Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = immobilized artificial membrane chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10762 KB  
Article
Biomimetic Chromatography/QSAR Investigations in Modeling Properties Influencing the Biological Efficacy of Phenoxyacetic Acid-Derived Congeners
by Małgorzata Janicka, Małgorzata Sztanke and Krzysztof Sztanke
Molecules 2025, 30(3), 688; https://doi.org/10.3390/molecules30030688 - 4 Feb 2025
Viewed by 1226
Abstract
A hybrid method—combining liquid biomimetic chromatography techniques (immobilized artificial membrane chromatography and biopartitioning micellar chromatography) and Quantitative Structure–Activity Relationships—was used to derive helpful models for predicting selected biological properties such as penetration through the plant cuticle, the skin and the blood–brain barrier, and [...] Read more.
A hybrid method—combining liquid biomimetic chromatography techniques (immobilized artificial membrane chromatography and biopartitioning micellar chromatography) and Quantitative Structure–Activity Relationships—was used to derive helpful models for predicting selected biological properties such as penetration through the plant cuticle, the skin and the blood–brain barrier, and binding to human serum albumin of phenoxyacetic acid-derived congeners regarded as potential herbicides. Reliable, high-concept models were developed indicating the lipophilicity, polarizability, and sum of hydrogen bond donors and acceptors as properties that determine the biological efficacy of the title compounds. These models were validated by leave-one-out cross-validation. Modeling the toxicity of phenoxyacetic acid-derived congeners to red blood cells allowed the identification of the most toxic substances as well as those molecular descriptors that determine their hemolytic properties. Full article
Show Figures

Figure 1

19 pages, 5588 KB  
Article
Modeling the Blood-Brain Barrier Permeability of Potential Heterocyclic Drugs via Biomimetic IAM Chromatography Technique Combined with QSAR Methodology
by Małgorzata Janicka, Małgorzata Sztanke and Krzysztof Sztanke
Molecules 2024, 29(2), 287; https://doi.org/10.3390/molecules29020287 - 5 Jan 2024
Cited by 11 | Viewed by 3273
Abstract
Penetration through the blood-brain barrier (BBB) is desirable in the case of potential pharmaceuticals acting on the central nervous system (CNS), but is undesirable in the case of drug candidates acting on the peripheral nervous system because it may cause CNS side effects. [...] Read more.
Penetration through the blood-brain barrier (BBB) is desirable in the case of potential pharmaceuticals acting on the central nervous system (CNS), but is undesirable in the case of drug candidates acting on the peripheral nervous system because it may cause CNS side effects. Therefore, modeling of the permeability across the blood-brain barrier (i.e., the logarithm of the brain to blood concentration ratio, log BB) of potential pharmaceuticals should be performed as early as possible in the preclinical phase of drug development. Biomimetic chromatography with immobilized artificial membrane (IAM) and the quantitative structure-activity relationship (QSAR) methodology were successful in modeling the blood-brain barrier permeability of 126 drug candidates, whose experimentally-derived lipophilicity indices and computationally-derived molecular descriptors (such as molecular weight (MW), number of rotatable bonds (NRB), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), topological polar surface area (TPSA), and polarizability (α)) varied by class. The QSARs model established by multiple linear regression showed a positive effect of the lipophilicity (log kw, IAM) and molecular weight of the compound, and a negative effect of the number of hydrogen bond donors and acceptors, on the log BB values. The model has been cross-validated, and all statistics indicate that it is very good and has high predictive ability. The simplicity of the developed model, and its usefulness in screening studies of novel drug candidates that are able to cross the BBB by passive diffusion, are emphasized. Full article
(This article belongs to the Special Issue Heterocyclic Compounds for Drug Design and Drug Discovery)
Show Figures

