Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (681)

Search Parameters:
Keywords = industrial anomaly detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2557 KB  
Article
Modality-Resilient Multimodal Industrial Anomaly Detection via Cross-Modal Knowledge Transfer and Dynamic Edge-Preserving Voxelization
by Jiahui Xu, Jian Yuan, Mingrui Yang and Weishu Yan
Sensors 2025, 25(21), 6529; https://doi.org/10.3390/s25216529 - 23 Oct 2025
Abstract
Achieving high-precision anomaly detection with incomplete sensor data is a critical challenge in industrial automation and intelligent manufacturing. This incompleteness often results from sensor failures, environmental interference, occlusions, or acquisition cost constraints. This study explicitly targets both types of incompleteness commonly encountered in [...] Read more.
Achieving high-precision anomaly detection with incomplete sensor data is a critical challenge in industrial automation and intelligent manufacturing. This incompleteness often results from sensor failures, environmental interference, occlusions, or acquisition cost constraints. This study explicitly targets both types of incompleteness commonly encountered in industrial multimodal inspection: (i) incomplete sensor data within a given modality, such as partial point cloud loss or image degradation, and (ii) incomplete modalities, where one sensing channel (RGB or 3D) is entirely unavailable. By jointly addressing intra-modal incompleteness and cross-modal absence within a unified cross-distillation framework, our approach enhances anomaly detection robustness under both conditions. First, a teacher–student cross-modal distillation mechanism enables robust feature learning from both RGB and 3D modalities, allowing the student network to accurately detect anomalies even when a modality is missing during inference. Second, a dynamic voxel resolution adjustment with edge-retention strategy alleviates the computational burden of 3D point cloud processing while preserving crucial geometric features. By jointly enhancing robustness to missing modalities and improving computational efficiency, our method offers a resilient and practical solution for anomaly detection in real-world manufacturing scenarios. Extensive experiments demonstrate that the proposed method achieves both high robustness and efficiency across multiple industrial scenarios, establishing new state-of-the-art performance that surpasses existing approaches in both accuracy and speed. This method provides a robust solution for high-precision perception under complex detection conditions, significantly enhancing the feasibility of deploying anomaly detection systems in real industrial environments. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

19 pages, 7690 KB  
Article
Process Anomaly Detection in Cyber–Physical Production Systems Based on Conditional Discrete-Time Dynamic Graphs
by Christian Goetz and Bernhard G. Humm
Appl. Sci. 2025, 15(21), 11354; https://doi.org/10.3390/app152111354 - 23 Oct 2025
Viewed by 40
Abstract
Various types of anomalies can arise in cyber–physical production systems, caused by either faulty devices or incorrect processes. Anomalies within individual devices can often be detected by applying machine learning techniques to the respective produced multivariate time series. While this data typically shows [...] Read more.
Various types of anomalies can arise in cyber–physical production systems, caused by either faulty devices or incorrect processes. Anomalies within individual devices can often be detected by applying machine learning techniques to the respective produced multivariate time series. While this data typically shows temporal and spatial changes and can therefore be efficiently utilized by models, detecting anomalies within the process is often more challenging, as process data usually only consists of events, binary signals, or changes in unique process states. Due to the low variance of data, existing anomaly detection methods struggle to detect anomalies effectively and accurately. To address this challenge, in this paper, we propose a novel concept for process anomaly detection based on conditional discrete-time dynamic graphs. Through the conditional connections of the graph, essential characteristics can be generated and utilized to effectively train machine learning models to detect anomalies in the process data. Identified anomalies can be related to the current graph, facilitating transparent and explainable detections. By evaluating the concept against process data from an industrial unit and achieving an F1-Score of 0.96 and 1 for the realized repetitive processes, the accuracy and effectiveness of the concept can be demonstrated. Full article
(This article belongs to the Special Issue AI-Based Machinery Health Monitoring)
Show Figures

Figure 1

17 pages, 2479 KB  
Article
A Semi-Automatic Labeling Framework for PCB Defects via Deep Embeddings and Density-Aware Clustering
by Sang-Jeong Lee, Sung-Bal Seo and You-Suk Bae
Sensors 2025, 25(20), 6470; https://doi.org/10.3390/s25206470 - 19 Oct 2025
Viewed by 424
Abstract
(1) Background. Printed circuit board (PCB) inspection is increasingly constrained by the cost and latency of reliable labels, owing to tiny/low-contrast defects embedded in complex backgrounds and severe class imbalance. (2) Methods. We proposed a semi-automatic labeling pipeline that converts anomaly detection proposals [...] Read more.
(1) Background. Printed circuit board (PCB) inspection is increasingly constrained by the cost and latency of reliable labels, owing to tiny/low-contrast defects embedded in complex backgrounds and severe class imbalance. (2) Methods. We proposed a semi-automatic labeling pipeline that converts anomaly detection proposals into class labels via small margin cropping from images, interchangeable embeddings (HOG, ResNet-50, ViT-B/16), clustering (k-means/GMM/HDBSCAN), and cluster-level verification using representative montages. (3) Results. On 9354 cropped defects spanning 10 categories (imbalance IR ≈ 1542, Gini ≈ 0.642), ResNet-50 + HDBSCAN achieved NMI ≈ 0.290, AMI ≈ 0.283, and purity ≈ 0.624 with ~47 clusters; ViT + HDBSCAN was comparable (NMI ≈ 0.281, AMI ≈ 0.274, ~44 clusters). With a fixed taxonomy, k-means (K = 10) yielded the strongest ARI (0.169 with ResNet-50; 0.158 with ViT). Macro-purity exceeded micro-purity, indicating many small, homogeneous clusters suitable for one-shot acceptance/rejection, enabling an upper-bound ~200× reduction in operator decisions relative to per-image labeling. (4) Conclusions. The workflow provides an auditable, resource-flexible path from normal-only localization to scalable supervision, prioritizing labeling productivity over detector state-of-the-art and directly addressing the industrial bottleneck in the development lifecycle for PCB inspection. Full article
Show Figures

Figure 1

44 pages, 8751 KB  
Article
DataSense: A Real-Time Sensor-Based Benchmark Dataset for Attack Analysis in IIoT with Multi-Objective Feature Selection
by Amir Firouzi, Sajjad Dadkhah, Sebin Abraham Maret and Ali A. Ghorbani
Electronics 2025, 14(20), 4095; https://doi.org/10.3390/electronics14204095 - 19 Oct 2025
Viewed by 279
Abstract
The widespread integration of Internet-connected devices into industrial environments has enhanced connectivity and automation but has also increased the exposure of industrial cyber–physical systems to security threats. Detecting anomalies is essential for ensuring operational continuity and safeguarding critical assets, yet the dynamic, real-time [...] Read more.
The widespread integration of Internet-connected devices into industrial environments has enhanced connectivity and automation but has also increased the exposure of industrial cyber–physical systems to security threats. Detecting anomalies is essential for ensuring operational continuity and safeguarding critical assets, yet the dynamic, real-time nature of such data poses challenges for developing effective defenses. This paper introduces DataSense, a comprehensive dataset designed to advance security research in industrial networked environments. DataSense contains synchronized sensor and network stream data, capturing interactions among diverse industrial sensors, commonly used connected devices, and network equipment, enabling vulnerability studies across heterogeneous industrial setups. The dataset was generated through the controlled execution of 50 realistic attacks spanning seven major categories: reconnaissance, denial of service, distributed denial of service, web exploitation, man-in-the-middle, brute force, and malware. This process produced a balanced mix of benign and malicious traffic that reflects real-world conditions. To enhance its utility, we introduce an original feature selection approach that identifies features most relevant to improving detection rates while minimizing resource usage. Comprehensive experiments with a broad spectrum of machine learning and deep learning models validate the dataset’s applicability, making DataSense a valuable resource for developing robust systems for detecting anomalies and preventing intrusions in real time within industrial environments. Full article
(This article belongs to the Special Issue AI-Driven IoT: Beyond Connectivity, Toward Intelligence)
Show Figures

Figure 1

17 pages, 940 KB  
Article
ON-NSW: Accelerating High-Dimensional Vector Search on Edge Devices with GPU-Optimized NSW
by Taeyoon Park, Haena Lee, Yedam Na and Wook-Hee Kim
Sensors 2025, 25(20), 6461; https://doi.org/10.3390/s25206461 - 19 Oct 2025
Viewed by 353
Abstract
The Industrial Internet of Things (IIoT) increasingly relies on vector embeddings for analytics and AI-driven applications such as anomaly detection, predictive maintenance, and sensor fusion. Efficient approximate nearest neighbor search (ANNS) is essential for these workloads. Graph-based methods are among the most representative [...] Read more.
The Industrial Internet of Things (IIoT) increasingly relies on vector embeddings for analytics and AI-driven applications such as anomaly detection, predictive maintenance, and sensor fusion. Efficient approximate nearest neighbor search (ANNS) is essential for these workloads. Graph-based methods are among the most representative methods for ANNS. However, most existing graph-based methods, such as Hierarchical Navigable Small World (HNSW), are designed for CPU execution on high-end servers and give little consideration to the unique characteristics of edge devices. In this work, we present ON-NSW, a GPU-optimized design of HNSW optimized for edge devices. ON-NSW employs a flat graph structure derived from HNSW to fully exploit GPU parallelism. In addition, it carefully places HNSW components in the unified memory architecture of NVIDIA Jetson Orin Nano. Also, ON-NSW introduces warp-level parallel neighbor exploration and lightweight synchronization to reduce search latency. Our experimental results on real-world high-dimensional datasets show that ON-NSW achieves up to 1.44× higher throughput than the original HNSW on the NVIDIA Jetson device while maintaining comparable recall. These results demonstrate that ON-NSW provides an effective design for enabling efficient and high-throughput vector search on embedded edge platforms. Full article
Show Figures

Figure 1

16 pages, 995 KB  
Article
An Information Granulation-Enhanced Kernel Principal Component Analysis Method for Detecting Anomalies in Time Series
by Xu Feng, Hongzhou Chai, Jinkai Feng and Yunlong Wu
Algorithms 2025, 18(10), 658; https://doi.org/10.3390/a18100658 - 17 Oct 2025
Viewed by 185
Abstract
In complex process systems, accurate real-time anomaly detection is essential to ensure operational safety and reliability. This study proposes a novel detection method that combines information granulation with kernel principal component analysis (KPCA). Here, information granulation is introduced as a general framework, with [...] Read more.
In complex process systems, accurate real-time anomaly detection is essential to ensure operational safety and reliability. This study proposes a novel detection method that combines information granulation with kernel principal component analysis (KPCA). Here, information granulation is introduced as a general framework, with the principle of justifiable granularity (PJG) adopted as the specific implementation. Time series data are first granulated using PJG to extract compact features that preserve local dynamics. The KPCA model, equipped with a radial basis function kernel, is then applied to capture nonlinear correlations and construct monitoring statistics including T2 and SPE. Thresholds are derived from training data and used for online anomaly detection. The method is evaluated on the Tennessee Eastman process and Continuous Stirred Tank Reactor datasets, covering various types of faults. Experimental results demonstrate that the proposed method achieves a near-zero false alarm rate below 1% and maintains a missed detection rate under 6%, highlighting its effectiveness and robustness across different fault scenarios and industrial datasets. Full article
Show Figures

Figure 1

14 pages, 2208 KB  
Article
Leveraging In Silico Data for the Development and Implementation of Multivariate Statistical Process Monitoring Models in Monoclonal Antibody Manufacturing
by Sushrut Marathe, Samira Beyramysoltan, Giulia Marchese, Elaheh Ardalani, Nathaniel Berendson, Theodore Vu, Gabriele Bano and Sayantan Chattoraj
J. Pharm. BioTech Ind. 2025, 2(4), 17; https://doi.org/10.3390/jpbi2040017 - 16 Oct 2025
Viewed by 159
Abstract
The design and development of a robust and consistent manufacturing process for monoclonal antibodies (mAbs), augmented by advanced process analytics capabilities, is a key current focus area in the pharmaceutical industry. In this work, we describe the development and operationalization of multivariate statistical [...] Read more.
The design and development of a robust and consistent manufacturing process for monoclonal antibodies (mAbs), augmented by advanced process analytics capabilities, is a key current focus area in the pharmaceutical industry. In this work, we describe the development and operationalization of multivariate statistical process monitoring (MSPM), a data-driven modelling approach, to monitor biopharmaceutical manufacturing processes. This approach helps in understanding the correlations between the various variables and is used for the detection of the deviations and anomalies that may indicate abnormalities or changes in the process compared to the historical dataspace. Therefore, MSPM enables early fault detection with a scope for preventative intervention and corrective actions. In this work, we will additionally cover the value of in silico data in the development of MSPM models, principal component analysis (PCA), and batch modelling methods, as well as refining and validating the models in real time. Full article
Show Figures

Graphical abstract

16 pages, 5544 KB  
Article
Visual Feature Domain Audio Coding for Anomaly Sound Detection Application
by Subin Byun and Jeongil Seo
Algorithms 2025, 18(10), 646; https://doi.org/10.3390/a18100646 - 15 Oct 2025
Viewed by 250
Abstract
Conventional audio and video codecs are designed for human perception, often discarding subtle spectral cues that are essential for machine-based analysis. To overcome this limitation, we propose a machine-oriented compression framework that reinterprets spectrograms as visual objects and applies Feature Coding for Machines [...] Read more.
Conventional audio and video codecs are designed for human perception, often discarding subtle spectral cues that are essential for machine-based analysis. To overcome this limitation, we propose a machine-oriented compression framework that reinterprets spectrograms as visual objects and applies Feature Coding for Machines (FCM) to anomalous sound detection (ASD). In our approach, audio signals are transformed log-mel spectrograms, from which intermediate feature maps are extracted, compressed, and reconstructed through the FCM pipeline. For comparison, we implement AAC-LC (Advanced Audio Coding Low Complexity) as a representative perceptual audio codec and VVC (Versatile Video Coding) as spectrogram-based video codec. Experiments were conducted on the DCASE (Detection and Classification of Acoustic Scenes and Events) 2023 Task 2 dataset, covering four machine types (fan, valve, toycar, slider), with anomaly detection performed using the official Autoencoder baseline model released in DCASE 2024. Detection scores were computed from reconstruction error and Mahalanobis distance. The results show that the proposed FCM-based ACoM (Audio Coding for Machines) achieves comparable or superior performance to AAC at less than half the bitrate, reliably preserving critical features even under ultra-low bitrate conditions (1.3–6.3 kbps). While VVC retains competitive performance only at high bitrates, it degrades sharply at low bitrates. These findings demonstrate that feature-based compression offers a promising direction for next-generation ACoM standardization, enabling efficient and robust ASD in bandwidth-constrained industrial environments. Full article
(This article belongs to the Special Issue Visual Attributes in Computer Vision Applications)
Show Figures

Figure 1

18 pages, 7731 KB  
Article
Design of Identification System Based on Machine Tools’ Sounds Using Neural Networks
by Fusaomi Nagata, Tomoaki Morimoto, Keigo Watanabe and Maki K. Habib
Designs 2025, 9(5), 121; https://doi.org/10.3390/designs9050121 - 15 Oct 2025
Viewed by 254
Abstract
Recently, deep learning models such as convolutional neural networks (CNNs), convolutional autoencoders (CAEs), CNN-based support vector machines (SVMs), YOLO, fully convolutional networks (FCNs), fully convolutional data descriptions (FCDDs) and so on have been applied to defect detections and anomaly detections of various kinds [...] Read more.
Recently, deep learning models such as convolutional neural networks (CNNs), convolutional autoencoders (CAEs), CNN-based support vector machines (SVMs), YOLO, fully convolutional networks (FCNs), fully convolutional data descriptions (FCDDs) and so on have been applied to defect detections and anomaly detections of various kinds of industrial products, materials and systems. In those models, downsampled images, including target features, are used for training and testing. On the other hand, although various types of anomaly detection systems based on time series data such as sounds and vibrations are also applied to manufacturing processes, complicated conversions to the frequency domain are basically needed in conventional approaches. This paper addresses an important industrial problem for detecting anomalies in machine tools at low cost using audio data. Intelligent anomaly diagnosis systems for computer numerical control (CNC) machine tools are considered and proposed, in which raw time-series data without the need of conversion to the frequency domain can be directly used for training and testing. As for the NN models for comparison, conventional shallow NN, RNN and 1D CNN are designed and trained using the nine kinds of mechanical sounds. Classification results of test sound block (SB) data by the three models are shown. Then, an autoencoder (AE) is designed and considered for the identifier by training it using only normal SB data of a machine tool. One of the technical needs in dealing with time-series data such as SB data by NNs is how to clearly visualize and understand anomalous regions in concurrence with identification. Finally, we propose the SB data-based FCDD model to meet this need. Basic performance of the SB data-based FCDD model is evaluated in terms of anomaly detection and concurrent visualization of understanding. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

17 pages, 550 KB  
Article
AnomalyNLP: Noisy-Label Prompt Learning for Few-Shot Industrial Anomaly Detection
by Li Hua and Jin Qian
Electronics 2025, 14(20), 4016; https://doi.org/10.3390/electronics14204016 - 13 Oct 2025
Viewed by 481
Abstract
Few-Shot Industrial Anomaly Detection (FSIAD) is an essential yet challenging problem in practical scenarios such as industrial quality inspection. Its objective is to identify previously unseen anomalous regions using only a limited number of normal support images from the same category. Recently, large [...] Read more.
Few-Shot Industrial Anomaly Detection (FSIAD) is an essential yet challenging problem in practical scenarios such as industrial quality inspection. Its objective is to identify previously unseen anomalous regions using only a limited number of normal support images from the same category. Recently, large pre-trained vision-language models (VLMs), such as CLIP, have exhibited remarkable few-shot image-text representation abilities across a range of visual tasks, including anomaly detection. Despite their promise, real-world industrial anomaly datasets often contain noisy labels, which can degrade prompt learning and detection performance. In this paper, we propose AnomalyNLP, a new Noisy-Label Prompt Learning approach designed to tackle the challenge of few-shot anomaly detection. This framework offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of VLMs for industrial anomaly detection. First, we design a Noisy-Label Prompt Learning (NLPL) strategy. This strategy utilizes feature learning principles to suppress the influence of noisy samples via Mean Absolute Error (MAE) loss, thereby improving the signal-to-noise ratio and enhancing overall model robustness. Furthermore, we introduce a prompt-driven optimal transport feature purification method to accurately partition datasets into clean and noisy subsets. For both image-level and pixel-level anomaly detection, AnomalyNLP achieves state-of-the-art performance across various few-shot settings on the MVTecAD and VisA public datasets. Qualitative and quantitative results on two datasets demonstrate that our method achieves the largest average AUC improvement over baseline methods across 1-, 2-, and 4-shot settings, with gains of up to 10.60%, 10.11%, and 9.55% in practical anomaly detection scenarios. Full article
Show Figures

Figure 1

42 pages, 8498 KB  
Article
Encoding Multivariate Time Series of Gas Turbine Data as Images to Improve Fault Detection Reliability
by Enzo Losi, Mauro Venturini, Lucrezia Manservigi and Giovanni Bechini
Machines 2025, 13(10), 943; https://doi.org/10.3390/machines13100943 - 13 Oct 2025
Viewed by 315
Abstract
The monitoring and diagnostics of energy equipment aim to detect anomalies in time series data in order to support predictive maintenance and avoid unplanned shutdowns. Thus, the paper proposes a novel methodology that utilizes sequence-to-image transformation methods to feed Convolutional Neural Networks (CNNs) [...] Read more.
The monitoring and diagnostics of energy equipment aim to detect anomalies in time series data in order to support predictive maintenance and avoid unplanned shutdowns. Thus, the paper proposes a novel methodology that utilizes sequence-to-image transformation methods to feed Convolutional Neural Networks (CNNs) for diagnostic purposes. Multivariate time series taken from real gas turbines are transformed by using two methods. We study two CNN architectures, i.e., VGG-19 and SqueezeNet. The investigated anomaly is the spike fault. Spikes are implanted in field multivariate time series taken during normal operation of ten gas turbines and composed of twenty gas path measurements. Six fault scenarios are simulated. For each scenario, different combinations of fault parameters are considered. The main novel contribution of this study is the development of a comprehensive framework, which starts from time series transformation and ends up with a diagnostic response. The potential of CNNs for image recognition is applied to the gas path field measurements of a gas turbine. A hard-to-detect type of fault (i.e., random spikes of different magnitudes and frequencies of occurrence) was implanted in a seemingly real-world fashion. Since spike detection is highly challenging, the proposed framework has both scientific and industrial relevance. The extended and thorough analyses unequivocally prove that CNNs fed with images are remarkably more accurate than TCN models fed with raw time series data, with values higher than 93% if the number of implanted spikes is 10% of the total data and a gain in accuracy of up to 40% in the most realistic scenario. Full article
Show Figures

Figure 1

28 pages, 13934 KB  
Article
Integration of Industrial Internet of Things (IIoT) and Digital Twin Technology for Intelligent Multi-Loop Oil-and-Gas Process Control
by Ali Saleh Allahloh, Mohammad Sarfraz, Atef M. Ghaleb, Abdulmajeed Dabwan, Adeeb A. Ahmed and Adel Al-Shayea
Machines 2025, 13(10), 940; https://doi.org/10.3390/machines13100940 - 13 Oct 2025
Viewed by 469
Abstract
The convergence of Industrial Internet of Things (IIoT) and digital twin technology offers new paradigms for process automation and control. This paper presents an integrated IIoT and digital twin framework for intelligent control of a gas–liquid separation unit with interacting flow, pressure, and [...] Read more.
The convergence of Industrial Internet of Things (IIoT) and digital twin technology offers new paradigms for process automation and control. This paper presents an integrated IIoT and digital twin framework for intelligent control of a gas–liquid separation unit with interacting flow, pressure, and differential pressure loops. A comprehensive dynamic model of the three-loop separator process is developed, linearized, and validated. Classical stability analyses using the Routh–Hurwitz criterion and Nyquist plots are employed to ensure stability of the control system. Decentralized multi-loop proportional–integral–derivative (PID) controllers are designed and optimized using the Integral Absolute Error (IAE) performance index. A digital twin of the separator is implemented to run in parallel with the physical process, synchronized via a Kalman filter to real-time sensor data for state estimation and anomaly detection. The digital twin also incorporates structured singular value (μ) analysis to assess robust stability under model uncertainties. The system architecture is realized with low-cost hardware (Arduino Mega 2560, MicroMotion Coriolis flowmeter, pneumatic control valves, DAC104S085 digital-to-analog converter, and ENC28J60 Ethernet module) and software tools (Proteus VSM 8.4 for simulation, VB.Net 2022 version based human–machine interface, and ML.Net 2022 version for predictive analytics). Experimental results demonstrate improved control performance with reduced overshoot and faster settling times, confirming the effectiveness of the IIoT–digital twin integration in handling loop interactions and disturbances. The discussion includes a comparative analysis with conventional control and outlines how advanced strategies such as model predictive control (MPC) can further augment the proposed approach. This work provides a practical pathway for applying IIoT and digital twins to industrial process control, with implications for enhanced autonomy, reliability, and efficiency in oil and gas operations. Full article
(This article belongs to the Special Issue Digital Twins Applications in Manufacturing Optimization)
Show Figures

Figure 1

21 pages, 4635 KB  
Article
Explainable Few-Shot Anomaly Detection for Real-Time Automotive Quality Control
by Safeh Clinton Mawah, Dagmawit Tadesse Aga, Shahrokh Hatefi, Farouk Smith and Yimesker Yihun
Processes 2025, 13(10), 3238; https://doi.org/10.3390/pr13103238 - 11 Oct 2025
Viewed by 565
Abstract
Automotive manufacturing quality control faces persistent challenges such as limited defect samples, cross-domain variability, and the demand for interpretable decision-making. This work presents an explainable few-shot anomaly detection framework that integrates EfficientNet-based feature extraction, adaptive prototype learning, and component-specific attention mechanisms to address [...] Read more.
Automotive manufacturing quality control faces persistent challenges such as limited defect samples, cross-domain variability, and the demand for interpretable decision-making. This work presents an explainable few-shot anomaly detection framework that integrates EfficientNet-based feature extraction, adaptive prototype learning, and component-specific attention mechanisms to address these requirements. The system is designed for rapid adaptation to novel defect types while maintaining interpretability through a multi-modal explainable AI module that combines visual, quantitative, and textual outputs. Evaluation on automotive datasets demonstrates promising performance on evaluated automotive components, achieving 99.4% accuracy for engine wiring inspection and 98.8% for gear inspection, with improvements of 5.2–7.6% over state-of-the-art baselines, including traditional unsupervised methods (PaDiM, PatchCore), advanced approaches (FastFlow, CFA, DRAEM), and few-shot supervised methods (ProtoNet, MatchingNet, RelationNet, FEAT), and with only 0.63% cross-domain degradation between wiring and gear inspection tasks. The architecture operates under real-time industrial constraints, with an average inference time of 18.2 ms, throughput of 60 components per minute, and memory usage below 2 GB on RTX 3080 hardware. Ablation studies confirm the importance of prototype learning (−4.52%), component analyzers (−2.79%), and attention mechanisms (−2.21%), with K = 5 few-shot configuration providing the best trade-off between accuracy and adaptability. Beyond performance, the framework produces interpretable defect localization, root-cause analysis, and severity-based recommendations designed for manufacturing integration with execution systems via standardized industrial protocols. These results demonstrate a practical and scalable approach for intelligent quality control, enabling robust, interpretable, and adaptive inspection within the evaluated automotive components. Full article
Show Figures

Figure 1

25 pages, 1214 KB  
Article
Towards Realistic Industrial Anomaly Detection: MADE-Net Framework and ManuDefect-21 Benchmark
by Junyang Yang, Jiuxin Cao and Chengge Duan
Appl. Sci. 2025, 15(20), 10885; https://doi.org/10.3390/app152010885 - 10 Oct 2025
Viewed by 359
Abstract
Visual anomaly detection (VAD) plays a critical role in manufacturing and quality inspection, where the scarcity of anomalous samples poses challenges for developing reliable models. Existing approaches primarily rely on unsupervised training with synthetic anomalies, which often favor specific defect types and struggle [...] Read more.
Visual anomaly detection (VAD) plays a critical role in manufacturing and quality inspection, where the scarcity of anomalous samples poses challenges for developing reliable models. Existing approaches primarily rely on unsupervised training with synthetic anomalies, which often favor specific defect types and struggle to generalize across diverse categories. To address these limitations, we propose MADE-Net (Multi-model Adaptive anomaly Detection Ensemble Network), an industrial anomaly detection framework that integrates three complementary submodels: a reconstruction-based submodel (SRAD), a feature embedding-based submodel (SFAD), and a patch discrimination submodel (LPD). A dynamic integration and selection module (ISM) adaptively determines the most suitable submodel output according to input characteristics. We further introduce ManuDefect-21, a large-scale benchmark dataset comprising 11 categories of electronic components with both normal and anomalous samples in the training and test sets. The dataset reflects realistic positive-to-negative ratios and diverse defect types encountered in real manufacturing environments, addressing several limitations of previous datasets such as MVTec-AD and VisA. Experiments conducted on ManuDefect-21 demonstrate that MADE-Net achieves consistent improvements in both detection and localization metrics (e.g., average AUROC of 98.5%, Pixel-AP of 68.7%) compared with existing methods. While MADE-Net requires pixel-level annotations for fine-tuning and introduces additional computational overhead, it provides enhanced adaptability to complex industrial conditions. The proposed framework and dataset jointly contribute to advancing practical and reproducible research in industrial anomaly detection. Full article
Show Figures

Figure 1

19 pages, 12575 KB  
Article
MLG-STPM: Meta-Learning Guided STPM for Robust Industrial Anomaly Detection Under Label Noise
by Yu-Hang Huang, Sio-Long Lo, Zhen-Qiang Chen and Jing-Kai Wang
Sensors 2025, 25(19), 6255; https://doi.org/10.3390/s25196255 - 9 Oct 2025
Viewed by 363
Abstract
Industrial image anomaly detection (IAD) is crucial for quality control, but its performance often degrades when training data contain label noise. To circumvent the reliance on potentially flawed labels, unsupervised methods that learn from the data distribution itself have become a mainstream approach. [...] Read more.
Industrial image anomaly detection (IAD) is crucial for quality control, but its performance often degrades when training data contain label noise. To circumvent the reliance on potentially flawed labels, unsupervised methods that learn from the data distribution itself have become a mainstream approach. Among various unsupervised techniques, student–teacher frameworks have emerged as a highly effective paradigm. Student–Teacher Feature Pyramid Matching (STPM) is a powerful method within this paradigm, yet it is susceptible to such noise. Inspired by STPM and aiming to solve this issue, this paper introduces Meta-Learning Guided STPM (MLG-STPM), a novel framework that enhances STPM’s robustness by incorporating a guidance mechanism inspired by meta-learning. This guidance is achieved through an Evolving Meta-Set (EMS), which dynamically maintains a small high-confidence subset of training samples identified by their low disagreement between student and teacher networks. By training the student network on a combination of the current batch and the EMS, MLG-STPM effectively mitigates the impact of noisy labels without requiring an external clean dataset or complex re-weighting schemes. Comprehensive experiments on the MVTec AD and VisA benchmark datasets with synthetic label noise (0% to 20%) demonstrate that MLG-STPM significantly improves anomaly detection and localization performance compared to the original STPM, especially under higher noise conditions, and achieves competitive results against other relevant approaches. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

Back to TopTop