Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = in-phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4581 KB  
Article
Metamaterial-Enhanced Microstrip Antenna with Integrated Channel Performance Evaluation for Modern Communication Networks
by Jasim Khudhair Salih Turfa and Oguz Bayat
Appl. Sci. 2025, 15(19), 10692; https://doi.org/10.3390/app151910692 - 3 Oct 2025
Viewed by 361
Abstract
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and [...] Read more.
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and truncations to circulate surface currents. Compactness, reduced surface wave losses, and enhanced impedance bandwidth are made possible by the coaxial probe feed, periodic electromagnetic gap (EBG) slots, and fractal patch geometry. For in-phase reflection and beam focusing, a specially designed single-layer metasurface (MTS) reflector with an 11 × 11 circular aperture array is placed 20 mm behind the antenna. A log-normal shadowing model was used to test the antenna in real-world scenarios, and the results showed a strong correlation between the model predictions and actual data. At up to 250 m, the polarization-agile, high-gain antenna demonstrated reliable performance across a variety of channel conditions, enabling accurate characterization of the Channel Quality Indicator (CQI), Signal-to-Noise Ratio (SNR), and Reference Signal Received Power (RSRP). By combining cutting-edge antenna architecture with an empirical channel performance study, this research presents a compact, affordable, and fabrication-friendly solution for increased wireless coverage and efficiency. Full article
Show Figures

Figure 1

22 pages, 12275 KB  
Article
A Performance Analysis of a Flapping-Foil Hydrokinetic Turbine Mimicking a Four-Limb Swimming Creature
by Dasom Jeong and Jin Hwan Ko
J. Mar. Sci. Eng. 2025, 13(10), 1894; https://doi.org/10.3390/jmse13101894 - 2 Oct 2025
Viewed by 198
Abstract
Flapping-foil hydrokinetic turbines (FHTs), unlike rotary turbines, are inspired by nature and have recently been presented in various tandem forms. In this study, a tandem hydrokinetic turbine with four hydrofoils that mimics a quadrupedal underwater animal and its movements is developed, with each [...] Read more.
Flapping-foil hydrokinetic turbines (FHTs), unlike rotary turbines, are inspired by nature and have recently been presented in various tandem forms. In this study, a tandem hydrokinetic turbine with four hydrofoils that mimics a quadrupedal underwater animal and its movements is developed, with each hydrofoil moving in phase and out of phase, and the performance in terms of the power and load is compared and analyzed. As a result of optimizing the flapping frequency and separation distance, the out-of-phase condition showed superior characteristics in terms of power, with similar efficiency and lower fluctuation levels compared to the in-phase condition. In terms of the load on the body, the force levels in the out-of-phase movement were kept lower than those of the in-phase condition, which is advantageous for the design of the structure supporting the turbine. Therefore, the FHT proposed in this study can utilize more than three hydrofoils, similar to a typical rotary turbine, and can improve the FHT performance by adjusting the phase between the hydrofoils. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 4154 KB  
Article
An E-Band High-Precision Active Phase Shifter Based on Inductive Compensation and Series Peaking Enhancement Techniques
by Lingtao Jiang, Bing Cai, Shangyao Huang, Xianfeng Que and Yanjie Wang
Electronics 2025, 14(17), 3545; https://doi.org/10.3390/electronics14173545 - 5 Sep 2025
Viewed by 480
Abstract
This paper presents the design and implementation of a 6-bit high-precision active vector-sum phase shifter (PS) operating in the E-band, fabricated using a 40 nm CMOS process. To generate high-quality in-phase and quadrature (I/Q) signals, a folded transformer-based quadrature generator circuit (QGC) [...] Read more.
This paper presents the design and implementation of a 6-bit high-precision active vector-sum phase shifter (PS) operating in the E-band, fabricated using a 40 nm CMOS process. To generate high-quality in-phase and quadrature (I/Q) signals, a folded transformer-based quadrature generator circuit (QGC) employing inductive compensation is developed. Additionally, the series peaking enhancement technique is applied to improve overall gain and effectively extend the bandwidth. Measurement results demonstrate that the phase shifter achieves a 3 dB bandwidth from 72.3 GHz to 82.3 GHz. Within this range, the measured RMS phase error is merely 1.78–2.55 degrees without calibration, and the RMS gain error is 0.6–0.75 dB. The core area of the proposed phase shifter is 940 μm × 280 μm, and it consumes 57.2 mW of power with a 1.1 V supply. Full article
Show Figures

