Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = implied volatility smile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4023 KB  
Article
Modeling Implied Volatility Surface Using B-Splines with Time-Dependent Coefficients Predicted by Tree-Based Machine Learning Methods
by Zihao Chen, Yuyang Li and Cindy Long Yu
Mathematics 2024, 12(7), 1100; https://doi.org/10.3390/math12071100 - 6 Apr 2024
Viewed by 3553
Abstract
Implied volatility is known to have a string structure (smile curve) for a given time to maturity and can be captured by the B-spline. The parameters characterizing the curves can change over time, which complicates the modeling of the implied volatility surface. Although [...] Read more.
Implied volatility is known to have a string structure (smile curve) for a given time to maturity and can be captured by the B-spline. The parameters characterizing the curves can change over time, which complicates the modeling of the implied volatility surface. Although machine learning models could improve the in-sample fitting, they ignore the structure in common over time and might have poor prediction power. In response to these challenges, we propose a two-step procedure to model the dynamic implied volatility surface (IVS). In the first step, we construct the bivariate tensor-product B-spline (BTPB) basis to approximate cross-sectional structures, under which the surface can be represented by a vector of coefficients. In the second step, we allow for the time-dependent coefficients and model the dynamic coefficients with the tree-based method to provide more flexibility. We show that our approach has better performance than the traditional linear models (parametric models) and the tree-based machine learning methods (nonparametric models). The simulation study confirms that the tensor-product B-spline is able to capture the classical parametric model for IVS given different sample sizes and signal-to-noise ratios. The empirical study shows that our two-step approach outperforms the traditional parametric benchmark, nonparametric benchmark, and parametric benchmark with time-varying coefficients in predicting IVS for the S&P 500 index options in the US market. Full article
Show Figures

Figure 1

35 pages, 968 KB  
Review
From Constant to Rough: A Survey of Continuous Volatility Modeling
by Giulia Di Nunno, Kęstutis Kubilius, Yuliya Mishura and Anton Yurchenko-Tytarenko
Mathematics 2023, 11(19), 4201; https://doi.org/10.3390/math11194201 - 8 Oct 2023
Cited by 7 | Viewed by 4342
Abstract
In this paper, we present a comprehensive survey of continuous stochastic volatility models, discussing their historical development and the key stylized facts that have driven the field. Special attention is dedicated to fractional and rough methods: without advocating for either roughness or long [...] Read more.
In this paper, we present a comprehensive survey of continuous stochastic volatility models, discussing their historical development and the key stylized facts that have driven the field. Special attention is dedicated to fractional and rough methods: without advocating for either roughness or long memory, we outline the motivation behind them and characterize some landmark models. In addition, we briefly touch on the problem of VIX modeling and recent advances in the SPX-VIX joint calibration puzzle. Full article
(This article belongs to the Special Issue Probabilistic Models in Insurance and Finance)
Show Figures

Figure 1

22 pages, 629 KB  
Review
An Intuitive Introduction to Fractional and Rough Volatilities
by Elisa Alòs and Jorge A. León
Mathematics 2021, 9(9), 994; https://doi.org/10.3390/math9090994 - 28 Apr 2021
Cited by 6 | Viewed by 4856
Abstract
Here, we review some results of fractional volatility models, where the volatility is driven by fractional Brownian motion (fBm). In these models, the future average volatility is not a process adapted to the underlying filtration, and fBm is not a semimartingale in general. [...] Read more.
Here, we review some results of fractional volatility models, where the volatility is driven by fractional Brownian motion (fBm). In these models, the future average volatility is not a process adapted to the underlying filtration, and fBm is not a semimartingale in general. So, we cannot use the classical Itô’s calculus to explain how the memory properties of fBm allow us to describe some empirical findings of the implied volatility surface through Hull and White type formulas. Thus, Malliavin calculus provides a natural approach to deal with the implied volatility without assuming any particular structure of the volatility. The aim of this paper is to provides the basic tools of Malliavin calculus for the study of fractional volatility models. That is, we explain how the long and short memory of fBm improves the description of the implied volatility. In particular, we consider in detail a model that combines the long and short memory properties of fBm as an example of the approach introduced in this paper. The theoretical results are tested with numerical experiments. Full article
(This article belongs to the Special Issue Application of Stochastic Analysis in Mathematical Finance)
Show Figures

Figure 1

12 pages, 478 KB  
Article
A Hausman Test for Partially Linear Models with an Application to Implied Volatility Surface
by Yixiao Jiang
J. Risk Financial Manag. 2020, 13(11), 287; https://doi.org/10.3390/jrfm13110287 - 19 Nov 2020
Cited by 1 | Viewed by 3297
Abstract
This paper develops a test that helps assess whether the term structure of option implied volatility is constant across different levels of moneyness. The test is based on the Hausman principle of comparing two estimators, one that is efficient but not robust to [...] Read more.
This paper develops a test that helps assess whether the term structure of option implied volatility is constant across different levels of moneyness. The test is based on the Hausman principle of comparing two estimators, one that is efficient but not robust to the deviation being tested, and one that is robust but not as efficient. Distribution of the proposed test statistic is investigated in a general semiparametric setting via the multivariate Delta method. Using recent S&P 500 index traded options data from September 2009 to December 2018, we find that a partially linear model permitting a flexible “volatility smile” and an additive quadratic time effect is a statistically adequate depiction of the implied volatility data for most years. The constancy of implied volatility term structure, in turn, implies that option traders shall feel confident and execute volatility-based strategies using at-the-money options for its high liquidity. Full article
(This article belongs to the Special Issue Nonparametric Econometric Methods and Application II)
Show Figures

