Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,614)

Search Parameters:
Keywords = inflammatory signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12613 KB  
Article
7-Methoxyflavanone Alleviates LPS-Induced Acute Lung Injury by Suppressing TLR4/NF-κB p65 and ROS/Txnip/NLRP3 Signaling
by Kongyan Wang, Huiyu Hu, Zaibin Xu, Yan Chen, Yi Qiu, Yingjie Hu, Jiawen Huang and Zhuohui Luo
Biology 2025, 14(9), 1170; https://doi.org/10.3390/biology14091170 (registering DOI) - 2 Sep 2025
Abstract
Background: Acute lung injury (ALI) is a serious respiratory condition. The natural compound 7-Methoxyflavanone (7MF) has a broad spectrum of anti-inflammatory and antioxidant properties. However, its pharmacological effects and underlying mechanisms in alleviating ALI remain poorly understood. Methods: An in vitro LPS-induced RAW264.7 [...] Read more.
Background: Acute lung injury (ALI) is a serious respiratory condition. The natural compound 7-Methoxyflavanone (7MF) has a broad spectrum of anti-inflammatory and antioxidant properties. However, its pharmacological effects and underlying mechanisms in alleviating ALI remain poorly understood. Methods: An in vitro LPS-induced RAW264.7 macrophage inflammatory injury assay and an in vivo lipopolysaccharide (LPS)-induced ALI assay in mice were conducted. Results: In vitro experiments showed that 7MF significantly reduced levels of IL1β, IL6, and TNF-α; decreased the expression of COX2 and iNOS, as well as TLR4 and MyD88; suppressed the phosphorylation and degradation of IκBα; and blocked the entry of NF-κB p65 into the nucleus, thereby inhibiting NF-κB signaling. Meanwhile, 7MF also decreased ROS levels; prevented the dissociation of Txnip from Trx-1; and suppressed NLRP3, Caspase-1, Cleaved Caspase-1 p10, NEK7, Caspase-8, Cleaved Caspase-8, IL18, GSDMD, and GSDMD N-terminal expression, and thus inhibited NLRP3 signaling. MCC950, a specific inhibitor of NLRP3, significantly enhanced the pharmacological inhibition of NLRP3 by 7MF. Notably, similar results were confirmed in LPS-induced ALI experiments in mice. Conclusions: The compound 7MF effectively alleviated LPS-induced ALI by suppressing TLR4/NF-κB p65 and ROS/Txnip/NLRP3 signaling pathways. Our findings provide scientific evidence for drug development and treatment of ALI. Full article
Show Figures

Graphical abstract

22 pages, 3504 KB  
Article
New Application for the Early Detection of Wound Infections Using a Near-Infrared Fluorescence Device and Forward-Looking Thermal Camera
by Ha Jong Nam, Se Young Kim and Hwan Jun Choi
Diagnostics 2025, 15(17), 2221; https://doi.org/10.3390/diagnostics15172221 - 1 Sep 2025
Abstract
Background: Timely and accurate identification of wound infections is essential for effective management, yet remains clinically challenging. This study evaluated the utility of a near-infrared autofluorescence imaging system (Fluobeam®, Fluoptics, Grenoble, France) and a thermal imaging system (FLIR®, Teledyne [...] Read more.
Background: Timely and accurate identification of wound infections is essential for effective management, yet remains clinically challenging. This study evaluated the utility of a near-infrared autofluorescence imaging system (Fluobeam®, Fluoptics, Grenoble, France) and a thermal imaging system (FLIR®, Teledyne LLC, Thousand Oaks, CA, USA) for detecting bacterial and fungal infections in chronic wounds. Fluobeam® enables real-time visualization of microbial autofluorescence without exogenous contrast agents, whereas FLIR® detects localized thermal changes associated with infection-related inflammation. Methods: This retrospective clinical study included 33 patients with suspected wound infections. All patients underwent autofluorescence imaging using Fluobeam® and concurrent thermal imaging with FLIR®. Imaging findings were compared with microbiological culture results, clinical signs of infection, and semi-quantitative microbial burdens. Results: Fluobeam® achieved a sensitivity of 78.3% and specificity of 80.0% in detecting culture-positive infections. Fluorescence signal intensity correlated strongly with microbial burden (r = 0.76, p < 0.01) and clinical indicators, such as exudate, swelling, and malodor. Pathogens with high metabolic fluorescence, including Pseudomonas aeruginosa and Candida spp., were consistently identified. Representative cases demonstrate the utility of fluorescence imaging in guiding targeted debridement and enhancing intraoperative decision-making. Conclusions: Near-infrared autofluorescence imaging with Fluobeam® and thermal imaging with FLIR® offer complementary, noninvasive diagnostic insights into microbial burden and host inflammatory response. The combined use of these modalities may improve infection detection, support clinical decision-making, and enhance wound care outcomes. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

21 pages, 2227 KB  
Article
Evaluation of the Dual Antiviral and Immunomodulatory Effects of Phallus indusiatus in a Feline Infectious Peritonitis Model Using PBMCs
by Chularat Hlaoperm, Wassamon Moyadee, Emwalee Wongsaengnoi, Wiwat Klankaew, Amonpun Rattanasrisomporn, Atchara Paemanee, Kiattawee Choowongkomon, Oumaporn Rungsuriyawiboon and Jatuporn Rattanasrisomporn
Vet. Sci. 2025, 12(9), 847; https://doi.org/10.3390/vetsci12090847 (registering DOI) - 1 Sep 2025
Abstract
Feline infectious peritonitis (FIP) is a progressive and often fatal disease caused by a virulent biotype of feline coronavirus (FCoV). Although antiviral treatments are now available, relapse and resistance remain ongoing concerns. This study investigates the therapeutic potential of P. indusiatus, a [...] Read more.
Feline infectious peritonitis (FIP) is a progressive and often fatal disease caused by a virulent biotype of feline coronavirus (FCoV). Although antiviral treatments are now available, relapse and resistance remain ongoing concerns. This study investigates the therapeutic potential of P. indusiatus, a medicinal mushroom, for its antiviral and anti-inflammatory activities against FIP. The main protease (FIPV Mpro) of feline infectious peritonitis virus (FIPV) was recombinantly expressed and purified to facilitate enzyme inhibition screening. P. indusiatus exhibited the strongest FIPV Mpro inhibitory activity among the 17 mushroom extracts tested (69.2%), showing a notable level of inhibition relative to standard antiviral agents such as lopinavir and ritonavir. To assess its anti-inflammatory potential, PBMCs derived from healthy cats and FIP-associated effusions (FIP fluid) were cultured and stimulated with LPS to induce inflammation. In healthy PBMCs, P. indusiatus significantly reduced nitrite levels, with effects similar to dexamethasone. However, PBMCs from FIP fluid, already in an activated state, showed no additional response. Notably, this study is the first to successfully isolate and culture PBMCs from FIP fluid, providing a new platform for future immunological research. These findings suggest that P. indusiatus possesses both antiviral and anti-inflammatory properties, positioning it as a potential dual-action therapeutic candidate for FIP. Further investigation into cytokine signaling pathways is warranted to clarify its mechanisms of action and advance future therapeutic development. Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals—2nd Edition)
Show Figures

Figure 1

21 pages, 5424 KB  
Article
PPARγ Agonism Modulates Synovial Macrophage and Cartilage Responses in an Equine Model of Synovial Inflammation—Implications for Joint Therapy
by Slàine F. Chaimbeul, Nubia N. P. Rodrigues, Danny D. Thurston, Kirsten E. Scoggin, Jennifer Janes, Cale A. Jacobs, James N. MacLeod, Austin V. Stone and Bruno C. Menarim
Biomolecules 2025, 15(9), 1267; https://doi.org/10.3390/biom15091267 - 1 Sep 2025
Abstract
Synovitis resolution is critical for joint homeostasis and prevents the progression of osteoarthritis (OA). Treatments like NSAIDs and intra-articular corticosteroids relieve symptoms by blocking pro-inflammatory mediators, but also impair the production of pro-resolving mediators, contributing to the likelihood of chronic synovitis. PPARγ signaling [...] Read more.
Synovitis resolution is critical for joint homeostasis and prevents the progression of osteoarthritis (OA). Treatments like NSAIDs and intra-articular corticosteroids relieve symptoms by blocking pro-inflammatory mediators, but also impair the production of pro-resolving mediators, contributing to the likelihood of chronic synovitis. PPARγ signaling is an essential mechanism of synovitis resolution, which is decreased in OA tissues. To evaluate the potential of PPARγ agonists to promote pro-resolving pathways, equine macrophages cultured in autologous, normal, or inflamed synovial fluid (n = 10 horses) were treated with pioglitazone, geraniol, or both. Treatments modulated patterns of gene expression, increasing the expression of early drivers of resolution RELB and IL6, followed by increased NRF2 and PPARGC1A expression. Concentrations of TNF-α in conditioned synovial fluid significantly decreased as an early response to treatment, while IL10 concentrations also declined over time, suggesting increased tolerance to inflammatory stimuli and decreased compensatory feedback. Using an equine model of synovitis, intra-articular delivery of pioglitazone (n = 3 horses) or geraniol (n = 4 horses) was associated with decreased markers of synovium inflammation (geraniol) and enhanced cartilage proteoglycan preservation (geraniol and pioglitazone). In this small cohort of horses, no systemic or articular side effects were observed. Further studies optimizing treatment doses and regimens for intra-articular PPARγ agonism as a pro-resolving OA therapy are warranted. Full article
Show Figures

Figure 1

36 pages, 1561 KB  
Review
From Pathophysiology to Innovative Therapies in Eye Diseases: A Brief Overview
by Karolina Kłodnicka, Jacek Januszewski, Hanna Tyc, Aleksandra Michalska, Alicja Forma, Barbara Teresińska, Robert Rejdak, Jacek Baj and Joanna Dolar-Szczasny
Int. J. Mol. Sci. 2025, 26(17), 8496; https://doi.org/10.3390/ijms26178496 (registering DOI) - 1 Sep 2025
Abstract
Molecular imaging and precision therapies are transforming ophthalmology, enabling earlier and more accurate diagnosis and targeted treatment of sight-threatening diseases. This review focuses on age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis, examining high-resolution imaging techniques such as optical coherence tomography (OCT), OCT [...] Read more.
Molecular imaging and precision therapies are transforming ophthalmology, enabling earlier and more accurate diagnosis and targeted treatment of sight-threatening diseases. This review focuses on age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis, examining high-resolution imaging techniques such as optical coherence tomography (OCT), OCT angiography, MALDI-MSI, and spatial transcriptomics. Artificial intelligence supports these methods by improving image interpretation and enabling personalized analysis. The review also discusses therapeutic advances, including gene therapies (e.g., AAV-mediated RPE65 delivery), stem cell-based regenerative approaches, and biologics targeting inflammatory and neovascular processes. Targeted molecular therapies targeting specific signaling pathways, such as MAPK, are also explored. The combination of single-cell transcriptomics, proteomics, and machine learning facilitates the development of personalized treatment strategies. Although these technologies hold enormous potential, their implementation in routine clinical care requires further validation, regulatory approval, and long-term safety assessment. This review highlights the potential and challenges of integrating molecular imaging and advanced therapies in the future of precision ophthalmic medicine. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
14 pages, 2072 KB  
Article
The X-Linked TLR7 rs179008 T Allele Is Associated with an Increased Risk of Severe Multisystem Inflammatory Syndrome in Children/Kawasaki-like Syndrome in SARS-CoV-2-Infected Boys
by Adriana de Souza Andrade, Aline Almeida Bentes, Lilian Martins Diniz, Silvia Hees Carvalho, Erna Geessien Kroon and Marco Antonio Campos
Int. J. Mol. Sci. 2025, 26(17), 8491; https://doi.org/10.3390/ijms26178491 (registering DOI) - 1 Sep 2025
Abstract
The X-linked TLR7 rs179008 T allele has been associated with altered antiviral immunity. Given their shared inflammatory pathways and higher pediatric mortality rates in Brazil during the pandemic, we investigated their association with multisystem inflammatory syndrome in children (MIS-C) together with Kawasaki disease [...] Read more.
The X-linked TLR7 rs179008 T allele has been associated with altered antiviral immunity. Given their shared inflammatory pathways and higher pediatric mortality rates in Brazil during the pandemic, we investigated their association with multisystem inflammatory syndrome in children (MIS-C) together with Kawasaki disease (KS) following SARS-CoV-2 infection. A cross-sectional study (2021–2022) analyzed 73 hospitalized children (<13 years) with confirmed COVID-19. Genotyping for TLR7 rs179008, TLR8 (rs3764879, rs2407992), and TLR3 rs3775291 was performed via PCR and Sanger sequencing. MIS-C/KS cases were identified using CDC criteria, with severity classified by the need for ICU care. Statistical analysis included Fisher’s exact test and relative risk (RR) calculations. Hemizygous boys carrying the TLR7 T allele had a 1.87-fold higher risk of MIS-C/KS (p = 0.007) and a 1.75-fold increased risk of severe or critical outcomes. The T allele frequency was 2.6× higher in MIS-C/KS cases versus other COVID-19 presentations. All fatalities occurred in boys (3/8 MIS-C cases) with one T-allele carrier. No associations were found for TLR8 or TLR3 variants. The TLR7 rs179008 T allele is a potential genetic risk factor for severe post-COVID-19 inflammatory syndromes in boys, likely due to impaired immune signaling. These findings highlight its utility as a biomarker for risk stratification in pediatric populations. Full article
Show Figures

Figure 1

21 pages, 717 KB  
Review
Nutraceutical Interception of Cachexia: Grape-Derived Compounds as Pathophysiological Network Modulators
by Anderson Matheus Oliveira Haas Verdi, Mariana Lemos Rizzardi, Jaqueline Machado Soares, Dalton Luiz Schiessel, Dario Coletti, Marilia Cerqueira Leite Seelaender and Daniela Caetano Gonçalves
Biology 2025, 14(9), 1159; https://doi.org/10.3390/biology14091159 - 1 Sep 2025
Abstract
Cancer cachexia is a multifactorial syndrome characterized by metabolic dysregulation, inflammation, and progressive loss of skeletal muscle mass. Frequently observed in colorectal cancer patients, it is associated with poor clinical outcomes and reduced treatment tolerance. Current therapies provide limited benefit, underscoring the need [...] Read more.
Cancer cachexia is a multifactorial syndrome characterized by metabolic dysregulation, inflammation, and progressive loss of skeletal muscle mass. Frequently observed in colorectal cancer patients, it is associated with poor clinical outcomes and reduced treatment tolerance. Current therapies provide limited benefit, underscoring the need for integrative approaches. Grape seed polyphenols, particularly oligomeric proanthocyanidins, have demonstrated potential to modulate catabolic signaling, mitochondrial dysfunction, and inflammatory responses involved in cachexia pathophysiology. This review integrates preclinical and clinical evidence on the use of grape seed-derived products, highlighting their effects on NF-κB and AMPK pathways, redox homeostasis, and gut–muscle axis. Furthermore, the nutritional composition and bioactive properties of grape seed flour—rich in fiber and phenolic compounds—are discussed in the context of nutraceutical applications. A clinical trial currently underway in Brazil aims to evaluate the effects of grape seed flour supplementation in colorectal cancer patients with cachexia. Altogether, grape-derived compounds offer a safe, low-cost, and mechanistically grounded strategy for improving nutritional status and resilience in oncological care. Full article
Show Figures

Figure 1

27 pages, 1992 KB  
Review
Therapeutic Potential of Natural Compounds for Brain Ischemia-Reperfusion Injury
by Ki-Yeon Yoo, Moo-Ho Won, Ji Hyeon Ahn and Joon Ha Park
Biology 2025, 14(9), 1153; https://doi.org/10.3390/biology14091153 - 1 Sep 2025
Abstract
Brain ischemia-reperfusion (I/R) injury, commonly occurring in ischemic stroke and post-cardiac arrest scenarios, results in complex secondary damage involving oxidative stress, inflammation, apoptosis, and blood-brain barrier (BBB) breakdown. Despite decades of research, no pharmacological agent has yet been clinically approved for post-I/R neuroprotection. [...] Read more.
Brain ischemia-reperfusion (I/R) injury, commonly occurring in ischemic stroke and post-cardiac arrest scenarios, results in complex secondary damage involving oxidative stress, inflammation, apoptosis, and blood-brain barrier (BBB) breakdown. Despite decades of research, no pharmacological agent has yet been clinically approved for post-I/R neuroprotection. Natural compounds have recently gained attention for their multimodal therapeutic potential, including antioxidant, anti-inflammatory, anti-apoptotic, and neuroregenerative effects. This review highlights nine promising candidates—resveratrol, curcumin, quercetin, berberine, ginkgolide B, baicalin, naringin, fucoidan, and astaxanthin—that exhibit efficacy in experimental models of I/R injury when administered after the insult. Their chemical structures, pharmacokinetics, and mechanisms of action are described in detail, focusing on key signaling pathways such as nuclear factor erythroid 2-related (Nrf2), nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), and brain-derived neurotrophic factor (BDNF). Importantly, we outline the selection criteria for these compounds, including demonstrated neuroprotective efficacy, mechanistic clarity, and translational feasibility. While several challenges remain—such as limited bioavailability, BBB penetration, and species-specific metabolism—emerging strategies like nanoparticle delivery, synthetic analogs, and drug combinations offer potential solutions. By emphasizing the therapeutic versatility and mechanistic diversity of these natural agents, this review supports their clinical potential and encourages further preclinical optimization and biomarker-guided human trials. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Graphical abstract

15 pages, 2088 KB  
Protocol
A Protocol for Modeling Human Bone Inflammation: Co-Culture of Osteoblasts and Osteoclasts Exposed to Different Inflammatory Microenvironments
by Araceli Valverde and Afsar Raza Naqvi
Methods Protoc. 2025, 8(5), 97; https://doi.org/10.3390/mps8050097 (registering DOI) - 1 Sep 2025
Abstract
Bone remodeling relies on the coordinated activity of osteoblasts (OBs) and osteoclasts (OCs). Disruptions in OB-OC balance can lead to diseases such as periodontitis, a chronic microbial-induced inflammatory disease. To investigate how inflammation affects OB-OC interactions, we standardized an in vitro 2D indirect [...] Read more.
Bone remodeling relies on the coordinated activity of osteoblasts (OBs) and osteoclasts (OCs). Disruptions in OB-OC balance can lead to diseases such as periodontitis, a chronic microbial-induced inflammatory disease. To investigate how inflammation affects OB-OC interactions, we standardized an in vitro 2D indirect co-culture system using primary human OB and OC precursors from peripheral blood mononuclear cells in a transwell setup, which allows paracrine signaling and separate analysis of each cell type. When exposed to bacterial lipopolysaccharides (Aa LPS and E. coli LPS) and proinflammatory cytokines (IL-6 and TNF-α), we observed that inflammatory stimuli significantly increased OC differentiation, particularly TNF-α, while E. coli LPS specifically suppressed OB activity as observed by the expression of key markers and cellular staining. These results demonstrate that microbial and host-derived inflammatory factors can differentially modulate bone cell behavior. This approach offers a physiologically relevant and ethically advantageous alternative to animal models to screen dual-targeted bone therapies to restore perturbed metabolism. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

22 pages, 362 KB  
Review
Immune–Epigenetic Effects of Environmental Pollutants: Mechanisms, Biomarkers, and Transgenerational Impact
by Sandeep R Reddy, Manjunatha Bangeppagari and Sang Joon Lee
Curr. Issues Mol. Biol. 2025, 47(9), 703; https://doi.org/10.3390/cimb47090703 (registering DOI) - 1 Sep 2025
Abstract
Environmental pollutants such as heavy metals, endocrine-disrupting chemicals, microplastics, and airborne particulates are increasingly recognized for their potential to influence immune function through epigenetic mechanisms. This review examines conserved pollutant-associated pathways at interfaces of immunity and epigenetics, with particular attention to Toll-like receptor–NF-κB [...] Read more.
Environmental pollutants such as heavy metals, endocrine-disrupting chemicals, microplastics, and airborne particulates are increasingly recognized for their potential to influence immune function through epigenetic mechanisms. This review examines conserved pollutant-associated pathways at interfaces of immunity and epigenetics, with particular attention to Toll-like receptor–NF-κB signalling, NLRP3 inflammasome activity, and reactive oxygen species-driven cascades. Evidence from cellular, animal, and epidemiological studies indicates that these pathways may converge on chromatin regulators such as DNA methyltransferases, histone deacetylases, and EZH2, leading to DNA methylation shifts, histone modifications, and altered chromatin accessibility. Pollutants are also reported to modulate non-coding RNAs, including miR-21, miR-155, and several lncRNAs, which can act as intermediaries between cytokine signalling and epigenetic remodelling. Findings from transgenerational models suggest that pollutant-linked immune–epigenetic alterations might persist across generations, raising the possibility of long-term consequences for immune and neurodevelopmental health. Comparative analyses further indicate convergence across diverse pollutant classes, pointing to a shared mechanistic axis of immune–epigenetic disruption. Overall, these insights suggest that pollutant-induced immune–epigenetic signatures may contribute to inflammation, altered immune responses, and heritable disease risks, and their clarification could inform biomarker discovery and future precision approaches in immunotoxicology. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

27 pages, 1653 KB  
Review
Protective Role of Key Micronutrients in Chemotherapy-Induced Organ Toxicity: A Comprehensive Review of Mechanistic Insights and Clinical Implications
by Ioannis Konstantinidis, Sophia Tsokkou, Eleni Gavriilaki, Georgios Delis and Theodora Papamitsou
Nutrients 2025, 17(17), 2838; https://doi.org/10.3390/nu17172838 - 31 Aug 2025
Abstract
Background/Objectives: Systemic toxicities to key organs like the heart, liver, and kidneys impair the efficacy of chemotherapy in cancer treatment. These toxicities are caused by oxidative stress, inflammation, mitochondrial malfunction and ferroptosis, causing clinical morbidity and possibly impaired adherence to treatment. This review, [...] Read more.
Background/Objectives: Systemic toxicities to key organs like the heart, liver, and kidneys impair the efficacy of chemotherapy in cancer treatment. These toxicities are caused by oxidative stress, inflammation, mitochondrial malfunction and ferroptosis, causing clinical morbidity and possibly impaired adherence to treatment. This review, also, examines how magnesium, selenium, zinc and vitamin D protect against chemotherapy-induced cardiotoxicity, hepatotoxicity and nephrotoxicity. Methodology: A complete literature search of PubMed (MEDLINE), Scopus, Cochrane Library and Embase was used to synthesize data till 29 June 2025. Studies included randomized and non-randomized trials, cohort studies, case series (≥3 patients), and relevant systematic reviews. To contextualize pathways, preclinical in vivo and in vitro studies were studied independently. Patients undergoing systemic chemotherapy and magnesium, selenium, zinc or vitamin D therapies were eligible. Supplementation’s safety and organ-specific toxicity were investigated. Results: Magnesium protected against cisplatin-induced nephrotoxicity via modulating renal transporters and oxidative defenses across chemotherapy regimens. Selenium supplementation has strong antioxidant and anti-inflammatory characteristics, especially in avoiding cardiac and hepatic injury, although its nephroprotective potential was formulation-dependent. Zinc’s activity was connected to metallothionein-mediated redox stabilization, inflammatory regulation, and cardiac and hepatic resilience. Vitamin D and its analogs reduced cardiotoxicity and nephrotoxicity through mitochondrial preservation and immunomodulatory signaling. Conclusions: To date, magnesium, selenium, zinc, and vitamin D have been shown to reduce chemotherapy-related organ toxicities. Preclinical studies are promising, but randomized clinical trials are needed to prove therapeutic effectiveness and oncologic safety. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

30 pages, 2906 KB  
Review
Targeting the Purinergic Axis with Phenolic Compounds to Disrupt the Oxidative-Inflammatory Cycle in Thyroid Cancer
by Júlia Leão Batista Simões and Margarete Dulce Bagatini
Int. J. Mol. Sci. 2025, 26(17), 8474; https://doi.org/10.3390/ijms26178474 (registering DOI) - 31 Aug 2025
Abstract
Thyroid cancer (TC), the most prevalent endocrine neoplasia, has shown a progressive incidence, highlighting the need for new therapeutic approaches—especially for radioiodine-refractory cases, often associated with mutations in genes such as BRAF, RAS, and TP53. This review proposes a mechanistic [...] Read more.
Thyroid cancer (TC), the most prevalent endocrine neoplasia, has shown a progressive incidence, highlighting the need for new therapeutic approaches—especially for radioiodine-refractory cases, often associated with mutations in genes such as BRAF, RAS, and TP53. This review proposes a mechanistic model that highlights two interrelated characteristics of the tumor microenvironment (TME): redox imbalance and chronic inflammation, key elements in tumor progression and treatment resistance. Thus, natural phenolic compounds, such as curcumin, quercetin, resveratrol, and epigallocatechin gallate (EGCG), function not as simple antioxidants but as pleiotropic agents that reprogram the TME. A central mechanism of action for these compounds is the modulation of the purinergic axis (CD39/CD73/adenosine), a critical immune-metabolic checkpoint. By selectively inducing lethal oxidative stress in tumor cells, suppressing pro-survival inflammatory pathways—such as that mediated by nuclear factor kappa B (NF-κB)—and destabilizing the immunosuppressive shield conferred by adenosine, certain phytochemicals demonstrate the potential to restore immune surveillance and promote tumor apoptosis. In this context, a critical analysis of the evidence related to targeting purinergic signals becomes essential, since pharmacological reinforcement of this pathway, especially when combined with immunotherapies based on immune checkpoint blockade, emerges as a promising strategy for overcoming therapeutic resistance. Full article
(This article belongs to the Special Issue Correlation Between Oxidative Stress and Inflammation)
15 pages, 1575 KB  
Article
Morpho-Functional Responsiveness of Caco-2 Enterocyte-like Monolayers to Insulin in a Pro-Inflammatory Environment
by Aurora Mazzei, Marina Damato, Ilenia Iaia, Michele Maffia, Roberta Schiavone, Tiziano Verri and Amilcare Barca
Cells 2025, 14(17), 1358; https://doi.org/10.3390/cells14171358 - 31 Aug 2025
Abstract
In exerting its actions on the utilization and storage of nutrients, the hormonal effects of insulin (INS) on target cells include important changes in terms of cell morphology involving cytoskeletal actin. Sensitivity to INS affects intestinal epithelial cells, which express receptors through which [...] Read more.
In exerting its actions on the utilization and storage of nutrients, the hormonal effects of insulin (INS) on target cells include important changes in terms of cell morphology involving cytoskeletal actin. Sensitivity to INS affects intestinal epithelial cells, which express receptors through which tight junctions and barrier permeability are also modulated. Nevertheless, the impact of INS on physiological rather than pathophysiological processes along gastrointestinal epithelia is not fully established. Here, we investigate INS effects on differentiated Caco-2 monolayers challenged by inflammatory stimuli, i.e., interleukin 1 beta (IL-1β) and interferon gamma (IFN-γ), aiming to identify morpho-functional variations potentially associated with INS-dependent responses in intestinal epithelia differentially driven by different inflammation mediators. By observing the actin cytoskeleton, we characterized the impact of INS on actin structures’ organization, both in the absence and presence of pro-inflammatory treatments. Coherently, we observed altered expression of proteins interrelated to cytoskeletal dynamics (FAK, ITGB1), particularly evident in the synergistic action of IFN-γ and INS, also confirmed by the impact on INS-mediated regulation of the MAPK signalling pathway. Overall, the results describe a modular responsiveness of enterocyte-like monolayers to INS, depending on different inflammatory mediators, hinting at the interplay between INS signalling and morpho-functional remodelling in intestinal epithelial cells. Full article
Show Figures

Graphical abstract

16 pages, 3462 KB  
Article
LPS-Induced Intracellular Complement 3 Activation Regulated ATP Production in Yak Rumen Epithelial Cells
by Qiang Han, Qiqi Zhang, Duoting Wu, Zihan Yang, Jinyang Huang, Zhisheng Wang, Huawei Zou, Quanhui Peng, Yukun Meng, Yahui Jiang, Jianxin Xiao and Rui Hu
Vet. Sci. 2025, 12(9), 841; https://doi.org/10.3390/vetsci12090841 (registering DOI) - 31 Aug 2025
Abstract
This study aimed to investigate whether intracellular complement 3 (C3) activation regulates ATP production in yak rumen epithelial cells under inflammatory conditions and its potential mechanism. An in vitro inflammation model was established by stimulating yak rumen epithelial cells with lipopolysaccharide (LPS). Then, [...] Read more.
This study aimed to investigate whether intracellular complement 3 (C3) activation regulates ATP production in yak rumen epithelial cells under inflammatory conditions and its potential mechanism. An in vitro inflammation model was established by stimulating yak rumen epithelial cells with lipopolysaccharide (LPS). Then, protease inhibitors targeting C3 activation enzymes were added. Additionally, to explore the downstream signaling pathway, exogenous C3a and the C3a receptor (C3aR) inhibitor C3aRY were applied to the inflammation model. After treatment with different concentrations of LPS, the gene expression levels and concentrations of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6 were significantly up-regulated (p < 0.05), while a significant reduction in cellular ATP levels was observed (p < 0.05), along with a significant reduction in mitochondrial membrane potential (p < 0.05). After treating the inflammation model with different protease inhibitors, the ATP content and gene expression of the ATP synthase subunit ATP5A were significantly increased (p < 0.05). Exogenous addition of the C3aR inhibitor C3aRY in the inflammation model exhibited a significant increase in ATP content and ATP5A gene expression (p < 0.05) when compared to the inflammation model. These results demonstrated that intracellular C3 activation inhibited ATP production in yak rumen epithelial cells under inflammatory conditions, likely through C3a–C3aR signaling and the cAMP/PKA pathway. Full article
Show Figures

Figure 1

14 pages, 1303 KB  
Article
Non-Targeted Metabolomic Analysis of Ethanol Extract of Propolis and Its Anti-Inflammatory Effects in LPS-Induced BV2 Microglial Cells via the TLR4 Signaling Pathway
by Xiaolan Xu, Chunxia Li, Yuxuan Zhu, Shuangshuang Zhao, Fangjing Wu, Qian He, Lizhen Wei, Xinle Duan and Jianghong Li
Nutrients 2025, 17(17), 2831; https://doi.org/10.3390/nu17172831 - 30 Aug 2025
Viewed by 44
Abstract
Propolis contains abundant flavonoid and phenolic compounds, whose composition and concentration vary significantly in different geographical origins, thereby affecting its bioactive properties including anti-inflammatory, antioxidant, and antimicrobial activities. In this study, the flavonoid and phenolic content in the ethanol extract of propolis (EEP) [...] Read more.
Propolis contains abundant flavonoid and phenolic compounds, whose composition and concentration vary significantly in different geographical origins, thereby affecting its bioactive properties including anti-inflammatory, antioxidant, and antimicrobial activities. In this study, the flavonoid and phenolic content in the ethanol extract of propolis (EEP) from Henan (HN) and Shandong (SD) provinces was quantitatively analyzed, and the results showed that concentrations of both bioactive components in HN were slightly higher than those in SD. The non-targeted metabolomics technology was further employed to analyze the components of EEP, and a total of 10683 metabolites were detected. In the comparison between the samples of HN and SD, there were a total of 1436 differential metabolites, with 553 decreased and 883 increased in the HN sample. Among them, there were 205 differential metabolites related to flavonoids and phenols, with 108 decreased and 97 increased in the HN sample. However, a greater number of carboxylic acids and derivatives, fatty derivatives and organooxygen metabolites were found at higher relative levels in the HN sample. As a result, the EEP of the HN sample was selected to investigate its inhibitory effect on inflammation in lipopolysaccharide (LPS)-induced BV2 microglia cells. The results showed that LPS promoted the M1 polarization of BV2 microglia. However, treatment with EEP at concentrations of 10 µg/mL, 5 µg/mL, and 2.5 µg/mL could partially restore the cell morphology to its non-activated state. Meanwhile, LPS stimulation increased the protein levels of IL-1β, IL-6 and TNF-α significantly, as well as the relative gene expression levels of IL-1β, IL-6, TNF-α, COX-2, iNOS and TLR4. After treatment with the EEP, the expression levels of these three proteins and six genes were significantly decreased. These findings revealed that EEP effectively inhibited the M1 polarization of LPS-induced BV2 cells and decreased the expression of inflammatory factors, indicating its potential as a therapeutic agent for neuroinflammation. Full article
Show Figures

Figure 1

Back to TopTop