Figure 1

12 pages, 1179 KB  
Article
Immobilized Keratin HPLC Stationary Phase—A Forgotten Model of Transdermal Absorption: To What Molecular and Biological Properties Is It Relevant?
by Anna Weronika Sobańska and Elżbieta Brzezińska
Pharmaceutics 2023, 15(4), 1172; https://doi.org/10.3390/pharmaceutics15041172 - 7 Apr 2023
Viewed by 1669
Abstract
Chromatographic retention data collected on immobilized keratin (KER) or immobilized artificial membrane (IAM) stationary phases were used to predict skin permeability coefficient (log Kp) and bioconcentration factor (log BCF) of structurally unrelated compounds. Models of both properties contained, apart from [...] Read more.
Chromatographic retention data collected on immobilized keratin (KER) or immobilized artificial membrane (IAM) stationary phases were used to predict skin permeability coefficient (log Kp) and bioconcentration factor (log BCF) of structurally unrelated compounds. Models of both properties contained, apart from chromatographic descriptors, calculated physico-chemical parameters. The log Kp model, containing keratin-based retention factor, has slightly better statistical parameters and is in a better agreement with experimental log Kp data than the model derived from IAM chromatography; both models are applicable primarily to non-ionized compounds.Based on the multiple linear regression (MLR) analyses conducted in this study, it was concluded that immobilized keratin chromatographic support is a moderately useful tool for skin permeability assessment.However, chromatography on immobilized keratin may also be of use for a different purpose—in studies of compounds’ bioconcentration in aquatic organisms. Full article
(This article belongs to the Special Issue Transdermal/Dermal Drug Delivery System)
Show Figures

Figure 1

13 pages, 1574 KB  
Article
Computational Approach to Drug Penetration across the Blood-Brain and Blood-Milk Barrier Using Chromatographic Descriptors
by Wanat Karolina, Rojek Agata and Brzezińska Elżbieta
Cells 2023, 12(3), 421; https://doi.org/10.3390/cells12030421 - 27 Jan 2023
Cited by 3 | Viewed by 2187
Abstract
Drug penetration through biological barriers is an important aspect of pharmacokinetics. Although the structure of the blood-brain and blood-milk barriers is different, a connection can be found in the literature between drugs entering the central nervous system (CNS) and breast milk. This study [...] Read more.
Drug penetration through biological barriers is an important aspect of pharmacokinetics. Although the structure of the blood-brain and blood-milk barriers is different, a connection can be found in the literature between drugs entering the central nervous system (CNS) and breast milk. This study was created to reveal such a relationship with the use of statistical modelling. The basic physicochemical properties of 37 active pharmaceutical compounds (APIs) and their chromatographic retention data (TLC and HPLC) were incorporated into calculations as molecular descriptors (MDs). Chromatography was performed in a thin layer format (TLC), where the plates were impregnated with bovine serum albumin to mimic plasma protein binding. Two columns were used in high performance liquid chromatography (HPLC): one with immobilized human serum albumin (HSA), and the other containing an immobilized artificial membrane (IAM). Statistical methods including multiple linear regression (MLR), cluster analysis (CA) and random forest regression (RF) were performed with satisfactory results: the MLR model explains 83% of the independent variable variability related to CNS bioavailability; while the RF model explains up to 87%. In both cases, the parameter related to breast milk penetration was included in the created models. A significant share of reversed-phase TLC retention values was also noticed in the RF model. Full article
Show Figures