Figure 1

12 pages, 4220 KB  
Article
Experimental and Numerical Study of Coupled Metronomes on a Floating Platform
by Xiaolongzi Wu, Caiyi Zheng, Zhao Lei, Yu Qian, Zengru Di and Xiaohua Cui
Entropy 2025, 27(9), 908; https://doi.org/10.3390/e27090908 - 27 Aug 2025
Viewed by 719
Abstract
We investigated synchronization behavior using an experimental setup consisting of two metronomes placed on a platform floating over water. By setting the metronomes to oscillate perpendicular to the line between them, we observed three distinct modes of movement: in-phase synchronization, anti-phase synchronization, and [...] Read more.
We investigated synchronization behavior using an experimental setup consisting of two metronomes placed on a platform floating over water. By setting the metronomes to oscillate perpendicular to the line between them, we observed three distinct modes of movement: in-phase synchronization, anti-phase synchronization, and synchronization with a fixed phase difference. While this last mode resembles phase-locking, it is important to distinguish that phase-locking typically refers to an oscillator’s response to external pacing, whereas the fixed phase difference observed in our study emerges from the mutual interaction between two metronomes. The frequencies of oscillations, and the placement of the metronomes are also changed to check the reliability of the new phenomenon. Even if we changed the material of the platform to a heavier one or turned around one of the metronomes, synchronization with a fixed time delay still was still observed. Drawing on previous research, we developed mathematical equations to model the coupled metronomes and performed numerical simulations that successfully reproduced all three observed phenomena. The simulation results showed excellent agreement with our experimental observations. These findings contribute to our understanding of coupled oscillators and may have potential applications in various fields. Full article
Show Figures

Figure 1

15 pages, 871 KB  
Article
Design of Stable Signed Laplacian Matrices with Mixed Attractive–Repulsive Couplings for Complete In-Phase Synchronization
by Gualberto Solis-Perales, Aurora Espinoza-Valdez, Beatriz C. Luna-Oliveros, Jorge Rivera and Jairo Sánchez-Estrada
Mathematics 2025, 13(17), 2741; https://doi.org/10.3390/math13172741 - 26 Aug 2025
Viewed by 493
Abstract
Synchronization in complex networks mainly considers positive (attractive) couplings to guarantee network stability. However, in many real-world systems or processes, negative (repulsive) interactions exist, and this poses a challenging problem. In this proposal, we present an algorithm to design stable signed Laplacian matrices [...] Read more.
Synchronization in complex networks mainly considers positive (attractive) couplings to guarantee network stability. However, in many real-world systems or processes, negative (repulsive) interactions exist, and this poses a challenging problem. In this proposal, we present an algorithm to design stable signed Laplacian matrices with mixed attractive and repulsive couplings that ensure stability in both complete and in-phase synchronization. The main result is established through a constructive theorem that guarantees a single zero eigenvalue, while all other eigenvalues are negative, thereby preserving the diffusivity condition. The algorithm allows control over the spectral properties of the matrix by adjusting two parameters, which can be interpreted as a pole placement strategy from control theory. The approach is validated through numerical examples involving the synchronization of a network of chaotic Lorenz systems and a network of Kuramoto oscillators. In both cases, full synchronization is achieved despite the presence of negative couplings. Full article
Show Figures

