Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = immunoengineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6280 KB  
Article
The V5-Epitope Tag for Cell Engineering and Its Use in Immunohistochemistry and Quantitative Flow Cytometry
by Katja Fritschle, Marion Mielke, Olga J. Seelbach, Ulrike Mühlthaler, Milica Živanić, Tarik Bozoglu, Sarah Dötsch, Linda Warmuth, Dirk H. Busch, Arne Skerra, Christian Kupatt, Wolfgang A. Weber, Richard E. Randall, Katja Steiger and Volker Morath
Biology 2025, 14(7), 890; https://doi.org/10.3390/biology14070890 - 20 Jul 2025
Viewed by 948
Abstract
Synthetic biology has fundamentally advanced cell engineering and helped to develop effective therapeutics such as chimeric antigen receptor (CAR)-T cells. For these applications, the detection, localization, and quantification of heterologous fusion proteins assembled from interchangeable building blocks is of high importance. The V5 [...] Read more.
Synthetic biology has fundamentally advanced cell engineering and helped to develop effective therapeutics such as chimeric antigen receptor (CAR)-T cells. For these applications, the detection, localization, and quantification of heterologous fusion proteins assembled from interchangeable building blocks is of high importance. The V5 tag, a 14-residue epitope tag, offers promising characteristics for these applications but has only rarely been used in this context. Thus, we have systematically evaluated the murine anti-V5 tag antibody mu_SV5-Pk1 as well as its humanized version, hu_SV5-Pk1, to analyze cells expressing V5-tagged receptors in samples from various in vitro and in vivo experiments. We found that the V5 tag signal on cells is affected by certain fixation and detachment reagents. Immunohistochemistry (IHC) on formalin-fixed paraffin-embedded (FFPE) mouse tissue samples was performed to sensitively detect cells in tissue. We improved IHC by applying the hu_SV5-Pk1 monoclonal antibody (mAb) to avoid cross-reactivity within and unspecific background signals arising on fixed mouse tissue. Conversely, the absence of unspecific binding by the mu_SV5-Pk1 mAb was evaluated on 46 human normal or cancer tissues. Our findings present a robust toolbox for utilizing the V5 tag and cognate antibodies in synthetic biology applications. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

24 pages, 1680 KB  
Article
Mathematical Modeling of Salmonella Cancer Therapies Demonstrates the Necessity of Both Bacterial Cytotoxicity and Immune Activation
by Lars M. Howell and Neil S. Forbes
Bioengineering 2025, 12(7), 751; https://doi.org/10.3390/bioengineering12070751 - 10 Jul 2025
Viewed by 795
Abstract
Salmonella therapies are a promising tool for the treatment of solid tumors. Salmonella can be engineered to increase their tumor infiltration, cell killing abilities, and immunostimulatory properties. However, bacterial therapies have often failed in clinical trials due to poor characterization. Mathematical models are [...] Read more.
Salmonella therapies are a promising tool for the treatment of solid tumors. Salmonella can be engineered to increase their tumor infiltration, cell killing abilities, and immunostimulatory properties. However, bacterial therapies have often failed in clinical trials due to poor characterization. Mathematical models are useful for predicting the immune response to cancer treatments and characterizing the properties of bacterial invasion. Herein we develop an ordinary differential equation-based model that combines bacterial therapies with classical anti-tumor immunotherapies. Our modeling results suggest that increasing bacterial localization to the tumor is key for therapeutic efficacy; however, increased intracellular invasion and direct bacterial mediated cytotoxicity does not reduce tumor growth. Further, the model suggests that enhancing T cell-mediated cell death by both bacterial stimulation of pro-inflammatory cytokines and activation of T cells via antigen cascade is critical for therapeutic efficacy. A balance of intracellular and extracellular Salmonella leads to more effective therapeutic response, which suggests a strategy for strain design to be tested in vivo. Overall, this model provides a system to predict which engineered features of Salmonella therapies lead to effective treatment outcomes. Full article
Show Figures

