Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (395)

Search Parameters:
Keywords = ignition causes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1180 KiB  
Article
Preconditioning of Dust and Fluid in a 20 L Chamber During Ignition by a Chemical Ignitor
by Romana Friedrichova, Jan Karl and Bretislav Janovsky
Fire 2025, 8(9), 336; https://doi.org/10.3390/fire8090336 - 22 Aug 2025
Abstract
Dust explosion prevention and mitigation of the consequences thereof require measurement of dust explosion parameters. Testing methods are defined by European and American standards, producing results in explosion chambers of a 1 m3 standard volume and, alternatively, 20 L. However, the results [...] Read more.
Dust explosion prevention and mitigation of the consequences thereof require measurement of dust explosion parameters. Testing methods are defined by European and American standards, producing results in explosion chambers of a 1 m3 standard volume and, alternatively, 20 L. However, the results are influenced by some processes that are neglected by the standards, perhaps because it is believed that their effect is small in a 1 m3 chamber. But their effect becomes significant in a smaller 20 L chamber. Preconditioning of the system caused by dust dispersion itself, as well as the ignitor flame, is one such problem. The aim of this work is to further investigate the physical and chemical processes caused by dust preheating after an ignitor’s action. Analytical methods, such as STA, GC/MS and FTIR, were used to analyse the composition of the atmosphere after exposure of lycopodium dust, a natural material, to certain temperatures up to 550 °C in air and nitrogen. In the second step, gas samples were taken from the 20 L chamber after dispersion of lycopodium and ignition by two 5 kJ pyrotechnical ignitors. Depending on the temperature and atmosphere, various concentrations of CO, CO2, H2O, NOx and organic compounds were measured. It was observed that the dispersed dust decomposed into mostly CO and CO2 in the area near the ignitors, even in an atmosphere in which the oxygen concentration was lower than 2% by volume. The concentrations of other organic compounds were very low and included mostly methane, ethylene and acetaldehyde. However, when incorporating CO, the overall concentration of flammables was high enough to generate a hybrid mixture. Full article
(This article belongs to the Special Issue Fire and Explosion in Process Safety Prevention and Protection)
Show Figures

Figure 1

16 pages, 5670 KiB  
Article
Experimental Investigation on Spontaneous Combustion Characteristics of Sulfide Ores with Different Sulfur Content
by Qisong Huang, Bo Xu, Junjun Feng, Yugen Lu, Xiangyu Wang and Qinglang Liu
Minerals 2025, 15(8), 880; https://doi.org/10.3390/min15080880 - 21 Aug 2025
Viewed by 118
Abstract
The spontaneous combustion of sulfide ores (SOSC) is an extremely dangerous mining disaster that directly threatens safety production in mines and causes far-reaching negative impacts on the surrounding ecosystem. In this study, oxidation weight gain experiments, self-heating temperature and ignition temperature tests, and [...] Read more.
The spontaneous combustion of sulfide ores (SOSC) is an extremely dangerous mining disaster that directly threatens safety production in mines and causes far-reaching negative impacts on the surrounding ecosystem. In this study, oxidation weight gain experiments, self-heating temperature and ignition temperature tests, and thermogravimetric analysis (TGA) were conducted to detect the spontaneous combustion characteristics of sulfide ores with different sulfur contents (40.29%, 34.56%, 24.81%, and 14.2%). The results show that the sulfur content significantly affects the spontaneous combustion characteristics of sulfide ores. As the sulfur content decreased, the oxidized weight gain rate decreased overall, and the self-heating temperature (135, 152.5, 162.5, and 176.9 °C) and ignition temperature (425.3, 438.6, 455.4, and >500 °C) increased. The three combustion stages of the SOSC were divided based on the TG and DTG curves: low-temperature oxidation stage, combustion decomposition stage, and slow burnout stage. Furthermore, KAS and FWO methods were used to obtain the apparent activation energy in the combustion decomposition stage. The apparent activation energy decreased significantly with the increase in the sulfur content. The results of all experiments and analyses showed that sulfide ores with high sulfur content have a stronger tendency to undergo spontaneous combustion. The research results have important theoretical and practical implications for the prevention of SOSC. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