Figure 1

25 pages, 3109 KB  
Article
Radio Frequency Fingerprinting Authentication for IoT Networks Using Siamese Networks
by Raju Dhakal, Laxima Niure Kandel and Prashant Shekhar
IoT 2025, 6(3), 47; https://doi.org/10.3390/iot6030047 - 22 Aug 2025
Viewed by 1216
Abstract
As IoT (internet of things) devices grow in prominence, safeguarding them from cyberattacks is becoming a pressing challenge. To bootstrap IoT security, device identification or authentication is crucial for establishing trusted connections among devices without prior trust. In this regard, radio frequency fingerprinting [...] Read more.
As IoT (internet of things) devices grow in prominence, safeguarding them from cyberattacks is becoming a pressing challenge. To bootstrap IoT security, device identification or authentication is crucial for establishing trusted connections among devices without prior trust. In this regard, radio frequency fingerprinting (RFF) is gaining attention because it is more efficient and requires fewer computational resources compared to resource-intensive cryptographic methods, such as digital signatures. RFF works by identifying unique manufacturing defects in the radio circuitry of IoT devices by analyzing over-the-air signals that embed these imperfections, allowing for the identification of the transmitting hardware. Recent studies on RFF often leverage advanced classification models, including classical machine learning techniques such as K-Nearest Neighbor (KNN) and Support Vector Machine (SVM), as well as modern deep learning architectures like Convolutional Neural Network (CNN). In particular, CNNs are well-suited as they use multidimensional mapping to detect and extract reliable fingerprints during the learning process. However, a significant limitation of these approaches is that they require large datasets and necessitate retraining when new devices not included in the initial training set are added. This retraining can cause service interruptions and is costly, especially in large-scale IoT networks. In this paper, we propose a novel solution to this problem: RFF using Siamese networks, which eliminates the need for retraining and allows for seamless authentication in IoT deployments. The proposed Siamese network is trained using in-phase and quadrature (I/Q) samples from 10 different Software-Defined Radios (SDRs). Additionally, we present a new algorithm, the Similarity-Based Embedding Classification (SBEC) for RFF. We present experimental results that demonstrate that the Siamese network effectively distinguishes between malicious and trusted devices with a remarkable 98% identification accuracy. Full article
(This article belongs to the Special Issue Cybersecurity in the Age of the Internet of Things)
Show Figures

Figure 1

19 pages, 2504 KB  
Article
TSNetIQ: High-Resolution DOA Estimation of UAVs Using Microphone Arrays
by Kequan Zhu, Tian Jin, Shitong Xie, Zixuan Liu and Jinlong Sun
Appl. Sci. 2025, 15(15), 8734; https://doi.org/10.3390/app15158734 - 7 Aug 2025
Viewed by 1035
Abstract
With the rapid development of unmanned aerial vehicle (UAV) technology and the rise of the low-altitude economy, the accurate tracking of UAVs has become a critical challenge. This paper considers a deep learning-based localization scheme that combines microphone arrays for audio source reception. [...] Read more.
With the rapid development of unmanned aerial vehicle (UAV) technology and the rise of the low-altitude economy, the accurate tracking of UAVs has become a critical challenge. This paper considers a deep learning-based localization scheme that combines microphone arrays for audio source reception. The microphone array is utilized to capture sound source reception from various angles. The proposed TSNetIQ combines elaborately designed Transformer and convolutional neural networks (CNN) modules, and the raw in-phase (I) and quadrature (Q) components of the audio signals are used as input data. Hence, the direction of arrival (DOA) estimation is treated as a regression problem. Experiments are conducted to evaluate the proposed method under different signal-to-noise ratios (SNRs), sampling frequencies, and array configurations. The results demonstrate that TSNetIQ can effectively estimate the direction of the sound source, outperforming conventional architectures trained with the same dataset. This study offers superior accuracy and robustness for real-time sound source localization in UAV applications under dynamic scenarios. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