Figure 1

15 pages, 23341 KB  
Article
Discovery of Synergistic Broadly Neutralizing Antibodies Targeting Non-Dominant Epitopes on SARS-CoV-2 RBD and NTD
by Hualong Feng, Zuowei Wang, Ling Li, Yunjian Li, Maosheng Lu, Xixian Chen, Lin Hu, Yi Sun, Ruiping Du, Rongrong Qin, Xuanyi Chen, Liwei Jiang and Teng Zuo
Vaccines 2025, 13(6), 592; https://doi.org/10.3390/vaccines13060592 - 30 May 2025
Viewed by 1087
Abstract
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal [...] Read more.
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal antibodies (mAbs) were isolated from a donor who experienced a BA.5 or BF.7 breakthrough infection after three doses of inactivated vaccines. Their binding and neutralizing capacities were measured with ELISA and a pseudovirus-based neutralization assay, respectively. Their epitopes were mapped by competition ELISA and site-directed mutation. Results: Among a total of 67 spike-specific mAbs cloned from the donor, four mAbs (KXD643, KXD652, KXD681, and KXD686) can neutralize all tested SARS-CoV-2 variants from wild-type to KP.3. Moreover, KXD643, KXD652, and KXD681 belong to a clonotype encoded by IGHV5-51 and IGKV1-13 and recognize the cryptic and conserved RBD-8 epitope on the receptor-binding domain (RBD). In contrast, KXD686 is encoded by IGHV1-69 and IGKV3-20 and targets a conserved epitope (NTD Site iv) outside the antigenic supersite (NTD Site i) of the N-terminal domain (NTD). Notably, antibody cocktails containing these two groups of mAbs can neutralize SARS-CoV-2 more potently due to synergistic effects. In addition, bispecific antibodies derived from KXD643 and KXD686 demonstrate further improved neutralizing potency compared to antibody cocktails. Conclusions: These four mAbs can be developed as candidates of pan-SARS-CoV-2 antibody therapeutics through further antibody engineering. On the other hand, vaccines designed to simultaneously elicit neutralizing antibodies towards RBD-8 and NTD Site iv have the potential to provide pan-SARS-CoV-2 protection. Full article
Show Figures

Figure 1

31 pages, 5629 KB  
Review
CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad
by Juan C. Baena, Lucy M. Pérez, Alejandro Toro-Pedroza, Toshio Kitawaki and Alexandre Loukanov
Int. J. Mol. Sci. 2024, 25(23), 13157; https://doi.org/10.3390/ijms252313157 - 7 Dec 2024
Cited by 3 | Viewed by 3397
Abstract
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited [...] Read more.
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named “CAR T nanosymbiosis”, offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our “addition by subtraction model” synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms. Full article
(This article belongs to the Topic New Nanomaterials for Biomedical Applications)
Show Figures

Figure 1

11 pages, 5121 KB  
Article
Structural Evaluation of Interleukin-19 Cytokine and Interleukin-19-Bound Receptor Complex Using Computational Immuno-Engineering Approach
by Urmi Roy
Targets 2024, 2(4), 385-395; https://doi.org/10.3390/targets2040022 - 19 Nov 2024
Cited by 1 | Viewed by 1116
Abstract
Interleukin 19 (IL-19) is an anti-inflammatory cytokine that belongs to the IL-10 family, where IL-20 and IL-24 also exist. While IL-19 and IL-20 share some comparable structural folds, there are certain structural divergences in their N-terminal ends. To date, there are no reported [...] Read more.
Interleukin 19 (IL-19) is an anti-inflammatory cytokine that belongs to the IL-10 family, where IL-20 and IL-24 also exist. While IL-19 and IL-20 share some comparable structural folds, there are certain structural divergences in their N-terminal ends. To date, there are no reported IL-19 receptors; although, it has been suggested in the literature that IL-19 would bind to lL-20 receptor (IL-20R) and trigger the JAK-STAT signaling pathways. The present report examines the structure of the IL-19 cytokine and its receptor complex using a computational approach. Specifically, the postulated modes of interactions for IL-20R as an IL-19 receptor are examined on the basis of a set of computational findings. The author has used molecular docking and molecular dynamics simulation to generate a 3D model for the IL-19 complex with IL-20R. When a protein’s crystal structure is not available in the literature, predictive modeling is often employed to determine the protein’s 3D structure. The model assessment can be based on various factors, which include stability analysis using RMSD calculations, tracking changes in time-based secondary structures and the associated Gibbs energies, ΔG. Since one model complex (referred to as model A throughout this paper) can be used as a working hypothesis for future experiments, this structure has been explored here in detail to check its stability, subunit interfaces, and binding residues. The information gathered in this approach can potentially help to design specific experiments to test the validity of the model protein structure. Additionally, the results of this research should be relevant for understanding anti-inflammatory mechanisms and, eventually, could contribute to the efforts for therapeutic developments and targeted therapy. Full article
Show Figures

