research contributes to a deeper understanding of the application of protein–polyphenol complexes as surfactants and provides theoretical support for their use in food applications. Full article
Show Figures

Figure 1

21 pages, 3124 KB  
Article
Optimization of Ultrasound-Assisted Extraction Process for Silkworm (Antheraea pernyi) Pupae Protein and Its Impact on Functional and Structural Characteristics of Protein
by Yuanyuan Zeng, Hanyu Guo, Yingying Li, Yinghao Xu, Mengli Zhang, Cancan Luo, Yanan Zang and Ji Luo
Molecules 2025, 30(17), 3580; https://doi.org/10.3390/molecules30173580 - 1 Sep 2025
Viewed by 1019
Abstract
In this study, the ultrasonic-assisted extraction of silkworm pupae protein (SPP) was optimized using response surface methodology. Subsequently, the effects of ultrasonic treatment on the structural and functional characteristics of SPP were systematically analyzed and verified through Pearson correlation analysis. The results showed [...] Read more.
In this study, the ultrasonic-assisted extraction of silkworm pupae protein (SPP) was optimized using response surface methodology. Subsequently, the effects of ultrasonic treatment on the structural and functional characteristics of SPP were systematically analyzed and verified through Pearson correlation analysis. The results showed that the optimal extraction parameters were an ultrasonic treatment time of 120 min, a power of 115 W, a temperature of 54 °C, pH of 10.5, and the average extraction yield was 68.087%. Compared to the control, ultrasonic treatment significantly improved the functional properties of SPP, including solubility (13.13 g/L), water holding capacity (0.18%), oil holding capacity (0.28%), foaming capacity (55.35%), foam stability (12.71%), emulsification activity (2.15 m2/g), emulsification stability (21.95%), gel water holding capacity (11.5%), gel hardness (1.02 N), and gel elasticity (0.49 mm). In addition, the adsorption ability of SPP for 2-octanone and aldehyde was enhanced after ultrasonic treatment. Furthermore, the absorption intensity and maximum wavelength of the SPP fluorescence spectrum extracted via ultrasonic treatment were enhanced, along with the increased surface hydrophobicity and more stable secondary structure which contributed to promoting the functional properties of SPP, proven by Pearson correlation analysis. This study provides a theoretical basis for the further utilization of SPP in the food industry. Full article
Show Figures

Figure 1

14 pages, 8640 KB  
Article
Effects of Poly(ethylene oxide) on the Foam Properties of Anionic Surfactants: Experiment and Molecular Dynamics Simulation
by Chaohang Xu, Ran Bi, Sijing Wang, Xiaojun Tang, Xiaolong Zhu and Guochun Li
Polymers 2025, 17(17), 2361; https://doi.org/10.3390/polym17172361 - 30 Aug 2025
Viewed by 790
Abstract
Water-soluble polymers are often used as additives to adjust the foam properties of surfactant. In this study, the effects of water-soluble polymer poly(ethylene oxide) (PEO) on foam properties of two anionic surfactants, i.e., ammonium lauryl ether sulfate (ALES) and sodium dodecyl sulfate (SDS), [...] Read more.
Water-soluble polymers are often used as additives to adjust the foam properties of surfactant. In this study, the effects of water-soluble polymer poly(ethylene oxide) (PEO) on foam properties of two anionic surfactants, i.e., ammonium lauryl ether sulfate (ALES) and sodium dodecyl sulfate (SDS), were investigated by experimental and molecular dynamics simulation methods. Experimental results show that the addition of PEO can reduce the foaming ability of the two surfactants, but the inhibitory effect of PEO on the foaming ability is weakened at high surfactant concentration. Compared with ALES, PEO has a more significant inhibitory effect on the foaming ability of SDS. With the increase in PEO concentration, the half-life time of foam drainage in surfactant/water-soluble polymer composite systems gradually increases. The synergistic effect between PEO and ALES is stronger than that between PEO and SDS, resulting in a longer half-life time of foam drainage in ALES/PEO composite system. Molecular dynamics simulation results indicate that the addition of PEO can decline the air–water interface thickness of bubble films and the tail tilt angle of surfactant molecules at the air–water interface. The reduction in tail tilt angle means that the surfactant molecules are more vertical to the air–water interface and the hydrophobic interaction between adjacent tail chains of surfactants is weakened, which is unfavorable to the formation of bubble films, thus decreasing the foaming ability of surfactants. Because the ALES/PEO system has larger air–water interface thickness and surfactant tail tilt angle than the SDS/PEO system, the inhibitory effect of PEO on the foaming ability of ALES is weaker than that of SDS. Adding PEO can lower the peak position of the first hydration layer of surfactant head groups, increase the number of hydrogen bonds, and reduce the diffusion coefficient of water molecules, so that the surfactant/water-soluble polymer system has longer half-life time of foam drainage than the pure surfactant system. Due to the synergistic effect between ALES and PEO, the ALES/PEO system has a higher peak value of the first hydration layer of surfactant head groups, more hydrogen bonds, and lower diffusion coefficient of water molecules than the SDS/PEO system. Therefore, the half-life time of foam drainage in the ALES/PEO system is longer than that in the SDS/PEO system. Full article
Show Figures