Figure 1

17 pages, 2138 KB  
Article
Affinity of Compounds for Phosphatydylcholine-Based Immobilized Artificial Membrane—A Measure of Their Bioconcentration in Aquatic Organisms
by Anna W. Sobańska
Membranes 2022, 12(11), 1130; https://doi.org/10.3390/membranes12111130 - 11 Nov 2022
Cited by 6 | Viewed by 1695
Abstract
The BCF (bioconcentration factor) of solutes in aquatic organisms is an important parameter because many undesired chemicals enter the ecosystem and affect the wildlife. Chromatographic retention factor log kwIAM obtained from immobilized artificial membrane (IAM) HPLC chromatography with buffered, aqueous mobile [...] Read more.
The BCF (bioconcentration factor) of solutes in aquatic organisms is an important parameter because many undesired chemicals enter the ecosystem and affect the wildlife. Chromatographic retention factor log kwIAM obtained from immobilized artificial membrane (IAM) HPLC chromatography with buffered, aqueous mobile phases and calculated molecular descriptors obtained for a group of 120 structurally unrelated compounds were used to generate useful models of log BCF. It was established that log kwIAM obtained in the conditions described in this study is not sufficient as a sole predictor of bioconcentration. Simple, potentially useful models based on log kwIAM and a selection of readily available, calculated descriptors and accounting for over 88% of total variability were generated using multiple linear regression (MLR), partial least squares (PLS) regression and artificial neural networks (ANN). The models proposed in the study were tested on an external group of 120 compounds and on a group of 40 compounds with known experimental log BCF values. It was established that a relatively simple MLR model containing four independent variables leads to satisfying BCF predictions and is more intuitive than PLS or ANN models. Full article
Show Figures

Figure 1

1 pages, 182 KB  
Abstract
Chromatographic Retention Factor Obtained on Immobilized Keratin Stationary Phase—What Molecular Properties Does It Encode?
by Anna Weronika Sobanska and Elżbieta Brzezińska
Med. Sci. Forum 2022, 14(1), 67; https://doi.org/10.3390/ECMC2022-13242 - 1 Nov 2022
Viewed by 792
Abstract
Chromatographic retention factors (log kKERATIN) of 33 molecules were obtained on an immobilized keratin stationary phase by Turowski and Kaliszan (J. Pharm. Biomed. Anal. 15, 1997, 1325–1333). Their objective was to develop a novel stationary phase that could be used to [...] Read more.
Chromatographic retention factors (log kKERATIN) of 33 molecules were obtained on an immobilized keratin stationary phase by Turowski and Kaliszan (J. Pharm. Biomed. Anal. 15, 1997, 1325–1333). Their objective was to develop a novel stationary phase that could be used to investigate the skin permeability coefficient of solutes (log Kp) in vitro. However, log kKERATIN is not a sufficiently good predictor of skin permeability coefficient to be used as a sole descriptor in log Kp models. Turowski and Kaliszan reported that this descriptor can be used in combination with the chromatographic retention factor obtained by Immobilized Artificial Membrane Chromatography (log kIAM) and the results of log Kp predictions using multiple linear regression (MLR) models are moderately satisfying. In this study, the values of log kKERATIN obtained by Turowski and Kaliszan were correlated with a set of descriptors calculated using SwissADME software. It was discovered that log kKERATIN encodes primarily lipophilicity, solubility, and molecular size descriptors, which are important factors governing the ability of compounds to cross the skin barrier. On the other hand, log kKERATIN does not correlate with polar surface area (PSA) and the molecule’s ability to form hydrogen bonds—which are important properties in the context of solutes’ skin permeability. It was concluded that log kKERATIN could be used as a descriptor in MLR models of log kpin combination with other parameters, such as PSA or H-bond descriptors. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Medicinal Chemistry)
41 pages, 2036 KB  
Review
Liquid Chromatography on the Different Methods for the Determination of Lipophilicity: An Essential Analytical Tool in Medicinal Chemistry
by José X. Soares, Álvaro Santos, Carla Fernandes and Madalena M. M. Pinto
Chemosensors 2022, 10(8), 340; https://doi.org/10.3390/chemosensors10080340 - 18 Aug 2022
Cited by 41 | Viewed by 11654
Abstract
Lipophilicity is one of many parameters involved in the biological activity of drugs, as it affects their pharmacokinetic and pharmacodynamic behavior. Generally, lipophilicity is assessed by the partition coefficient of a compound between a nonpolar phase (n-octanol) and an aqueous phase [...] Read more.
Lipophilicity is one of many parameters involved in the biological activity of drugs, as it affects their pharmacokinetic and pharmacodynamic behavior. Generally, lipophilicity is assessed by the partition coefficient of a compound between a nonpolar phase (n-octanol) and an aqueous phase (water), expressed as P (partition coefficient) or as its decimal logarithm (Log P). The gold standard method for the experimental determination of Log P is the shake-flask method. In this context, chromatographic methods enable the direct and simple quantification of the partitioned compound between the two phases. This review discusses the use of liquid chromatography (LC) for direct and indirect determination of lipophilicity. Beyond the classical isotropic log P determination, methods for assessing anisotropic lipophilicity are also reviewed. Several examples are discussed that highlight the versatility of LC technique and current trends. The last section of this review focuses on a case study describing an experience of our group and emphasizing the dual role of LC in determining Log P. Full article
(This article belongs to the Collection Women Special Issue in Chemosensors and Analytical Chemistry)
Show Figures