32 pages, 10052 KiB  
Article
A Study on Large Electric Vehicle Fires in a Tunnel: Use of a Fire Dynamics Simulator (FDS)
by Roberto Dessì, Daniel Fruhwirt and Davide Papurello
Processes 2025, 13(8), 2435; https://doi.org/10.3390/pr13082435 - 31 Jul 2025
Viewed by 522
Abstract
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use [...] Read more.
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use of batteries with no direct and local emissions. However, accidents of battery electric vehicles pose new challenges, such as thermal runaway. Such accidents can be serious and, in some cases, may result in uncontrolled overheating that causes the battery pack to spontaneously ignite. In particular, the most dangerous vehicles are heavy goods vehicles (HGVs), as they release a large amount of energy that generate high temperatures, poor visibility, and respiratory damage. This study aims to determine the potential consequences of large BEV fires in road tunnels using computational fluid dynamics (CFD). Furthermore, a comparison between a BEV and an ICEV fire shows the differences related to the thermal and the toxic impact. Furthermore, the adoption of a longitudinal ventilation system in the tunnel helped to mitigate the BEV fire risk, keeping a safer environment for tunnel users and rescue services through adequate smoke control. Full article
Show Figures

Figure 1

26 pages, 3012 KiB  
Perspective
The Palisades Fire of Los Angeles: Lessons to Be Learned
by Vytenis Babrauskas
Fire 2025, 8(8), 303; https://doi.org/10.3390/fire8080303 - 31 Jul 2025
Viewed by 535
Abstract
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which [...] Read more.
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which took place close to the 1961 fire location. Disastrous WUI fires are, unfortunately, an anticipatable occurrence in many U.S. cities. A number of issues identified earlier remained the same. Some were largely solved, while other new ones have emerged. The paper examines the Palisades Fire of January, 2025 in this context. In the intervening decades, the population of the city grew substantially. But firefighting resources did not keep pace. Very likely, the single-most-important factor in causing the 2025 disasters is that the Los Angeles Fire Department operational vehicle count shrank to 1/5 of what it was in 1961 (per capita). This is likely why critical delays were experienced in the initial attack on the Palisades Fire, leading to a runaway conflagration. Two other crucial issues were the management of vegetation and the adequacy of water supplies. On both these issues, the Palisades Fire revealed serious problems. A problem which arose after 1961 involves the unintended consequences of environmental legislation. Communities will continue to be devastated by wildfires unless adequate vegetation management is accomplished. Yet, environmental regulations are focused on maintaining the status quo, often making vegetation management difficult or ineffective. House survival during a wildfire is strongly affected by whether good vegetation management practices and good building practices (“ignition-resistant” construction features) have been implemented. The latter have not been mandatory for housing built prior to 2008, and the vast majority of houses in the area predated such building code requirements. California has also suffered from a highly counterproductive stance on insurance regulation. This has resulted in some residents not having property insurance, due to the inhospitable operating conditions for insurance firms in the state. Because of the historical precedent, the details in this paper focus on the Palisades Fire; however, many of the lessons learned apply to managing fires in all WUI areas. Policy recommendations are offered, which could help to reduce the potential for future conflagrations. Full article
Show Figures

Figure 1

14 pages, 4627 KiB  
Article
A Numerical Study on the Influence of an Asymmetric Arc on Arc Parameter Distribution in High-Current Vacuum Arcs
by Zaiqin Zhang, Yue Bu, Chuang Wang, Qingqing Gao and Chi Chen
Energies 2025, 18(15), 4025; https://doi.org/10.3390/en18154025 - 29 Jul 2025
Viewed by 254
Abstract
During high-current vacuum arcing, asymmetric arcing with off-center plasma columns may occur due to stochastic discharge initiation and mechanical motion, receiving less research attention than symmetric arcing. The objective of this paper is to numerically analyze the influence law of asymmetric arc ignition [...] Read more.
During high-current vacuum arcing, asymmetric arcing with off-center plasma columns may occur due to stochastic discharge initiation and mechanical motion, receiving less research attention than symmetric arcing. The objective of this paper is to numerically analyze the influence law of asymmetric arc ignition on arc parameters. For 60 mm diameter contacts, three arc conditions of symmetric arcing, 33% arc offset, and 67% arc offset were modeled. The results show that the arc offset causes asymmetry in the arc’s distribution. For 33% offset, the pressure and number density on the side away from the root of the arc is about 50% of root values, while these parameters fall below 20% for the 67% offset. Simultaneously, arc offset elevates peak parameter values: under 33% offset, maxima for ion pressure, ion density, ion temperature, electron temperature, and current density rise 12%, 11%, 6%, 6%, and 14% versus symmetric arcing; during 67% offset, these escalate significantly to 67%, 61%, 12%, 18%, and 47%. This study contributes to providing reference for the analysis of vacuum interruption processes under asymmetric arcing conditions. Full article
(This article belongs to the Special Issue Simulation and Analysis of Electrical Power Systems)
Show Figures