20 pages, 6427 KB  
Article
Comparative Study of Distributed Compensation Effects on E-Field Emissions in Conventional and Phase-Inverted Wireless Power Transfer Coils
by Zeeshan Shafiq, Siqi Li, Sizhao Lu, Jinglin Xia, Tong Li, Zhe Liu and Zhe Li
Actuators 2025, 14(8), 384; https://doi.org/10.3390/act14080384 - 4 Aug 2025
Viewed by 500
Abstract
This paper presents a comparative analysis of electric field (E-field) mitigation in inductive power transfer (IPT) systems. It focuses on how distributed capacitor placement interacts with coil topology to influence E-field emissions. The study compares traditional sequential-winding coils and the alternating voltage phase [...] Read more.
This paper presents a comparative analysis of electric field (E-field) mitigation in inductive power transfer (IPT) systems. It focuses on how distributed capacitor placement interacts with coil topology to influence E-field emissions. The study compares traditional sequential-winding coils and the alternating voltage phase coil (AVPC), which employs a sequential inversion winding (SIW) structure to enforce a 180° phase voltage opposition between adjacent turns. While capacitor segmentation is a known method for E-field reduction, this work is the first to systematically evaluate its effects across both conventional and phase-inverted coils. The findings reveal that capacitor placement serves as a topology-dependent design parameter. Finite Element Method (FEM) simulations and experimental validation show that while capacitor placement has a moderate influence on traditional coils due to in-phase voltage relationships, AVPC coils are highly sensitive to segmentation patterns. When capacitors align with the SIW phase structure, destructive interference significantly reduces E-field emissions. Improper capacitor placement disrupts phase cancellation and negates this benefit. This study resolves a critical design gap by establishing that distributed compensation acts as a tuning mechanism in conventional coils but becomes a primary constraint in phase-inverted topologies. The results demonstrate that precise capacitor placement aligned with the coil topology significantly enhances E-field mitigation up to 60% in AVPC coils, greatly outperforming traditional coil configurations and providing actionable guidance for high-power wireless charging applications. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

21 pages, 3942 KB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 1159
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

14 pages, 5338 KB  
Article
Modulation of Spring Barents and Kara Seas Ice Concentration on the Meiyu Onset over the Yangtze–Huaihe River Basin in China
by Ziyi Song, Xuejie Zhao, Yuepeng Hu, Fang Zhou and Jiahao Lu
Atmosphere 2025, 16(7), 838; https://doi.org/10.3390/atmos16070838 - 10 Jul 2025
Viewed by 366
Abstract
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD [...] Read more.
Meiyu is a critical component of the summer rainy season over the Yangtze–Huaihe River Basin (YHRB) in China, and the Meiyu onset date (MOD), serving as a key indicator of Meiyu, has garnered substantial attention. This article demonstrates an in-phase relationship between MOD and the preceding spring Barents–Kara Seas ice concentration (BKSIC) during 1979–2023. Specifically, the loss of spring BKSIC promotes an earlier MOD. Further analysis indicates that decreased spring BKSIC reduces the reflection of shortwave radiation, thereby enhancing oceanic solar radiation absorption and warming sea surface temperature (SST) in spring. The warming SST persists into summer and induces significant deep warming in the BKS through enhanced upward longwave radiation. The BKS deep warming triggers a wave train propagating southeastward to the East Asia–Northwest Pacific region, leading to a strengthened East Asian Subtropical Jet and an intensified Western North Pacific Subtropical High in summer. Under these conditions, the transport of warm and humid airflows into the YHRB is enhanced, promoting convective instability through increased low-level warming and humidity, combined with enhanced wind shear, which jointly contribute to an earlier MOD. These results may advance the understanding of MOD variability and provide valuable information for disaster prevention and mitigation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