Graphical abstract

17 pages, 1314 KB  
Article
Accessing Lipophilicity and Biomimetic Chromatography Profile of Biologically Active Ingredients of Botanicals Used in the Treatment of Inflammatory Bowel Disease
by Mario-Livio Jeličić, Daniela Amidžić Klarić, Jelena Kovačić, Donatella Verbanac and Ana Mornar
Pharmaceuticals 2022, 15(8), 965; https://doi.org/10.3390/ph15080965 - 4 Aug 2022
Cited by 5 | Viewed by 3314
Abstract
In the present study, various procedures have been compared for the determination of lipophilicity, hydrophobicity, and plasma protein binding of curcuminoids, boswellic acids, andrographolides, and piperine as biologically active ingredients of botanicals used in IBD treatment. Our results have shown that IAM-HPLC assay [...] Read more.
In the present study, various procedures have been compared for the determination of lipophilicity, hydrophobicity, and plasma protein binding of curcuminoids, boswellic acids, andrographolides, and piperine as biologically active ingredients of botanicals used in IBD treatment. Our results have shown that IAM-HPLC assay is the most suitable one for lipophilicity determination of all analytes regardless of their class and botanical source. HSA-HPAC and AGP-HPAC assays revealed that all investigated compounds have a higher affinity for HSA which is the most abundant protein in human plasma. The high affinity of biologically active compounds to all biological structures (phospholipids and proteins) admonishes that their small portion is available for therapeutic effects in IBD patients. Our experimental research is complemented by various theoretical approaches based on different algorithms for pharmacokinetic properties prediction. The similarities between experimental and calculated values were evaluated using PCA and CA as a statistical tool. The statistical analysis implies that plasma protein binding is a complex process, and theoretical approaches still cannot fully replace experimental ones. Full article
Show Figures

Graphical abstract

12 pages, 3879 KB  
Article
Parabens Permeation through Biological Membranes: A Comparative Study Using Franz Cell Diffusion System and Biomimetic Liquid Chromatography
by Ilaria Neri, Sonia Laneri, Ritamaria Di Lorenzo, Irene Dini, Giacomo Russo and Lucia Grumetto
Molecules 2022, 27(13), 4263; https://doi.org/10.3390/molecules27134263 - 1 Jul 2022
Cited by 16 | Viewed by 4230
Abstract
Parabens (PBs) are used as preservatives to extend the shelf life of various foodstuffs, and pharmaceutical and cosmetic preparations. In this work, the membrane barrier passage potential of a subset of seven parabens, i.e., methyl-, ethyl-, propyl- isopropyl, butyl, isobutyl, and benzyl paraben, [...] Read more.
Parabens (PBs) are used as preservatives to extend the shelf life of various foodstuffs, and pharmaceutical and cosmetic preparations. In this work, the membrane barrier passage potential of a subset of seven parabens, i.e., methyl-, ethyl-, propyl- isopropyl, butyl, isobutyl, and benzyl paraben, along with their parent compound, p-hydroxy benzoic acid, were studied. Thus, the Franz cell diffusion (FDC) method, biomimetic liquid chromatography (BLC), and in silico prediction were performed to evaluate the soundness of both describing their permeation through the skin. While BLC allowed the achievement of a full scale of affinity for membrane phospholipids of the PBs under research, the permeation of parabens through Franz diffusion cells having a carbon chain > ethyl could not be measured in a fully aqueous medium, i.e., permeation enhancer-free conditions. Our results support that BLC and in silico prediction alone can occasionally be misleading in the permeability potential assessment of these preservatives, emphasizing the need for a multi-technique and integrated experimental approach. Full article
(This article belongs to the Special Issue Analytical Aspects in Environmental Pollution Monitoring)
Show Figures