Figure 1

14 pages, 4068 KB  
Perspective
The Origins of Engineered Biomaterials: NSF-Funded, University of Washington Engineered Biomaterials (UWEB)
by Buddy D. Ratner
Bioengineering 2024, 11(11), 1117; https://doi.org/10.3390/bioengineering11111117 - 6 Nov 2024
Cited by 2 | Viewed by 1307
Abstract
The University of Washington Engineered Biomaterials (UWEB) Engineering Research Center (ERC) was funded from 1996 to 2007 by the U.S. National Science Foundation. The mission of UWEB was to advance biomaterials by integrating modern biology with materials science. UWEB specifically focused on the [...] Read more.
The University of Washington Engineered Biomaterials (UWEB) Engineering Research Center (ERC) was funded from 1996 to 2007 by the U.S. National Science Foundation. The mission of UWEB was to advance biomaterials by integrating modern biology with materials science. UWEB specifically focused on the healing and integration of medical implants. UWEB teamed biologists, physicians, engineers, and industry and demonstrated three paths that might advance biomaterials so they could seamlessly integrate and heal in the body. The three primary lines of investigation were precision porous scaffolds, super-non-fouling surfaces, and the control of matricellular proteins. The UWEB program set the groundwork for the modern field of immunoengineering. Also, UWEB invested significantly in training scientists/engineers who could freely integrate advances in biological sciences, state-of-the-art materials science, and medical technology. This historical summary of the UWEB program demonstrates that federal investment in interfacing forefront fields can yield dividends with benefits for society and the economy. Full article
(This article belongs to the Special Issue 10th Anniversary of Bioengineering: Perspectives in Bioengineering)
Show Figures

Figure 1

18 pages, 3848 KB  
Article
An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1
by Petra Sergent, Juan Carlos Pinto-Cárdenas, Adhara Jaciel Arreguin Carrillo, Daniel Luna Dávalos, Marisa Daniela González Pérez, Dora Alicia Mendoza Lechuga, Daniel Alonso-Miguel, Evelien Schaafsma, Abigail Jiménez Cuarenta, Diana Cárdenas Muñoz, Yuliana Zarabanda, Scott M. Palisoul, Petra J. Lewis, Fred W. Kolling, Jessica Fernanda Affonso de Oliveira, Nicole F. Steinmetz, Jay L. Rothstein, Louise Lines, Randolph J. Noelle, Steven Fiering and Hugo Arias-Pulidoadd Show full author list remove Hide full author list
Cells 2024, 13(17), 1478; https://doi.org/10.3390/cells13171478 - 3 Sep 2024
Cited by 7 | Viewed by 2772
Abstract
Neoadjuvant intratumoral (IT) therapy could amplify the weak responses to checkpoint blockade therapy observed in breast cancer (BC). In this study, we administered neoadjuvant IT anti-canine PD-1 therapy (IT acPD-1) alone or combined with IT cowpea mosaic virus therapy (IT CPMV/acPD-1) to companion [...] Read more.
Neoadjuvant intratumoral (IT) therapy could amplify the weak responses to checkpoint blockade therapy observed in breast cancer (BC). In this study, we administered neoadjuvant IT anti-canine PD-1 therapy (IT acPD-1) alone or combined with IT cowpea mosaic virus therapy (IT CPMV/acPD-1) to companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. CMC patients treated weekly with acPD-1 (n = 3) or CPMV/acPD-1 (n = 3) for four weeks or with CPMV/acPD-1 (n = 3 patients not candidates for surgery) for up to 11 weeks did not experience immune-related adverse events. We found that acPD-1 and CPMV/acPD-1 injections resulted in tumor control and a reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of treated dogs. In two metastatic CMC patients, CPMV/acPD-1 treatments resulted in the control and reduction of established lung metastases. CPMV/acPD-1 treatments were associated with altered gene expression related to TLR1–4 signaling and complement pathways. These novel therapies could be effective for CMC patients. Owing to the extensive similarities between CMC and human BC, IT CPMV combined with approved anti-PD-1 therapies could be a novel and effective immunotherapy to treat local BC and suppress metastatic BC. Full article
Show Figures