Graphical abstract

20 pages, 2304 KB  
Article
Towards a Deeper Understanding of Simple Soaps: Influence of Fatty Acid Chain Length on Concentration and Function
by Navindra Soodoo, Shaveshwar Deonarine, Stacy O. James and Suresh S. Narine
Processes 2025, 13(9), 2770; https://doi.org/10.3390/pr13092770 - 29 Aug 2025
Viewed by 1363
Abstract
In this study, canola oil was used as a natural enriched source of C18 fatty acids and coconut oil as a natural enriched source of C12 fatty acids. The study synthesized five potassium carboxylate (RCOOK+) liquid soaps via saponification [...] Read more.
In this study, canola oil was used as a natural enriched source of C18 fatty acids and coconut oil as a natural enriched source of C12 fatty acids. The study synthesized five potassium carboxylate (RCOOK+) liquid soaps via saponification of coconut–canola oil blends (100:0, 75:25, 50:50, 25:75, 0:100) using a novel in situ dissolution method with controlled KOH addition to prevent solid paste formation. The water demand required to dissolve RCOOK+ and mitigate soap crystallization was determined, increasing from 1.76 to 5.18 g H2O/g oil as canola oil content rose, with soap concentration decreasing from 55.1% (100:0) to 18.5% (0:100). Reaction kinetics revealed faster KOH depletion in coconut oil-rich blends (100:0, 75:25, 50:50; 2 h) compared to canola oil-rich blends (25:75, 0:100; 8 h). Key soap properties, including foam stability, detergency, wettability, viscosity, and thermal behavior, were assessed. The 50:50 blend exhibited the highest foam stability due to the synergistic effects of medium-chain saturated (e.g., laurates) and long-chain unsaturated (e.g., oleates) RCOOK+. The short, saturated chains promoted rapid foam formation, while the longer, unsaturated chains enhanced foam film stability. RCOOK+ detergency on hair tresses with artificial sebum ranged from 16.9% to 29.7% and was relatively higher compared to sodium lauryl sulfate, sodium laureth sulfate, cocamidopropyl betaine, and sodium cocoyl glutamate (6.1–13.2%) but lower compared to sodium isethionates (34.2%). RCOOK+ wettability on cotton textiles improved with higher coconut oil content. RCOOK+ contact angles on artificial sebum surface (6.1–13.7°) demonstrated excellent wettability, effectively penetrating and emulsifying hydrophobic residues. Viscosity ranged from 13–45 mPa·s with Newtonian Flow-type behavior. No crystals were observed in the soaps when cooled in the range of 60 to −30 °C. These results demonstrate RCOOK+ soaps as tunable, sustainable liquid soaps with performance optimized by adjusting the oil blend ratios. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