Figure 1

22 pages, 2647 KB  
Article
Prediction Models for Brain Distribution of Drugs Based on Biomimetic Chromatographic Data
by Theodosia Vallianatou, Fotios Tsopelas and Anna Tsantili-Kakoulidou
Molecules 2022, 27(12), 3668; https://doi.org/10.3390/molecules27123668 - 7 Jun 2022
Cited by 8 | Viewed by 2652
Abstract
The development of high-throughput approaches for the valid estimation of brain disposition is of great importance in the early drug screening of drug candidates. However, the complexity of brain tissue, which is protected by a unique vasculature formation called the blood–brain barrier (BBB), [...] Read more.
The development of high-throughput approaches for the valid estimation of brain disposition is of great importance in the early drug screening of drug candidates. However, the complexity of brain tissue, which is protected by a unique vasculature formation called the blood–brain barrier (BBB), complicates the development of robust in silico models. In addition, most computational approaches focus only on brain permeability data without considering the crucial factors of plasma and tissue binding. In the present study, we combined experimental data obtained by HPLC using three biomimetic columns, i.e., immobilized artificial membranes, human serum albumin, and α1-acid glycoprotein, with molecular descriptors to model brain disposition of drugs. Kp,uu,brain, as the ratio between the unbound drug concentration in the brain interstitial fluid to the corresponding plasma concentration, brain permeability, the unbound fraction in the brain, and the brain unbound volume of distribution, was collected from literature. Given the complexity of the investigated biological processes, the extracted models displayed high statistical quality (R2 > 0.6), while in the case of the brain fraction unbound, the models showed excellent performance (R2 > 0.9). All models were thoroughly validated, and their applicability domain was estimated. Our approach highlighted the importance of phospholipid, as well as tissue and protein, binding in balance with BBB permeability in brain disposition and suggests biomimetic chromatography as a rapid and simple technique to construct models with experimental evidence for the early evaluation of CNS drug candidates. Full article
Show Figures

Figure 1

8 pages, 963 KB  
Communication
Can Immobilized Artificial Membrane Chromatography Support the Characterization of Antimicrobial Peptide Origin Derivatives?
by Krzesimir Ciura, Natalia Ptaszyńska, Hanna Kapica, Monika Pastewska, Anna Łęgowska, Krzysztof Rolka, Wojciech Kamysz, Wiesław Sawicki and Katarzyna E. Greber
Antibiotics 2021, 10(10), 1237; https://doi.org/10.3390/antibiotics10101237 - 12 Oct 2021
Cited by 7 | Viewed by 2319
Abstract
The emergence and spread of multiple drug-resistant bacteria strains caused the development of new antibiotics to be one of the most important challenges of medicinal chemistry. Despite many efforts, the commercial availability of peptide-based antimicrobials is still limited. The presented study aims to [...] Read more.
The emergence and spread of multiple drug-resistant bacteria strains caused the development of new antibiotics to be one of the most important challenges of medicinal chemistry. Despite many efforts, the commercial availability of peptide-based antimicrobials is still limited. The presented study aims to explain that immobilized artificial membrane chromatography can support the characterization of antimicrobial peptides. Consequently, the chromatographic experiments of three groups of related peptide substances: (i) short cationic lipopeptides, (ii) citropin analogs, and (iii) conjugates of ciprofloxacin and levofloxacin, with a cell-penetrating peptide were discussed. In light of the discussion of the mechanisms of action of these compounds, the obtained results were interpreted. Full article
(This article belongs to the Special Issue Mechanisms of Antimicrobial Peptides on Pathogens)
Show Figures