Graphical abstract

15 pages, 4443 KB  
Review
Immunoengineering via Chimeric Antigen Receptor-T Cell Therapy: Reprogramming Nanodrug Delivery
by Theodora Katopodi, Savvas Petanidis, Doxakis Anestakis, Charalampos Charalampidis, Ioanna Chatziprodromidou, George Floros, Panagiotis Eskitzis, Paul Zarogoulidis, Charilaos Koulouris, Christina Sevva, Konstantinos Papadopoulos, Marios Dagher, Nikolaos Varsamis, Vasiliki Theodorou, Chrysi Maria Mystakidou, Nikolaos Iason Katsios, Konstantinos Farmakis and Christoforos Kosmidis
Pharmaceutics 2023, 15(10), 2458; https://doi.org/10.3390/pharmaceutics15102458 - 13 Oct 2023
Cited by 3 | Viewed by 2799
Abstract
Following its therapeutic effect in hematological metastasis, chimeric antigen receptor (CAR) T cell therapy has gained a great deal of attention during the last years. However, the effectiveness of this treatment has been hampered by a number of challenges, including significant toxicities, difficult [...] Read more.
Following its therapeutic effect in hematological metastasis, chimeric antigen receptor (CAR) T cell therapy has gained a great deal of attention during the last years. However, the effectiveness of this treatment has been hampered by a number of challenges, including significant toxicities, difficult access to tumor locations, inadequate therapeutic persistence, and manufacturing problems. Developing novel techniques to produce effective CARs, administer them, and monitor their anti-tumor activity in CAR-T cell treatment is undoubtedly necessary. Exploiting the advantages of nanotechnology may possibly be a useful strategy to increase the efficacy of CAR-T cell treatment. This study outlines the current drawbacks of CAR-T immunotherapy and identifies promising developments and significant benefits of using nanotechnology in order to introduce CAR transgene motifs into primary T cells, promote T cell expansion, enhance T cell trafficking, promote intrinsic T cell activity and rewire the immunosuppressive cellular and vascular microenvironments. Therefore, the development of powerful CART cells can be made possible with genetic and functional alterations supported by nanotechnology. In this review, we discuss the innovative and possible uses of nanotechnology for clinical translation, including the delivery, engineering, execution, and modulation of immune functions to enhance and optimize the anti-tumor efficacy of CAR-T cell treatment. Full article
(This article belongs to the Special Issue Smart Drug Targeting for Tumor Therapy)
Show Figures

Figure 1

20 pages, 4017 KB  
Article
Transcriptomics of Canine Inflammatory Mammary Cancer Treated with Empty Cowpea Mosaic Virus Implicates Neutrophils in Anti-Tumor Immunity
by Lucia Barreno, Natalia Sevane, Guillermo Valdivia, Daniel Alonso-Miguel, María Suarez-Redondo, Angela Alonso-Diez, Steven Fiering, Veronique Beiss, Nicole F. Steinmetz, Maria Dolores Perez-Alenza and Laura Peña
Int. J. Mol. Sci. 2023, 24(18), 14034; https://doi.org/10.3390/ijms241814034 - 13 Sep 2023
Cited by 8 | Viewed by 2654
Abstract
Canine inflammatory mammary cancer (IMC) is a highly aggressive and lethal cancer in dogs serving as a valuable animal model for its human counterpart, inflammatory breast cancer (IBC), both lacking effective therapies. Intratumoral immunotherapy (IT-IT) with empty cowpea mosaic virus (eCPMV) nanoparticles has [...] Read more.
Canine inflammatory mammary cancer (IMC) is a highly aggressive and lethal cancer in dogs serving as a valuable animal model for its human counterpart, inflammatory breast cancer (IBC), both lacking effective therapies. Intratumoral immunotherapy (IT-IT) with empty cowpea mosaic virus (eCPMV) nanoparticles has shown promising results, demonstrating a reduction in tumor size, longer survival rates, and improved quality of life. This study compares the transcriptomic profiles of tumor samples from female dogs with IMC receiving eCPMV IT-IT and medical therapy (MT) versus MT alone. Transcriptomic analyses, gene expression profiles, signaling pathways, and cell type profiling of immune cell populations in samples from four eCPMV-treated dogs with IMC and four dogs with IMC treated with MT were evaluated using NanoString Technologies using a canine immune-oncology panel. Comparative analyses revealed 34 differentially expressed genes between treated and untreated samples. Five genes (CXCL8, S100A9, CCL20, IL6, and PTGS2) involved in neutrophil recruitment and activation were upregulated in the treated samples, linked to the IL17-signaling pathway. Cell type profiling showed a significant increase in neutrophil populations in the tumor microenvironment after eCPMV treatment. These findings highlight the role of neutrophils in the anti-tumor response mediated by eCPMV IT-IT and suggest eCPMV as a novel therapeutic approach for IBC/IMC. Full article
(This article belongs to the Special Issue Molecular Immunology of Solid Tumors, 2nd Edition)
Show Figures