12 pages, 2514 KB  
Article
Designed Omnidirectional Antenna of Quarter-Mode Substrate-Integrated Waveguide Element with Characteristic Mode Analysis
by Wei Hu, Liangfu Peng, Tao Tang, Maged A. Aldhaeebi, Thamer S. Almoneef and Jaouhar Mouine
Micromachines 2025, 16(6), 717; https://doi.org/10.3390/mi16060717 - 17 Jun 2025
Viewed by 633
Abstract
This study investigates the design of omnidirectional antennas, using a characteristic mode analysis (CMA), and explores two distinct feeding methods. The first method employs equal-amplitude and in-phase excitation across all ports, whereas the second method utilizes equal-amplitude excitation with a 180° phase difference [...] Read more.
This study investigates the design of omnidirectional antennas, using a characteristic mode analysis (CMA), and explores two distinct feeding methods. The first method employs equal-amplitude and in-phase excitation across all ports, whereas the second method utilizes equal-amplitude excitation with a 180° phase difference between adjacent ports. Both designs achieve operating bandwidths of 2.45–2.58 GHz and 2.42–2.45 GHz, respectively, with peak gains of 4.1 dBi and 4.4 dBi at 2.45 GHz. The proposed antennas exhibited high gain and low-profile characteristics, making them well-suited for applications in wireless energy harvesting. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 1511 KB  
Article
The Influence of Functional Rehabilitation Braces with Resistance on Joint Coordination and ACL Force in Martial Artists Following ACL Reconstruction
by Xiaoyan Wang and Haojie Li
Appl. Sci. 2025, 15(11), 6265; https://doi.org/10.3390/app15116265 - 3 Jun 2025
Viewed by 1145
Abstract
Objective: The resistive knee orthosis, as a novel rehabilitation device, is designed to provide resistance to joint movement during continuous walking, thereby enhancing the postoperative recovery effect. This study aims to explore the impact of such orthoses on the joint coordination patterns of [...] Read more.
Objective: The resistive knee orthosis, as a novel rehabilitation device, is designed to provide resistance to joint movement during continuous walking, thereby enhancing the postoperative recovery effect. This study aims to explore the impact of such orthoses on the joint coordination patterns of martial artists after anterior cruciate ligament (ACL) reconstruction. Methods: A total of 44 martial artists who underwent ACL reconstruction were recruited and divided into an experimental group (EG, n = 22, using resistive braces) and a control group (CG, n = 22, using conventional braces). Assessments were conducted preoperatively (T0) and at 15 days (T1), 30 days (T2), and 60 days (T3) postoperatively. The changes in joint coordination patterns during the gait cycle were analyzed, and the ACL force was estimated using a musculoskeletal model. Results: At T2 and T3, compared with the CG, the EG exhibited a significantly larger peak knee flexion angle (p < 0.05). At T3, the EG showed higher hip–ankle in-phase coordination (p < 0.05), increased proximal hip–knee coordination (p < 0.05), and decreased knee–ankle anti-phase coordination (p < 0.05). In addition, the ACL force in the EG was significantly lower. Conclusions: The resistive knee orthosis can effectively improve the joint coordination of martial artists after ACL reconstruction and reduce the ACL force. Full article
Show Figures

Figure 1

22 pages, 4858 KB  
Article
Research on the Double Frequency Suppression Strategy of DC Bus Voltage on the Rectification Side of a Power Unit in a New Type of Same Phase Power Supply System
by Jinghua Zhou and Yuchen Li
Electronics 2025, 14(10), 2047; https://doi.org/10.3390/electronics14102047 - 17 May 2025
Viewed by 454
Abstract
This work provides a new solution for high-power quality traction power systems. The rapid development of electrified railways not only promotes economic development, but also seriously restricts the improvement of electric locomotive operation performance due to power quality problems, such as second harmonic [...] Read more.
This work provides a new solution for high-power quality traction power systems. The rapid development of electrified railways not only promotes economic development, but also seriously restricts the improvement of electric locomotive operation performance due to power quality problems, such as second harmonic distortion and negative sequence in the power supply system. In view of the shortcomings of the traditional in-phase power supply system in DC bus voltage stability control, a new in-phase power supply topology based on a back-to-back H-bridge power supply unit is proposed in this study. By establishing the iterative analysis model of the rectifier side double closed-loop control system, the internal correlation mechanism between the DC bus voltage second harmonic fluctuation and the grid side current harmonic is deeply revealed. On this basis, a rectifier-side disturbance compensation control strategy with a second harmonic suppression function is designed. Through real-time detection and compensation of second harmonic components, the active stability control of DC bus voltage is realized. The simulation model of the new cophase power supply system based on the experimental platform shows that the strategy can reduce the ripple coefficient of the DC bus voltage and the total harmonic distortion of the grid side current, which effectively verifies the superiority of the second harmonic suppression strategy in improving the power quality of the cophase power supply system. This work provides a new solution for a high-power quality traction power system. Full article
Show Figures