Graphical abstract

31 pages, 2856 KB  
Review
Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems
by Felix Neumaier, Boris D. Zlatopolskiy and Bernd Neumaier
Pharmaceutics 2021, 13(10), 1542; https://doi.org/10.3390/pharmaceutics13101542 - 23 Sep 2021
Cited by 42 | Viewed by 6986
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood–brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single [...] Read more.
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood–brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

14 pages, 957 KB  
Article
Predicting Pharmacokinetic Properties of Potential Anticancer Agents via Their Chromatographic Behavior on Different Reversed Phase Materials
by Małgorzata Janicka, Anna Mycka, Małgorzata Sztanke and Krzysztof Sztanke
Int. J. Mol. Sci. 2021, 22(8), 4257; https://doi.org/10.3390/ijms22084257 - 20 Apr 2021
Cited by 16 | Viewed by 2288
Abstract
The Quantitative Structure-Activity Relationship (QSAR) methodology was used to predict biological properties, i.e., the blood–brain distribution (log BB), fraction unbounded in the brain (fu,brain), water-skin permeation (log Kp), binding to human plasma proteins (log Ka,HSA), [...] Read more.
The Quantitative Structure-Activity Relationship (QSAR) methodology was used to predict biological properties, i.e., the blood–brain distribution (log BB), fraction unbounded in the brain (fu,brain), water-skin permeation (log Kp), binding to human plasma proteins (log Ka,HSA), and intestinal permeability (Caco-2), for three classes of fused azaisocytosine-containing congeners that were considered and tested as promising drug candidates. The compounds were characterized by lipophilic, structural, and electronic descriptors, i.e., chromatographic retention, topological polar surface area, polarizability, and molecular weight. Different reversed-phase liquid chromatography techniques were used to determine the chromatographic lipophilicity of the compounds that were tested, i.e., micellar liquid chromatography (MLC) with the ODS-2 column and polyoxyethylene lauryl ether (Brij 35) as the effluent component, an immobilized artificial membrane (IAM) chromatography with phosphatidylcholine column (IAM.PC.DD2) and chromatography with end-capped octadecylsilyl (ODS) column using aqueous solutions of acetonitrile as the mobile phases. Using multiple linear regression, we derived the statistically significant quantitative structure-activity relationships. All these QSAR equations were validated and were found to be very good. The investigations highlight the significance and possibilities of liquid chromatographic techniques with three different reversed-phase materials and QSARs methods in predicting the pharmacokinetic properties of our important organic compounds and reducing unethical animal testing. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 2267 KB  
Article
Biomimetic Chromatographic Studies Combined with the Computational Approach to Investigate the Ability of Triterpenoid Saponins of Plant Origin to Cross the Blood–Brain Barrier
by Katarzyna Stępnik
Int. J. Mol. Sci. 2021, 22(7), 3573; https://doi.org/10.3390/ijms22073573 - 30 Mar 2021
Cited by 20 | Viewed by 3617
Abstract
Biomimetic (non-cell based in vitro) and computational (in silico) studies are commonly used as screening tests in laboratory practice in the first stages of an experiment on biologically active compounds (potential drugs) and constitute an important step in the research on the drug [...] Read more.
Biomimetic (non-cell based in vitro) and computational (in silico) studies are commonly used as screening tests in laboratory practice in the first stages of an experiment on biologically active compounds (potential drugs) and constitute an important step in the research on the drug design process. The main aim of this study was to evaluate the ability of triterpenoid saponins of plant origin to cross the blood–brain barrier (BBB) using both computational methods, including QSAR methodology, and biomimetic chromatographic methods, i.e., High Performance Liquid Chromatography (HPLC) with Immobilized Artificial Membrane (IAM) and cholesterol (CHOL) stationary phases, as well as Bio-partitioning Micellar Chromatography (BMC). The tested compounds were as follows: arjunic acid (Terminalia arjuna), akebia saponin D (Akebia quinata), bacoside A (Bacopa monnieri) and platycodin D (Platycodon grandiflorum). The pharmacokinetic BBB parameters calculated in silico show that three of the four substances, i.e., arjunic acid, akebia saponin D, and bacoside A exhibit similar values of brain/plasma equilibration rate expressed as logPSFubrain (the average logPSFubrain: −5.03), whereas the logPSFubrain value for platycodin D is –9.0. Platycodin D also shows the highest value of the unbound fraction in the brain obtained using the examined compounds (0.98). In these studies, it was found out for the first time that the logarithm of the analyte–micelle association constant (logKMA) calculated based on Foley’s equation can describe the passage of substances through the BBB. The most similar logBB values were obtained for hydrophilic platycodin D, applying both biomimetic and computational methods. All of the obtained logBB values and physicochemical parameters of the molecule indicate that platycodin D does not cross the BBB (the average logBB: −1.681), even though the in silico estimated value of the fraction unbound in plasma is relatively high (0.52). As far as it is known, this is the first paper that shows the applicability of biomimetic chromatographic methods in predicting the penetration of triterpenoid saponins through the BBB. Full article
(This article belongs to the Special Issue Biological Properties of Medicinal Plants)
Show Figures

Figure 1

9 pages, 1320 KB  
Communication
Affinity of Antifungal Isoxazolo[3,4-b]pyridine-3(1H)-Ones to Phospholipids in Immobilized Artificial Membrane (IAM) Chromatography
by Krzesimir Ciura, Joanna Fedorowicz, Petar Žuvela, Mario Lovrić, Hanna Kapica, Paweł Baranowski, Wiesław Sawicki, Ming Wah Wong and Jarosław Sączewski
Molecules 2020, 25(20), 4835; https://doi.org/10.3390/molecules25204835 - 20 Oct 2020
Cited by 10 | Viewed by 2875
Abstract
Currently, rapid evaluation of the physicochemical parameters of drug candidates, such as lipophilicity, is in high demand owing to it enabling the approximation of the processes of absorption, distribution, metabolism, and elimination. Although the lipophilicity of drug candidates is determined using the shake [...] Read more.
Currently, rapid evaluation of the physicochemical parameters of drug candidates, such as lipophilicity, is in high demand owing to it enabling the approximation of the processes of absorption, distribution, metabolism, and elimination. Although the lipophilicity of drug candidates is determined using the shake flash method (n-octanol/water system) or reversed phase liquid chromatography (RP-LC), more biosimilar alternatives to classical lipophilicity measurement are currently available. One of the alternatives is immobilized artificial membrane (IAM) chromatography. The present study is a continuation of our research focused on physiochemical characterization of biologically active derivatives of isoxazolo[3,4-b]pyridine-3(1H)-ones. The main goal of this study was to assess the affinity of isoxazolones to phospholipids using IAM chromatography and compare it with the lipophilicity parameters established by reversed phase chromatography. Quantitative structure–retention relationship (QSRR) modeling of IAM retention using differential evolution coupled with partial least squares (DE-PLS) regression was performed. The results indicate that in the studied group of structurally related isoxazolone derivatives, discrepancies occur between the retention under IAM and RP-LC conditions. Although some correlation between these two chromatographic methods can be found, lipophilicity does not fully explain the affinities of the investigated molecules to phospholipids. QSRR analysis also shows common factors that contribute to retention under IAM and RP-LC conditions. In this context, the significant influences of WHIM and GETAWAY descriptors in all the obtained models should be highlighted. Full article
(This article belongs to the Special Issue Stationary Phases in Separation Techniques)
Show Figures

Figure 1

Back to TopTop