Figure 1

30 pages, 6335 KB  
Review
Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review
by Sara Vach Agocsova, Martina Culenova, Ivana Birova, Leona Omanikova, Barbora Moncmanova, Lubos Danisovic, Stanislav Ziaran, Dusan Bakos and Pavol Alexy
Materials 2023, 16(12), 4267; https://doi.org/10.3390/ma16124267 - 8 Jun 2023
Cited by 52 | Viewed by 6778
Abstract
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a [...] Read more.
This article provides a thorough overview of the available resorbable biomaterials appropriate for producing replacements for damaged tissues. In addition, their various properties and application possibilities are discussed as well. Biomaterials are fundamental components in tissue engineering (TE) of scaffolds and play a critical role. They need to exhibit biocompatibility, bioactivity, biodegradability, and non-toxicity, to ensure their ability to function effectively with an appropriate host response. With ongoing research and advancements in biomaterials for medical implants, the objective of this review is to explore recently developed implantable scaffold materials for various tissues. The categorization of biomaterials in this paper includes fossil-based materials (e.g., PCL, PVA, PU, PEG, and PPF), natural or bio-based materials (e.g., HA, PLA, PHB, PHBV, chitosan, fibrin, collagen, starch, and hydrogels), and hybrid biomaterials (e.g., PCL/PLA, PCL/PEG, PLA/PEG, PLA/PHB PCL/collagen, PCL/chitosan, PCL/starch, and PLA/bioceramics). The application of these biomaterials in both hard and soft TE is considered, with a particular focus on their physicochemical, mechanical, and biological properties. Furthermore, the interactions between scaffolds and the host immune system in the context of scaffold-driven tissue regeneration are discussed. Additionally, the article briefly mentions the concept of in situ TE, which leverages the self-renewal capacities of affected tissues and highlights the crucial role played by biopolymer-based scaffolds in this strategy. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Medical Applications)
Show Figures