20 pages, 3157 KB  
Article
Enhancement of Foaming Performance of Oat Globulin by Limited Enzymatic Hydrolysis: A Study from the Viewpoint of the Structural and Functional Properties
by Yahui Zhu, Junlong Zhang, Xuedong Gu, Pengjie Wang, Yang Liu, Yingze Jiao, Lin Yang and Han Chen
Gels 2025, 11(8), 615; https://doi.org/10.3390/gels11080615 - 6 Aug 2025
Viewed by 630
Abstract
This study identified the optimal enzymatic treatment for improving the foaming characteristics of oat globulin, and alkaline protease was found to be the most effective enzyme. The impact of alkaline protease on the foaming properties and structural changes in oat globulin was explored. [...] Read more.
This study identified the optimal enzymatic treatment for improving the foaming characteristics of oat globulin, and alkaline protease was found to be the most effective enzyme. The impact of alkaline protease on the foaming properties and structural changes in oat globulin was explored. The results show that the foaming capacity of oat globulin hydrolysates is negatively correlated with surface hydrophobicity and positively correlated with the degree of hydrolysis. The results of circular dichroism (CD) and size-exclusion chromatography (SEC) indicate that hydrolysis generated smaller, disordered peptides. Under equilibrium conditions at a 2% concentration, a reduction of 1.62 mN/m in surface tension and an increase of 3.82 μm in foam film thickness were observed. These peptides reduce surface tension between air and water, forming larger, thicker, and more stable foams. Compared to untreated oat globulin, the foaming capacity of hydrolyzed ones increased by 87.17%. Under comparable conditions, these findings demonstrate that limited hydrolyzed oat globulin exhibits potential as an effective plant-based foaming agent up to a degree of hydrolysis of 15.06%. Full article
(This article belongs to the Special Issue Gels for Plant-Based Food Applications (2nd Edition))
Show Figures

Graphical abstract

22 pages, 5401 KB  
Article
Evaluation of Integral and Surface Hydrophobic Modification on Permeation Resistance of Foam Concrete
by Liangbo Ying, Pengfei Yu, Fuping Wang and Ping Jiang
Coatings 2025, 15(7), 854; https://doi.org/10.3390/coatings15070854 - 20 Jul 2025
Cited by 2 | Viewed by 728
Abstract
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve [...] Read more.
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve the permeation performance of foam concrete. The study also examines the effects of carbonation and freeze–thaw environments on the permeation resistance of PFC. Graphene oxide (GO), KH-550, and a composite hydrophobic coating (G/S) consisting of GO and KH-550 were employed to enhance the permeation resistance of PFC through surface hydrophobic modification. The functionality of the G/S composite hydrophobic coating was confirmed using energy dispersive X-ray spectrometry (EDS) and Fourier transform infrared spectroscopy (FTIR). The results showed the following: (1) The water contact angle of PFC increased by 20.2° compared to that of ordinary foam concrete, indicating that PU-based hydrophobic modification can significantly improve its impermeability. (2) After carbonation, a micro–nano composite structure resembling the surface of a lotus leaf developed on the surface of PFC, further enhancing its impermeability. However, freeze–thaw cycles led to the formation and widening of microcracks in the PFC, which compromised its hydrophobic properties. (3) Surface hydrophobic modifications using GO, KH-550, and the G/S composite coating improved the anti-permeability properties of PFC, with the G/S composite showing the most significant enhancement. (4) GO filled the tiny voids and pores on the surface of the PFC, thereby improving its anti-permeability properties. KH-550 replaced water on the surface of PFC and encapsulated surface particles, orienting its R-groups outward to enhance hydrophobicity. The G/S composite emulsion coating formed a hydrophobic silane layer inside the concrete, which enhanced water resistance by blocking water penetration, reducing microscopic pores in the hydrophobic layer, and improving impermeability characteristics. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