Graphical abstract

31 pages, 2911 KB  
Article
A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models
by Christa Cuchiero, Wahid Khosrawi and Josef Teichmann
Risks 2020, 8(4), 101; https://doi.org/10.3390/risks8040101 - 27 Sep 2020
Cited by 41 | Viewed by 7384
Abstract
We propose a fully data-driven approach to calibrate local stochastic volatility (LSV) models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this, we parametrize the leverage function by a family of feed-forward neural networks and learn their parameters [...] Read more.
We propose a fully data-driven approach to calibrate local stochastic volatility (LSV) models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this, we parametrize the leverage function by a family of feed-forward neural networks and learn their parameters directly from the available market option prices. This should be seen in the context of neural SDEs and (causal) generative adversarial networks: we generate volatility surfaces by specific neural SDEs, whose quality is assessed by quantifying, possibly in an adversarial manner, distances to market prices. The minimization of the calibration functional relies strongly on a variance reduction technique based on hedging and deep hedging, which is interesting in its own right: it allows the calculation of model prices and model implied volatilities in an accurate way using only small sets of sample paths. For numerical illustration we implement a SABR-type LSV model and conduct a thorough statistical performance analysis on many samples of implied volatility smiles, showing the accuracy and stability of the method. Full article
(This article belongs to the Special Issue Machine Learning in Finance, Insurance and Risk Management)
Show Figures

Graphical abstract

17 pages, 679 KB  
Article
A Solution to the Time-Scale Fractional Puzzle in the Implied Volatility
by Hideharu Funahashi and Masaaki Kijima
Fractal Fract. 2017, 1(1), 14; https://doi.org/10.3390/fractalfract1010014 - 25 Nov 2017
Cited by 12 | Viewed by 5636
Abstract
In the option pricing literature, it is well known that (i) the decrease in the smile amplitude is much slower than the standard stochastic volatility models and (ii) the term structure of the at-the-money volatility skew is approximated by a power-law function with [...] Read more.
In the option pricing literature, it is well known that (i) the decrease in the smile amplitude is much slower than the standard stochastic volatility models and (ii) the term structure of the at-the-money volatility skew is approximated by a power-law function with the exponent close to zero. These stylized facts cannot be captured by standard models, and while (i) has been explained by using a fractional volatility model with Hurst index H > 1 / 2 , (ii) is proven to be satisfied by a rough volatility model with H < 1 / 2 under a risk-neutral measure. This paper provides a solution to this fractional puzzle in the implied volatility. Namely, we construct a two-factor fractional volatility model and develop an approximation formula for European option prices. It is shown through numerical examples that our model can resolve the fractional puzzle, when the correlations between the underlying asset process and the factors of rough volatility and persistence belong to a certain range. More specifically, depending on the three correlation values, the implied volatility surface is classified into four types: (1) the roughness exists, but the persistence does not; (2) the persistence exists, but the roughness does not; (3) both the roughness and the persistence exist; and (4) neither the roughness nor the persistence exist. Full article
(This article belongs to the Special Issue Fractional Calculus in Economics and Finance)
Show Figures

Figure 1

12 pages, 554 KB  
Article
Bayesian Option Pricing Framework with Stochastic Volatility for FX Data
by Ying Wang, Sai Tsang Boris Choy and Hoi Ying Wong
Risks 2016, 4(4), 51; https://doi.org/10.3390/risks4040051 - 16 Dec 2016
Cited by 2 | Viewed by 5947
Abstract
The application of stochastic volatility (SV) models in the option pricing literature usually assumes that the market has sufficient option data to calibrate the model’s risk-neutral parameters. When option data are insufficient or unavailable, market practitioners must estimate the model from the historical [...] Read more.
The application of stochastic volatility (SV) models in the option pricing literature usually assumes that the market has sufficient option data to calibrate the model’s risk-neutral parameters. When option data are insufficient or unavailable, market practitioners must estimate the model from the historical returns of the underlying asset and then transform the resulting model into its risk-neutral equivalent. However, the likelihood function of an SV model can only be expressed in a high-dimensional integration, which makes the estimation a highly challenging task. The Bayesian approach has been the classical way to estimate SV models under the data-generating (physical) probability measure, but the transformation from the estimated physical dynamic into its risk-neutral counterpart has not been addressed. Inspired by the generalized autoregressive conditional heteroskedasticity (GARCH) option pricing approach by Duan in 1995, we propose an SV model that enables us to simultaneously and conveniently perform Bayesian inference and transformation into risk-neutral dynamics. Our model relaxes the normality assumption on innovations of both return and volatility processes, and our empirical study shows that the estimated option prices generate realistic implied volatility smile shapes. In addition, the volatility premium is almost flat across strike prices, so adding a few option data to the historical time series of the underlying asset can greatly improve the estimation of option prices. Full article
Show Figures

Figure 1

Back to TopTop