Figure 1

23 pages, 7117 KB  
Article
Effect of Wheel Polygonalization on the Dynamic Characteristics of Gear-Transmission Systems of Urban Railway Vehicles
by Danping Xu, Jinhai Wang, Jianwei Yang, Yi Wu and Xiaorui Wen
Machines 2025, 13(4), 323; https://doi.org/10.3390/machines13040323 - 16 Apr 2025
Viewed by 518
Abstract
The gear-transmission system plays a crucial role in power transmission for urban railway vehicles. However, it can experience abnormal meshing conditions due to wheel polygonization, which presents a potential safety hazard for vehicle operations. To address this issue, the present study develops a [...] Read more.
The gear-transmission system plays a crucial role in power transmission for urban railway vehicles. However, it can experience abnormal meshing conditions due to wheel polygonization, which presents a potential safety hazard for vehicle operations. To address this issue, the present study develops a dynamic model of an urban railway vehicle that integrates the gear-transmission system, simulating the effects of wheel polygonization on its dynamic behavior. The simulation results reveal that as the amplitude of wheel polygonization and vehicle speed increase, the vertical wheel–rail force, gear-meshing force, and dynamic transmission error (DTE) escalate. Furthermore, an increase in the order of wheel polygonization leads to a rise in the vertical wheel–rail force. In contrast, the gear-meshing force and DTE exhibit distinct trends at different speeds. At a speed of 20 km/h, these parameters increase by 51.34% and 0.29%, respectively. As the speed increases, the peaks of gear-meshing force and DTE occur at the 7th-order and 3rd-order polygon, respectively, suggesting that the dynamic response of the gear-transmission system becomes more sensitive to lower-order polygon effects at higher speeds, which necessitates greater attention during operation. Additionally, the phase difference of wheel polygonization exerts a significant influence on gear-meshing force under various conditions, such as in-phase, out-of-phase, 60° phase difference, and 120° phase difference. Therefore, in engineering applications, it is essential to consider the phase difference of wheel polygonization to alleviate excessive gear-meshing forces and ensure stable transmission performance. The findings of this paper offer insights into the dynamic evaluation and wheelset re-profiling of gear-transmission systems in urban railway vehicles. Full article
(This article belongs to the Special Issue Research and Application of Rail Vehicle Technology)
Show Figures

Figure 1

16 pages, 4503 KB  
Article
A Design Approach for Asymmetric Coupled Line In-Phase Power Dividers with Arbitrary Terminal Real Impedances and Arbitrary Power Division Ratio
by Yan Zhang, Bin Xia and Junfa Mao
Symmetry 2025, 17(4), 562; https://doi.org/10.3390/sym17040562 - 8 Apr 2025
Viewed by 573
Abstract
In this paper, we first introduced asymmetric coupled lines (ACLs) into both the transmission path and isolation path in traditional in-phase Gysel power dividers and proposed the single-resistor asymmetric coupled line in-phase Gysel power dividers (ACPDs). Utilizing the decoupled branch-line model of ACLs, [...] Read more.
In this paper, we first introduced asymmetric coupled lines (ACLs) into both the transmission path and isolation path in traditional in-phase Gysel power dividers and proposed the single-resistor asymmetric coupled line in-phase Gysel power dividers (ACPDs). Utilizing the decoupled branch-line model of ACLs, a generalized design approach for ACPDs with arbitrary terminal real impedances and arbitrary power division ratio was innovatively proposed. Design formulas relating terminal real impedances, power division ratio, and image impedances of ACLs, for simultaneously satisfying the perfect port isolation and match conditions, are presented. ACPDs achieved a large in-phase power division ratio of 100:1 (20 dB) and offered significant advantages, including impedance transformation, high design freedom, and miniaturization. To automatically determine accurate initial values of geometric parameters for ACLs, a solution software based on MATLAB-HFSS co-simulation and multi-layer perception neural networks was developed, significantly reducing subsequent optimization iterations. To verify the proposed analysis theory and design approach, three ACPDs with different power division ratios of 1:1 (3 dB), 10:1 (10 dB), and 100:1 (20 dB) were implemented. Comparisons of the measured and simulated results showed great accordance, and the three ACPDs achieved good frequency bandwidth, high isolation, excellent port match, and compact size. Full article
Show Figures

Figure 1

Back to TopTop