20 pages, 4234 KB  
Article
Study on the Flocculation Characteristics of Protein in Modified Chitosan Membrane and Mung Bean Vermicelli Wastewater
by Zhisheng Liu, Guang Li, Xiaoyu Zhang, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 831; https://doi.org/10.3390/coatings15070831 - 16 Jul 2025
Viewed by 559
Abstract
This study addresses the challenge of chitosan (CS) being difficult to dissolve in water due to its highly ordered crystalline structure. Chitosan is modified with chloroacetic acid to reduce its crystallinity and enhance its water solubility. Through single-factor experiments, the optimal conditions for [...] Read more.
This study addresses the challenge of chitosan (CS) being difficult to dissolve in water due to its highly ordered crystalline structure. Chitosan is modified with chloroacetic acid to reduce its crystallinity and enhance its water solubility. Through single-factor experiments, the optimal conditions for preparing carboxymethyl chitosan film (CMCS) were determined: under conditions of 50 °C, a cellulose substrate (CS) concentration of 18.75 g/L, a NaOH concentration of 112.5 g/L, and a chloroacetic acid concentration of 18.75 g/L, the reaction proceeded for 5 h. Under these conditions, the resulting carboxymethyl chitosan film exhibited the best flocculation effect, forming chitosan films in water that had flocculation activity toward mung bean starch protein wastewater. The successful introduction of carboxyl groups at the N and O positions of the chitosan molecular chain, which reduced the crystallinity of chitosan and enhanced its water solubility, was confirmed through analysis using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The prepared carboxymethyl chitosan film (CMCS) was applied in the flocculation recovery of protein. Through single-factor and response surface experiments, the optimal process conditions for flocculating and recovering protein with CMCS were determined: a CMCS dosage of 1.1 g/L, a reaction time of 39.6 min, a reaction temperature of 42.7 °C, and a pH of 5.2. Under these conditions, the protein recovery rate reached 56.97%. The composition and amino acid profile of the flocculated product were analyzed, revealing that the mung bean protein flocculated product contained 62.33% crude protein. The total essential amino acids (EAAs) accounted for 52.91%, non-essential amino acids (NEAAs) for 47.09%, hydrophobic amino acids for 39.56%, and hydrophilic amino acids for 12.67%. The ratio of aromatic to branched-chain amino acids was 0.31, and the ratio of basic to acidic amino acids was 1.68. These findings indicate that the recovered product has high surface activity and good protein stability, foaming ability, and emulsifying properties. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

37 pages, 8085 KB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Viewed by 1150
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

24 pages, 6135 KB  
Article
Development of Compounded Surfactant Foam and Its Application in Emergency Control of Piping in Dikes
by Jiakun Gong, Zuopeng Pang, Yuan Wang, Jie Ren, Tian Qi and Adam Bezuijen
Molecules 2025, 30(12), 2583; https://doi.org/10.3390/molecules30122583 - 13 Jun 2025
Viewed by 908
Abstract
Piping is a severe threat to dikes, which can lead to dike failure, and cause significant economic and human casualties. However, conventional measures necessitate substantial labor and material resources. A novel foam-based method for the rapid mitigation of piping was proposed to enhance [...] Read more.
Piping is a severe threat to dikes, which can lead to dike failure, and cause significant economic and human casualties. However, conventional measures necessitate substantial labor and material resources. A novel foam-based method for the rapid mitigation of piping was proposed to enhance piping emergency control efficiency, which demonstrates significant application potential. This study aims to develop a novel foam formulation and evaluate its performance in controlling piping in dikes. Through a combination of foam static-property characterization experiment and foam plugging capacity assessment experiment, a compounded anionic–cationic surfactant composed of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) is optimized. The formulation, at a 9:1 mass ratio and 1.5% total concentration, exhibits superior foam stability and plugging performance. An experiment on the ability of the foam to restrain piping demonstrated that, compared to single-component SDS foam, the compounded SDS-CTAB foam increased the critical hydraulic gradient for piping from 2.35 to 2.70, a 15% improvement. It also reduces the extent of piping channel development under equivalent hydraulic conditions. The foam storage area exhibits enhanced scour resistance and better preservation under prolonged water flow. Mechanistically, the SDS-CTAB foam benefits from synergistic hydrophobic interactions, electrostatic attraction, and hydrogen bonding between surfactant molecules, which enhance foam stability. Full article
Show Figures

Figure 1

18 pages, 2648 KB  
Article
Fundamental Properties of Expanded Perlite Aggregated Foamed Concrete with Different Supplementary Cementitious Materials
by Kaixing Fan, Jie Wei and Chengdong Feng
Materials 2025, 18(12), 2671; https://doi.org/10.3390/ma18122671 - 6 Jun 2025
Cited by 2 | Viewed by 842
Abstract
This study investigates the effects of supplementary cementitious materials (SCMs) on the material performance of foamed concrete containing lightweight coarse aggregates, namely hydrophobically modified expanded perlite (EP). The EP aggregates were treated with a sodium methyl silicate solution to impart water-repellent properties prior [...] Read more.
This study investigates the effects of supplementary cementitious materials (SCMs) on the material performance of foamed concrete containing lightweight coarse aggregates, namely hydrophobically modified expanded perlite (EP). The EP aggregates were treated with a sodium methyl silicate solution to impart water-repellent properties prior to being incorporated into the foamed concrete mixtures. Ordinary Portland cement (OPC) was partially replaced with various SCMs, namely, silica fume (SF), mineral powder (MP), and metakaolin (MK) at substitution levels of 3%, 6%, and 9%. Key indicators to evaluate the material performance of foamed concrete included 28-day uniaxial compressive strength, thermal conductivity, mass loss rate under thermal cycling, volumetric water absorption, and shrinkage. The results noted that all three SCMs improved the uniaxial compressive strength of foamed concrete, with MP achieving the greatest improvement, approximately 97% at the 9% replacement level. Thermal conductivity increased slightly with the addition of SF or MP but decreased with MK, highlighting the superior insulation capability of MK. Both SF and MK reduced the mass loss rate under thermal cycling, with SF exhibiting the highest thermal stability. Furthermore, MK was most effective in minimizing water absorption and shrinkage, attributed to its high pozzolanic reactivity and the resulting refinement of the microstructures. Full article
Show Figures

Figure 1

14 pages, 1230 KB  
Article
Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation
by Yan Liu, Tingwei Zhu, Fusheng Chen, Xingfeng Guo, Chenxian Yang, Yu Chen and Lifen Zhang
Foods 2025, 14(11), 1999; https://doi.org/10.3390/foods14111999 - 5 Jun 2025
Viewed by 585
Abstract
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose [...] Read more.
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose mass ratio, temperature, and time) on the functional properties of PM were investigated, and its structural properties were evaluated using water contact angle measurements, fluorescence spectroscopy, and Fourier-transform infrared spectroscopy. It was found that TGase-coupled glycation modification altered the secondary structure of PM and increased both the water contact angle and the surface hydrophobicity, thereby significantly affecting its functional properties. Additionally, superior emulsification, foaming, and oil-absorbing properties were achieved for the modified PM, which were named EPM, FPM, and OPM, respectively (specimens under different modification conditions). Notably, the emulsification activity of the EPM sample was enhanced by 69.8% (i.e., from 18.48 to 31.38 m2/g); the foaming capacity of the FPM specimen was increased by 84.00% (i.e., from 21.00 to 46.00%); and the oil-absorbing capacity of the OPM sample was enhanced by 359.57% (i.e., from 1.41 to 6.48 g/g protein). Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

Back to TopTop