Figure 1

17 pages, 1747 KiB  
Article
Human Mediation of Wildfires and Its Representation in Terrestrial Ecosystem Models
by Jiang Zhu, Hui Tang, Keyan Fang, Frode Stordal, Anders Bryn, Min Gao and Xiaodong Liu
Fire 2025, 8(8), 297; https://doi.org/10.3390/fire8080297 - 28 Jul 2025
Viewed by 555
Abstract
Increasing wildfires are causing global concerns about ecosystem functioning and services. Although some wildfires are caused by natural ignitions, it is also important to understand how human ignitions and human-related factors can contribute to wildfires. While dynamic global vegetation models (DGVMs) have incorporated [...] Read more.
Increasing wildfires are causing global concerns about ecosystem functioning and services. Although some wildfires are caused by natural ignitions, it is also important to understand how human ignitions and human-related factors can contribute to wildfires. While dynamic global vegetation models (DGVMs) have incorporated fire-related modules to simulate wildfires and their impacts, few models have fully considered various human-related factors causing human ignitions. Using global examples, this study aims to identify key factors associated with human impacts on wildfires and provides suggestions for enhancing model simulations. The main categories explored in this paper are human behavior and activities, socioeconomic background, policy, laws, regulations, and cultural and traditional activities, all of which can influence wildfires. Employing an integrated and interdisciplinary assessment approach, this study evaluates existing DGVMs and provides suggestions for their improvement. Full article
(This article belongs to the Special Issue Forest Fuel Treatment and Fire Risk Assessment, 2nd Edition)
Show Figures

Figure 1

29 pages, 4545 KiB  
Article
Characterization of Fresh and Aged Smoke Particles Simultaneously Observed with an ACTRIS Multi-Wavelength Raman Lidar in Potenza, Italy
by Benedetto De Rosa, Aldo Amodeo, Giuseppe D’Amico, Nikolaos Papagiannopoulos, Marco Rosoldi, Igor Veselovskii, Francesco Cardellicchio, Alfredo Falconieri, Pilar Gumà-Claramunt, Teresa Laurita, Michail Mytilinaios, Christina-Anna Papanikolaou, Davide Amodio, Canio Colangelo, Paolo Di Girolamo, Ilaria Gandolfi, Aldo Giunta, Emilio Lapenna, Fabrizio Marra, Rosa Maria Petracca Altieri, Ermann Ripepi, Donato Summa, Michele Volini, Alberto Arienzo and Lucia Monaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(15), 2538; https://doi.org/10.3390/rs17152538 - 22 Jul 2025
Viewed by 475
Abstract
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case [...] Read more.
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case for the evaluation of the impact of aging and transport mechanisms on both the optical and microphysical properties of biomass burning aerosol. The fresh smoke was originated by a local wildfire about 2 km from the measurement site and observed about one hour after its ignition. The other smoke layer was due to a wide wildfire occurring in Canada that, according to backward trajectory analysis, traveled for about 5–6 days before reaching the observatory. Synergetic use of lidar, ceilometer, radar, and microwave radiometer measurements revealed that particles from the local wildfire, located at about 3 km a.s.l., acted as condensation nuclei for cloud formation as a result of high humidity concentrations at this altitude range. Optical characterization of the fresh smoke layer based on Raman lidar measurements provided lidar ratio (LR) values of 46 ± 4 sr and 34 ± 3 sr, at 355 and 532 nm, respectively. The particle linear depolarization ratio (PLDR) at 532 nm was 0.067 ± 0.002, while backscatter-related Ångström exponent (AEβ) values were 1.21 ± 0.03, 1.23 ± 0.03, and 1.22 ± 0.04 in the spectral ranges of 355–532 nm, 355–1064 nm and 532–1064 nm, respectively. Microphysical inversion caused by these intensive optical parameters indicates a low contribution of black carbon (BC) and, despite their small size, particles remained outside the ultrafine range. Moreover, a combined use of CIAO remote sensing and in situ instrumentation shows that the particle properties are affected by humidity variations, thus suggesting a marked particle hygroscopic behavior. In contrast, the smoke plume from the Canadian wildfire traveled at altitudes between 6 and 8 km a.s.l., remaining unaffected by local humidity. Absorption in this case was higher, and, as observed in other aged wildfires, the LR at 532 nm was larger than that at 355 nm. Specifically, the LR at 355 nm was 55 ± 2 sr, while at 532 nm it was 82 ± 3 sr. The AEβ values were 1.77 ± 0.13 and 1.41 ± 0.07 at 355–532 nm and 532–1064 nm, respectively and the PLDR at 532 nm was 0.040 ± 0.003. Microphysical analysis suggests the presence of larger, yet much more absorbent particles. This analysis indicates that both optical and microphysical properties of smoke can vary significantly depending on its origin, persistence, and transport in the atmosphere. These factors that must be carefully incorporated into future climate models, especially considering the frequent occurrences of fire events worldwide. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