Figure 1

21 pages, 5092 KB  
Article
Focal Cryo-Immunotherapy with Intratumoral IL-12 Prevents Recurrence of Large Murine Tumors
by Maura R. Vrabel, Jacob A. Schulman, Francis B. Gillam, Siena M. Mantooth, Khue G. Nguyen and David A. Zaharoff
Cancers 2023, 15(8), 2210; https://doi.org/10.3390/cancers15082210 - 8 Apr 2023
Cited by 5 | Viewed by 2949
Abstract
Focal ablation technologies are routinely used in the clinical management of inoperable solid tumors but they often result in incomplete ablations leading to high recurrence rates. Adjuvant therapies, capable of safely eliminating residual tumor cells, are therefore of great clinical interest. Interleukin-12 (IL-12) [...] Read more.
Focal ablation technologies are routinely used in the clinical management of inoperable solid tumors but they often result in incomplete ablations leading to high recurrence rates. Adjuvant therapies, capable of safely eliminating residual tumor cells, are therefore of great clinical interest. Interleukin-12 (IL-12) is a potent antitumor cytokine that can be localized intratumorally through coformulation with viscous biopolymers, including chitosan (CS) solutions. The objective of this research was to determine if localized immunotherapy with a CS/IL-12 formulation could prevent tumor recurrence after cryoablation (CA). Tumor recurrence and overall survival rates were assessed. Systemic immunity was evaluated in spontaneously metastatic and bilateral tumor models. Temporal bulk RNA sequencing was performed on tumor and draining lymph node (dLN) samples. In multiple murine tumor models, the addition of CS/IL-12 to CA reduced recurrence rates by 30–55%. Altogether, this cryo-immunotherapy induced complete durable regression of large tumors in 80–100% of treated animals. Additionally, CS/IL-12 prevented lung metastases when delivered as a neoadjuvant to CA. However, CA plus CS/IL-12 had minimal antitumor activity against established, untreated abscopal tumors. Adjuvant anti-PD-1 therapy delayed the growth of abscopal tumors. Transcriptome analyses revealed early immunological changes in the dLN, followed by a significant increase in gene expression associated with immune suppression and regulation. Cryo-immunotherapy with localized CS/IL-12 reduces recurrences and enhances the elimination of large primary tumors. This focal combination therapy also induces significant but limited systemic antitumor immunity. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

14 pages, 2048 KB  
Article
Development of Chitosan Particles Loaded with siRNA for Cystatin C to Control Intracellular Drug-Resistant Mycobacterium tuberculosis
by David Pires, Manoj Mandal, Ana I. Matos, Carina Peres, Maria João Catalão, José Miguel Azevedo-Pereira, Ronit Satchi-Fainaro, Helena F. Florindo and Elsa Anes
Antibiotics 2023, 12(4), 729; https://doi.org/10.3390/antibiotics12040729 - 8 Apr 2023
Cited by 10 | Viewed by 3071
Abstract
The golden age of antibiotics for tuberculosis (TB) is marked by its success in the 1950s of the last century. However, TB is not under control, and the rise in antibiotic resistance worldwide is a major threat to global health care. Understanding the [...] Read more.
The golden age of antibiotics for tuberculosis (TB) is marked by its success in the 1950s of the last century. However, TB is not under control, and the rise in antibiotic resistance worldwide is a major threat to global health care. Understanding the complex interactions between TB bacilli and their host can inform the rational design of better TB therapeutics, including vaccines, new antibiotics, and host-directed therapies. We recently demonstrated that the modulation of cystatin C in human macrophages via RNA silencing improved the anti-mycobacterial immune responses to Mycobacterium tuberculosis infection. Available in vitro transfection methods are not suitable for the clinical translation of host-cell RNA silencing. To overcome this limitation, we developed different RNA delivery systems (DSs) that target human macrophages. Human peripheral blood-derived macrophages and THP1 cells are difficult to transfect using available methods. In this work, a new potential nanomedicine based on chitosan (CS-DS) was efficiently developed to carry a siRNA-targeting cystatin C to the infected macrophage models. Consequently, an effective impact on the intracellular survival/replication of TB bacilli, including drug-resistant clinical strains, was observed. Altogether, these results suggest the potential use of CS-DS in adjunctive therapy for TB in combination or not with antibiotics. Full article
Show Figures

Figure 1

14 pages, 542 KB  
Article
Network Modeling of Murine Lymphatic System
by Dmitry Grebennikov, Rostislav Savinkov, Ekaterina Zelenova, Gennady Lobov and Gennady Bocharov
Algorithms 2023, 16(3), 168; https://doi.org/10.3390/a16030168 - 20 Mar 2023
Cited by 3 | Viewed by 3011
Abstract
Animal models of diseases, particularly mice, are considered to be the cornerstone for translational research in immunology. The aim of the present study is to model the geometry and analyze the network structure of the murine lymphatic system (LS). The algorithm for building [...] Read more.
Animal models of diseases, particularly mice, are considered to be the cornerstone for translational research in immunology. The aim of the present study is to model the geometry and analyze the network structure of the murine lymphatic system (LS). The algorithm for building the graph model of the LS makes use of anatomical data. To identify the edge directions of the graph model, a mass balance approach to lymph dynamics based on the Hagen–Poiseuille equation is applied. It is the first study in which a geometric model of the murine LS has been developed and characterized in terms of its structural organization and the lymph transfer function. Our study meets the demand for quantitative mechanistic approaches in the growing field of immunoengineering to utilize or exploit the lymphatic system for immunotherapy. Full article
Show Figures

Figure 1

18 pages, 642 KB  
Systematic Review
Engineering the Tumor Immune Microenvironment through Minimally Invasive Interventions
by Koustav Pal and Rahul A. Sheth
Cancers 2023, 15(1), 196; https://doi.org/10.3390/cancers15010196 - 29 Dec 2022
Cited by 13 | Viewed by 3802
Abstract
The tumor microenvironment (TME) is a unique landscape that poses several physical, biochemical, and immune barriers to anti-cancer therapies. The rapidly evolving field of immuno-engineering provides new opportunities to dismantle the tumor immune microenvironment by efficient tumor destruction. Systemic delivery of such treatments [...] Read more.
The tumor microenvironment (TME) is a unique landscape that poses several physical, biochemical, and immune barriers to anti-cancer therapies. The rapidly evolving field of immuno-engineering provides new opportunities to dismantle the tumor immune microenvironment by efficient tumor destruction. Systemic delivery of such treatments can often have limited local effects, leading to unwanted offsite effects such as systemic toxicity and tumor resistance. Interventional radiologists use contemporary image-guided techniques to locally deliver these therapies to modulate the immunosuppressive TME, further accelerating tumor death and invoking a better anti-tumor response. These involve local therapies such as intratumoral drug delivery, nanorobots, nanoparticles, and implantable microdevices. Physical therapies such as photodynamic therapy, electroporation, hyperthermia, hypothermia, ultrasound therapy, histotripsy, and radiotherapy are also available for local tumor destruction. While the interventional radiologist can only locally manipulate the TME, there are systemic offsite recruitments of the immune response. This is known as the abscopal effect, which leads to more significant anti-tumoral downstream effects. Local delivery of modern immunoengineering methods such as locoregional CAR-T therapy combined with immune checkpoint inhibitors efficaciously modulates the immunosuppressive TME. This review highlights the various advances and technologies available now to change the TME and revolutionize oncology from a minimally invasive viewpoint. Full article
(This article belongs to the Special Issue Engineering the Tumor Immune Microenvironment)
Show Figures

Figure 1

14 pages, 6465 KB  
Article
A Microfluidic Approach for Probing Heterogeneity in Cytotoxic T-Cells by Cell Pairing in Hydrogel Droplets
by Bart M. Tiemeijer, Lucie Descamps, Jesse Hulleman, Jelle J. F. Sleeboom and Jurjen Tel
Micromachines 2022, 13(11), 1910; https://doi.org/10.3390/mi13111910 - 4 Nov 2022
Cited by 10 | Viewed by 3404
Abstract
Cytotoxic T-cells (CTLs) exhibit strong effector functions to leverage antigen-specific anti-tumoral and anti-viral immunity. When naïve CTLs are activated by antigen-presenting cells (APCs) they display various levels of functional heterogeneity. To investigate this, we developed a single-cell droplet microfluidics platform that allows for [...] Read more.
Cytotoxic T-cells (CTLs) exhibit strong effector functions to leverage antigen-specific anti-tumoral and anti-viral immunity. When naïve CTLs are activated by antigen-presenting cells (APCs) they display various levels of functional heterogeneity. To investigate this, we developed a single-cell droplet microfluidics platform that allows for deciphering single CTL activation profiles by multi-parameter analysis. We identified and correlated functional heterogeneity based on secretion profiles of IFNγ, TNFα, IL-2, and CD69 and CD25 surface marker expression levels. Furthermore, we strengthened our approach by incorporating low-melting agarose to encapsulate pairs of single CTLs and artificial APCs in hydrogel droplets, thereby preserving spatial information over cell pairs. This approach provides a robust tool for high-throughput and single-cell analysis of CTLs compatible with flow cytometry for subsequent analysis and sorting. The ability to score CTL quality, combined with various potential downstream analyses, could pave the way for the selection of potent CTLs for cell-based therapeutic strategies. Full article
(This article belongs to the Special Issue Droplet-Based Microfluidics: Design, Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop