Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = improved discrete hippopotamus optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1596 KB  
Article
Network-Aware Smart Scheduling for Semi-Automated Ceramic Production via Improved Discrete Hippopotamus Optimization
by Qi Zhang, Changtian Zhang, Man Yao, Xiwang Guo, Shujin Qin, Haibin Zhu, Liang Qi and Bin Hu
Electronics 2025, 14(17), 3543; https://doi.org/10.3390/electronics14173543 - 5 Sep 2025
Viewed by 469
Abstract
The increasing integration of automation and intelligent sensing technologies in daily-use ceramic manufacturing poses new challenges for efficient scheduling under hybrid flow-shop and shared-kiln constraints. To address these challenges, this study proposes a Mixed-Integer Linear Programming (MILP) model and an Improved Discrete Hippopotamus [...] Read more.
The increasing integration of automation and intelligent sensing technologies in daily-use ceramic manufacturing poses new challenges for efficient scheduling under hybrid flow-shop and shared-kiln constraints. To address these challenges, this study proposes a Mixed-Integer Linear Programming (MILP) model and an Improved Discrete Hippopotamus Optimization (IDHO) algorithm designed for smart, network-aware production environments. The MILP formulation captures key practical features such as batch processing, no-idle kiln constraints, and machine re-entry dynamics. The IDHO algorithm enhances global search performance via segment-based encoding, nonlinear population reduction, and operation-specific mutation strategies, while a parallel evaluation framework accelerates computational efficiency, making the solution viable for industrial-scale, time-sensitive scenarios. The experimental results from 12 benchmark cases demonstrate that IDHO achieves superior performance over six representative metaheuristics (e.g., PSO, GWO, Jaya, DBO), with an average ARPD of 1.04%, statistically significant improvements (p < 0.05), and large effect sizes (Cohen’s d > 0.8). Compared to the commercial solver CPLEX, IDHO provides near-optimal results with substantially lower runtime. The proposed approach contributes to the development of intelligent networked scheduling systems for cyber-physical manufacturing environments, enabling responsive, scalable, and data-driven optimization in smart sensing-enabled production settings. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

Back to TopTop