19 pages, 15854 KiB  
Article
Failure Analysis of Fire in Lithium-Ion Battery-Powered Heating Insoles: Case Study
by Rong Yuan, Sylvia Jin and Glen Stevick
Batteries 2025, 11(7), 271; https://doi.org/10.3390/batteries11070271 - 17 Jul 2025
Viewed by 552
Abstract
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized [...] Read more.
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized the ignition source to the lateral heel edge of the pouch cell, correlating precisely with peak mechanical stress identified through gait analysis. Remarkably, the cyclic load was less than 10% of the single crush load threshold specified in safety standards. Key findings reveal multiple contributing factors as follows: the uncoated polyethylene separator’s inability to prevent stress-induced internal short circuits, the circuit design’s lack of battery health monitoring functionality that permitted undetected degradation, and the hazardous placement inside clothing that exacerbated burn injuries. These findings necessitate a multi-level safety framework for lithium-ion battery products, encompassing enhanced cell design to prevent internal short circuit, improved circuit protection with health monitoring capabilities, optimized product integration to mitigate mechanical and environmental impact, and effective post-failure containment measures. This case study exposes a critical need for product-specific safety standards that address the unique demands of wearable lithium-ion batteries, where existing certification requirements fail to prevent real-use failure scenarios. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

15 pages, 3688 KiB  
Article
External Barrier and Internal Attack: Synergistic Effect of Microcapsule Fire Extinguishing Agent and Fine Water Mist on Suppressing Lithium-Ion Battery Fire
by Xiangjian Wang, Zhanwen He, Jianjun Gao, Yibo Guo, Haijun Zhang and Mingchao Wang
Materials 2025, 18(13), 3082; https://doi.org/10.3390/ma18133082 - 29 Jun 2025
Viewed by 477
Abstract
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery’s safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature [...] Read more.
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery’s safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature environment, the escaping gas can cause a jet fire containing high-temperature substances. Effectively controlling the internal temperature of the jet fire, especially rapidly cooling the core area of the flame during the jet process, is important to prevent the spread of lithium-ion battery fires. Therefore, this work proposes a strategy of a synergistic effect using microcapsule fire extinguishing agents and fine water mist to achieve an external barrier and an internal attack. The microcapsule fire extinguishing agents are prepared by using melamine–urea–formaldehyde resin as the shell and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (C5H3F9O) and 1,1,2,2,3,3,4-heptafluorocyclopentane (C5H3F7) as the composite core. During the process of lithium-ion battery thermal runaway, the microcapsule fire extinguishing agents can enter the inner area of the jet fire under the protection of the fine water mist. The microcapsule shell ruptures at 100 °C, releasing the highly effective composite fire suppressant core inside the jet fire. The fine water mist significantly blocks the transfer of thermal radiation, inhibiting the spread of the fire. Compared to the suppression with fine water mist only, the time required to reduce the battery temperature from the peak value to a low temperature is reduced by 66 s and the peak temperature of the high-temperature substances above the battery is reduced by 228.2 °C. The propagation of the thermal runaway is suppressed, and no thermal runaway of other batteries around the faulty unit will occur. This synergistic suppression strategy of fine water mist and microcapsule fire extinguishing agent (FWM@M) effectively reduces the adverse effects of jet fires on the propagation of thermal runaway (TR) of lithium-ion batteries, providing a new solution for efficiently extinguishing lithium-ion battery fires. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 971 KiB  
Systematic Review
Assessing Fire Risks in Photovoltaic Panels: A Literature Review in the Context of Blackout Concerns
by Małgorzata Rataj and Iryna Berezovska
Energies 2025, 18(13), 3407; https://doi.org/10.3390/en18133407 - 28 Jun 2025
Viewed by 559
Abstract
In recent years, Europe has faced several major blackouts, exposing weaknesses in its energy infrastructure and raising serious concerns about the continent’s ability to manage such crises. As the shift toward sustainable energy accelerates, solar power has emerged as a critical component of [...] Read more.
In recent years, Europe has faced several major blackouts, exposing weaknesses in its energy infrastructure and raising serious concerns about the continent’s ability to manage such crises. As the shift toward sustainable energy accelerates, solar power has emerged as a critical component of this transition, not only for its environmental benefits but also because it is currently the most cost-effective method of electricity generation. Over the past two decades, the photovoltaic (PV) sector has experienced continuous growth to meet rising energy demands. Published scientific studies on the technology and implementation of photovoltaic panels mainly focus on the benefits and present case studies of success. The article aims to outline the current state of research on the danger of spontaneous ignition of photovoltaic panels. The analysis revealed the most common causes of PV self-ignition. Moreover, following consultations with experts in the field of photovoltaic panel installations, a scientific gap in this area was identified—to the authors’ knowledge, no one has written on this topic so far—the use of flammable materials in the form of hermetically sealed quick connectors. The research is based on a literature review, employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method to perform a bibliometric analysis of papers published between 2013 and 2024. The Web of Science Core Collection (WoSCC) and the ScienceDirect database are used for this purpose. A total of 62 papers are selected for analysis and categorized based on five fields: keywords in a title and abstract, total number of citations per paper, total number of publications per journal, total number of publications per affiliation, and funding name. Full article
Show Figures

Figure 1

29 pages, 3895 KiB  
Article
Numerical Study on Ammonia Dispersion and Explosion Characteristics in Confined Space of Marine Fuel Preparation Room
by Phan Anh Duong, Jin-Woo Bae, Changmin Lee, Dong Hak Yang and Hokeun Kang
J. Mar. Sci. Eng. 2025, 13(7), 1235; https://doi.org/10.3390/jmse13071235 - 26 Jun 2025
Viewed by 590
Abstract
Ammonia is emerging as a promising zero-carbon marine fuel due to its high hydrogen density, low storage pressure, and long-term stability, making it well-suited for supporting sustainable maritime energy systems. However, its adoption introduces serious safety challenges, as its toxic, flammable, and corrosive [...] Read more.
Ammonia is emerging as a promising zero-carbon marine fuel due to its high hydrogen density, low storage pressure, and long-term stability, making it well-suited for supporting sustainable maritime energy systems. However, its adoption introduces serious safety challenges, as its toxic, flammable, and corrosive properties pose greater risks than many other alternative fuels, necessitating rigorous risk assessment and safety management. This study presents a comprehensive investigation of potential ammonia leakage scenarios that may arise during the fuel gas supply process within confined compartments of marine vessels, such as the fuel preparation room and engine room. The simulations were conducted using FLACS-CFD V22.2, a validated computational fluid dynamics tool specialized for flammable gas dispersion and explosion risk analysis in complex geometries. The model enables detailed assessment of gas concentration evolution, toxic exposure zones, and overpressure development under various leakage conditions, providing valuable insights for emergency planning, ventilation design, and structural safety reinforcement in ammonia-fueled ship systems. Prolonged ammonia exposure is driven by three key factors: leakage occurring opposite the main ventilation flow, equipment layout obstructing airflow and causing gas accumulation, and delayed sensor response due to recirculating flow patterns. Simulation results revealed that within 1.675 s of ammonia leakage and ignition, critical impact zones capable of causing fatal injuries or severe structural damage were largely contained within a 10 m radius of the explosion source. However, lower overpressure zones extended much further, with slight damage reaching up to 14.51 m and minor injury risks encompassing the entire fuel preparation room, highlighting a wider threat to crew safety beyond the immediate blast zone. Overall, the study highlights the importance of targeted emergency planning and structural reinforcement to mitigate explosion risks in ammonia-fueled environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 9463 KiB  
Article
Numerical Investigation of Spontaneous Ignition During Pressurized Hydrogen Release: Effects of Burst Disk Shape and Opening Characteristics
by Wanbing Lin, Zhenhua Wang, Guanghu Wang, Juncheng Jiang, Jingnan Wu, Lei Ni, Ru Zhou, Mingguang Zhang and Liang Ma
Fire 2025, 8(7), 246; https://doi.org/10.3390/fire8070246 - 26 Jun 2025
Viewed by 433
Abstract
Pressure relief devices are critical for the safe release of pressurized hydrogen. To address the risk of spontaneous ignition during a high-pressure release, three-dimensional (3D) numerical simulations are systematically conducted to investigate the effects of burst conditions on spontaneous ignition behavior. Eight simulation [...] Read more.
Pressure relief devices are critical for the safe release of pressurized hydrogen. To address the risk of spontaneous ignition during a high-pressure release, three-dimensional (3D) numerical simulations are systematically conducted to investigate the effects of burst conditions on spontaneous ignition behavior. Eight simulation cases are considered, involving two opening processes (instantaneous and 10-step-like), three burst disk shapes (flat, conventional domed, and reverse domed), and five opening ratios (1, 0.8, 0.6, 0.4, and 0.2). The 10-step-like opening enhances jet turbulence and promotes flame merging between the boundary layer and jet front, intensifying combustion. Domed structures cause a high-velocity region behind the leading shock wave, altering jet front evolution. Compared with reverse-domed disks, flat and conventional domed disks generate stronger vortices and a larger shock-heated area, resulting in more severe combustion and elevated fire risk. As the opening ratio decreases, both shock wave strength and propagation velocity drop significantly, and spontaneous ignition does not occur. The opening ratio has minimal influence on the distance traveled by shock-induced heating. These findings offer meaningful guidance for the design and manufacture of pressure relief devices for the safe emergency release of hydrogen. Full article
Show Figures

Figure 1

13 pages, 1841 KiB  
Article
Fuel Features of Straw Biomass Valorized with Aluminosilicates
by Joanna Wnorowska, Mateusz Tymoszuk and Sylwester Kalisz
Energies 2025, 18(13), 3302; https://doi.org/10.3390/en18133302 - 24 Jun 2025
Viewed by 251
Abstract
Straw biomass is a renewable but problematic fuel due to its high alkali and chlorine content, which can cause slagging and corrosion during combustion. To mitigate these issues, this study investigates the influence of aluminosilicate additives on the thermal behavior and combustion characteristics [...] Read more.
Straw biomass is a renewable but problematic fuel due to its high alkali and chlorine content, which can cause slagging and corrosion during combustion. To mitigate these issues, this study investigates the influence of aluminosilicate additives on the thermal behavior and combustion characteristics of straw biomass. Laboratory-scale testing is carried out using thermogravimetric analysis under atmospheric air, showing the TG, DTG, and DSC profiles of samples (kaolinite, halloysite, straw biomass, and straw biomass with 4 wt.% of halloysite). Additionally, the main combustion parameters, like the ignition temperature, the maximum peak temperature, the burnout temperature, and some combustion indexes, are presented. The results show the effect of a heating rate in the range of 5–20 °C/min. Moreover, in this study, two non-isothermal model methods (Kissinger and Ozawa) are used to estimate energy activation. While halloysite slightly affects the combustion indexes and marginally reduces energy activation, its overall influence does not significantly alter combustion efficiency. These findings support the potential and safe use of halloysite for the biomass combustion process. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

26 pages, 6036 KiB  
Article
Beyond Static Estimates: Dynamic Simulation of Fire–Evacuation Interaction in Historical Districts
by Zhi Yue, Zhe Ma, Di Yao, Yue He, Linglong Gu and Shizhong Jing
Appl. Sci. 2025, 15(12), 6813; https://doi.org/10.3390/app15126813 - 17 Jun 2025
Viewed by 283
Abstract
Historical districts face pressing disaster preparedness challenges due to their special spatial properties—risks compounded by static approaches that overlook dynamic fire–pedestrian interactions. This study employs an agent-based model (ABM) for fire simulations and AnyLogic pedestrian dynamics to address these gaps in Dukezong Ancient [...] Read more.
Historical districts face pressing disaster preparedness challenges due to their special spatial properties—risks compounded by static approaches that overlook dynamic fire–pedestrian interactions. This study employs an agent-based model (ABM) for fire simulations and AnyLogic pedestrian dynamics to address these gaps in Dukezong Ancient Town, Yunnan Province, China, considering diverse ignition points, seasonal temperatures, and wind conditions. Dynamic simulations of 16 scenarios reveal critical spatial impacts: within 30 min, ≥28% of streets became impassable, with central ignition points causing faster obstructions. Static models underestimate evacuation durations by up to 135%, neglecting early stage congestions and detours caused by high-temperature zones. Congestions are concentrated along main east–west arterial roads, worsening with longer warning distances. A mismatch between evacuation flows and shelter capacity is found. Thus, a three-stage interaction simplification is derived: localized detours (0–10 min), congestion-driven delays on critical roads (11–30 min), and prolonged structural damage afterward. This study challenges static approaches by highlighting the “fast alert-fast congestion” paradox, where rapid alerts overwhelm narrow pathways. Solutions prioritize multi-route guidance systems, optimized shelter access points, and real-time information dissemination to reduce bottlenecks without costly infrastructure changes. This study advances disaster modeling by bridging disaster development with dynamic evacuation, offering a replicable framework for similar environments. Full article
Show Figures

Figure 1

14 pages, 3710 KiB  
Article
An Experimental Investigation of Combustion Stability in an Electric-Plug-Assisted Compression Ignition Methanol Engine
by Mengxia Ji, Shaopeng Gong, Hong Hou, Chuanda Zhang and Xiaoping Kang
Processes 2025, 13(6), 1895; https://doi.org/10.3390/pr13061895 - 15 Jun 2025
Viewed by 478
Abstract
When an engine burns methanol, which has a high latent heat of vaporization, if the injection parameters are not set reasonably, the engine will exhibit high combustion instability at low speeds. Therefore, in this study, two pre-injections are set up in an electric-plug-assisted [...] Read more.
When an engine burns methanol, which has a high latent heat of vaporization, if the injection parameters are not set reasonably, the engine will exhibit high combustion instability at low speeds. Therefore, in this study, two pre-injections are set up in an electric-plug-assisted compression ignition methanol engine to investigate the effects of the pre-injection ratio and pre-injection timing on combustion stability and to provide a theoretical basis for the calibration of the injection of the engine at low speeds. The test results show that, at low speeds, the pre-injection ratio and pre-injection timing have a significant effect on combustion stability. They also show that, at low speeds and high loads, by regulating the pre-injection strategy, the bimodal phenomenon observed in the cylinder pressure of the compression ignition methanol engine can be weakened, and the cylinder pressure fluctuation caused by afterburning can be improved. Specifically, the maximum cyclic fluctuation of cylinder pressure was improved by 32.8%, the maximum cyclic fluctuation of the engine’s indicated average effective pressure was improved by 8.12%, and the maximum cyclic fluctuation of engine peak pressure was improved by 16.96%. The start point and combustion center of gravity data were centralized. The concentration of the start point and combustion center of gravity data improved by 6 °CA and 5.87 °CA, respectively. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop