Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (263)

Search Parameters:
Keywords = infrared photodetector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5477 KB  
Article
Advanced Beam Detection for Free-Space Optics Operating in the Mid-Infrared Spectra
by Janusz Mikolajczyk, Waldemar Gawron, Dariusz Szabra, Artur Prokopiuk and Zbigniew Bielecki
Sensors 2025, 25(19), 6112; https://doi.org/10.3390/s25196112 - 3 Oct 2025
Abstract
The article addresses the challenges of beam position tracking in Free-Space Optical Communication (FSOC) systems. A review of available photodetector technologies is presented, highlighting their operating principles and applications in optical links. The analysis indicates that most current monitoring devices function [...] Read more.
The article addresses the challenges of beam position tracking in Free-Space Optical Communication (FSOC) systems. A review of available photodetector technologies is presented, highlighting their operating principles and applications in optical links. The analysis indicates that most current monitoring devices function with the visible and near- or short-infrared ranges. However, due to the propagation characteristics of radiation in terrestrial environments, the mid-wave infrared (MWIR) region offers particularly promising opportunities. To the end, the work introduces a novel detector module based on an MWIR quadrant detector capable of simultaneously performing two essential tasks: monitoring beam position and receiving transmitted data. Such an integrated approach has the potential to significantly simplify the design of mobile FSOC systems, especially those requiring accurate transceivers’ tracking. The concept was validated through laboratory experiments on an MWIR link model, where both the signal bandwidth and position transfer function of the quadrant detector were examined. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
10 pages, 1560 KB  
Article
Unveiling the Role of Fluorination in Suppressing Dark Current and Enhancing Photocurrent to Enable Thick-Film Near-Infrared Organic Photodetectors
by Yongqi Bai, Seon Lee Kwak, Jong-Woon Ha and Do-Hoon Hwang
Polymers 2025, 17(19), 2663; https://doi.org/10.3390/polym17192663 - 1 Oct 2025
Abstract
Thick active layers are crucial for scalable production of organic photodetectors (OPDs). However, most OPDs with active layers thicker than 200 nm typically exhibit decreased photocurrents and responsivities due to exciton diffusion and prolonged charge transport pathways. To address these limitations, we designed [...] Read more.
Thick active layers are crucial for scalable production of organic photodetectors (OPDs). However, most OPDs with active layers thicker than 200 nm typically exhibit decreased photocurrents and responsivities due to exciton diffusion and prolonged charge transport pathways. To address these limitations, we designed and synthesized PFBDT-8ttTPD, a fluorinated polymer donor. The strategic incorporation of fluorine effectively enhanced the charge carrier mobility, enabling more efficient charge transport, even in thicker films. OPDs combining PFBDT−8ttTPD with IT−4F or Y6 non-fullerene acceptors showed a substantially lower dark current density (Jd) for active layer thicknesses of 250−450 nm. Notably, Jd in the IT-4F-based devices declined from 8.74 × 10−9 to 4.08 × 10−10 A cm−2 under a reverse bias of −2 V, resulting in a maximum specific detectivity of 3.78 × 1013 Jones. Meanwhile, Y6 integration provided near-infrared sensitivity, with the devices achieving responsivity above 0.48 A W−1 at 850 nm and detectivity over 1013 Jones up to 900 nm, supporting broadband imaging. Importantly, high-quality thick films (≥400 nm) free of pinholes or defects were fabricated, enabling scalable production without performance loss. This advancement ensures robust photodetection in thick uniform layers and marks a significant step toward the development of industrially viable OPDs. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

28 pages, 4284 KB  
Review
Advances in Silicon-Based UV Light Detection
by Arif Kamal, Seongin Hong and Heongkyu Ju
Micromachines 2025, 16(10), 1130; https://doi.org/10.3390/mi16101130 - 30 Sep 2025
Abstract
Silicon (Si), the cornerstone semiconductor in the micro-electronics industry, can provide a cost-efficient platform with mature technologies for photodetection in visible and near-infrared regions. However, its intrinsic properties, such as a narrow bandgap and the shallow penetration depth of ultraviolet (UV) light into [...] Read more.
Silicon (Si), the cornerstone semiconductor in the micro-electronics industry, can provide a cost-efficient platform with mature technologies for photodetection in visible and near-infrared regions. However, its intrinsic properties, such as a narrow bandgap and the shallow penetration depth of ultraviolet (UV) light into its surface with surface trap states, remain challenges, rendering it unsuitable for effective UV light detection. Various techniques have been reported to circumvent these surface defect-induced difficulties. In addition, wide-bandgap semiconductors that favor UV light absorption in a solar-blind way have been combined with Si for UV light detection in order to retain the device’s compatibility with Si-CMOS processes, though it still faces challenges that need to be overcome. This review starts with concepts of basic parameters of photodetectors and categorizes UV photodetectors according to their detection mechanisms. We also present a review of wide-bandgap semiconductor-based UV light detectors and those based on Si, with a discussion of surface defect minimization. In addition, we review the hybrid structure of the two kinds, i.e., wide-bandgap semiconductors and Si, and discuss their properties that produce synergistic effects. Lastly, we provide conclusions and outlooks for the possible development of next-generation UV light detectors based on Si. Full article
(This article belongs to the Special Issue Photodetectors and Their Applications)
4 pages, 851 KB  
Abstract
LWIR Interband Cascade Photodetectors with InAs/InAsSb II Type Superlattice Absorber
by Krzysztof Murawski, Kinga Majkowycz, Tetiana Manyk, Małgorzata Kopytko, Krystian Michalczewski, Jarosław Jureńczyk, Łukasz Kubiszyn, Bartłomiej Seredyński and Piotr Martyniuk
Proceedings 2025, 129(1), 69; https://doi.org/10.3390/proceedings2025129069 - 12 Sep 2025
Viewed by 159
Abstract
The properties of long-wave infrared (LWIR) interband cascade photodetectors (ICIPs) with type II superlattices (T2SLs) and gallium-free (Ga-free) InAs/InAsSb absorbers were determined using photoluminescence (PL) and spectral response (SR) measurements. The heterostructures were grown by molecular beam epitaxy (MBE) on a GaAs substrate. [...] Read more.
The properties of long-wave infrared (LWIR) interband cascade photodetectors (ICIPs) with type II superlattices (T2SLs) and gallium-free (Ga-free) InAs/InAsSb absorbers were determined using photoluminescence (PL) and spectral response (SR) measurements. The heterostructures were grown by molecular beam epitaxy (MBE) on a GaAs substrate. Three structures with different numbers of stages were compared. The structures were optimized for 10.7 μm at 300 K. Moreover, theoretical calculations were performed using APSYS to compare with the experimental results. The PL results provided information on transitions from minibands and intragap states in the studied structures. SR measurements helped isolate transitions involving minibands, which facilitated the analysis of visible transitions in the PL spectra, where point defect (NPD) transitions were also observed. Full article
Show Figures

Figure 1

18 pages, 5185 KB  
Article
SafeBladder: Development and Validation of a Non-Invasive Wearable Device for Neurogenic Bladder Volume Monitoring
by Diogo Sousa, Filipa Santos, Luana Rodrigues, Rui Prado, Susana Moreira and Dulce Oliveira
Electronics 2025, 14(17), 3525; https://doi.org/10.3390/electronics14173525 - 3 Sep 2025
Viewed by 547
Abstract
Neurogenic bladder is a debilitating condition caused by neurological dysfunction that impairs urinary control, often requiring timed intermittent catheterisation. Although effective, intermittent catheterisation is invasive, uncomfortable, and associated with infection risks, reducing patients’ quality of life. SafeBladder is a low-cost wearable device developed [...] Read more.
Neurogenic bladder is a debilitating condition caused by neurological dysfunction that impairs urinary control, often requiring timed intermittent catheterisation. Although effective, intermittent catheterisation is invasive, uncomfortable, and associated with infection risks, reducing patients’ quality of life. SafeBladder is a low-cost wearable device developed to enable real-time, non-invasive bladder volume monitoring using near-infrared spectroscopy (NIRS) and machine learning algorithms. The prototype employs LEDs and photodetectors to measure light attenuation through abdominal tissues. Bladder filling was simulated through experimental tests using stepwise water additions to containers and tissue-mimicking phantoms, including silicone and porcine tissue. Machine learning models, including Linear Regression, Support Vector Regression, and Random Forest, were trained to predict volume from sensor data. The results showed the device is sensitive to volume changes, though ambient light interference affected accuracy, suggesting optimal use under clothing or in low-light conditions. The Random Forest model outperformed others, with a Mean Absolute Error (MAE) of 25 ± 4 mL and R2 of 0.90 in phantom tests. These findings support SafeBladder as a promising, non-invasive solution for bladder monitoring, with clinical potential pending further calibration and validation in real-world settings. Full article
(This article belongs to the Special Issue AI-Based Pervasive Application Services)
Show Figures

Figure 1

19 pages, 6514 KB  
Article
Differential Absorbance and PPG-Based Non-Invasive Blood Glucose Measurement Using Spatiotemporal Multimodal Fused LSTM Model
by Jinxiu Cheng, Pengfei Xie, Huimeng Zhao and Zhong Ji
Sensors 2025, 25(17), 5260; https://doi.org/10.3390/s25175260 - 24 Aug 2025
Viewed by 925
Abstract
Blood glucose monitoring is crucial for the daily management of diabetic patients. In this study, we developed a differential absorbance and photoplethysmography (PPG)-based non-invasive blood glucose measurement system (NIBGMS) using visible–near-infrared (Vis-NIR) light. Three light-emitting diodes (LEDs) (625 nm, 850 nm, and 940 [...] Read more.
Blood glucose monitoring is crucial for the daily management of diabetic patients. In this study, we developed a differential absorbance and photoplethysmography (PPG)-based non-invasive blood glucose measurement system (NIBGMS) using visible–near-infrared (Vis-NIR) light. Three light-emitting diodes (LEDs) (625 nm, 850 nm, and 940 nm) and three photodetectors (PDs) with different source–detector separation distances were used to detect the differential absorbance of tissues at different depths and PPG signals of the index finger. A spatiotemporal multimodal fused long short-term memory (STMF-LSTM) model was developed to improve the prediction accuracy of blood glucose levels by multimodal fusion of optical spatial information (differential absorbance and PPG signals) and glucose temporal information. The validity of the NIBGMS was preliminarily verified using multilayer perceptron (MLP), support vector regression (SVR), random forest regression (RFR), and extreme gradient boosting (XG Boost) models on datasets collected from 15 non-diabetic subjects and 3 type-2 diabetic subjects, with a total of 805 samples. Additionally, a continuous dataset consisting 272 samples from four non-diabetic subjects was used to validate the developed STMF-LSTM model. The results demonstrate that the STMF-LSTM model indicated improved prediction performance with a root mean square error (RMSE) of 0.811 mmol/L and a percentage of 100% for Parkes error grid analysis (EGA) Zone A and B in 8-fold cross validation. Therefore, the developed NIBGMS and STMF-LSTM model show potential in practical non-invasive blood glucose monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

25 pages, 3282 KB  
Review
Linear-Mode Gain HgCdTe Avalanche Photodiodes for Weak-Target Spaceborne Photonic System
by Hui Yu, Zhichao Zhang, Ming Liu, Weirong Xing, Qing Wu, Yi Zhang, Weiting Zhang, Jialin Xu and Qiguang Tan
Photonics 2025, 12(8), 829; https://doi.org/10.3390/photonics12080829 - 20 Aug 2025
Viewed by 1314
Abstract
Spectroscopic observations of Earth-like exoplanets and ultra-faint galaxies–top scientific priorities for the coming decades–involve measuring broadband signals at rates of only a few photons per square meter per hour. This imposes exceptional requirements on the detector performance, necessitating dark currents below 1 e [...] Read more.
Spectroscopic observations of Earth-like exoplanets and ultra-faint galaxies–top scientific priorities for the coming decades–involve measuring broadband signals at rates of only a few photons per square meter per hour. This imposes exceptional requirements on the detector performance, necessitating dark currents below 1 e/pixel/kilo second, read noise under 1 e/pixel/frame, and the ability to handle large-format arrays–capabilities that are not yet met by most existing infrared detectors. In addition, spaceborne LiDAR systems require photodetectors with exceptional sensitivity, compact size, low power consumption, and multi-channel capability to facilitate long-range range finding, topographic mapping, and active spectroscopy without increasing the instrument burden. MCT Avalanche photodiodes arrays offer high internal gain, pixelation, and photon-counting performance across SW to MW wavelengths needed for multi-beam and multi-wavelength measurements, marking them as a critical enabling technology for next-generation planetary and Earth science LiDAR missions. This work reports the latest progress in developing Hg1−xCdxTe linear-mode e-APDs at premier industrial research institutions, including relevant experimental data, simulations and major project planning. Related studies are summarized to demonstrate the practical and iterative approach for device fabrication, which have a transformative impact on the evolution of this discipline. Full article
(This article belongs to the Special Issue Emerging Trends in Photodetector Technologies)
Show Figures

Figure 1

18 pages, 4856 KB  
Article
Comparative Analysis of Multispectral LED–Sensor Architectures for Scalable Waste Material Classification
by Anju Manakkakudy Kumaran, Rahmi Elagib, Andrea De Iacovo, Andrea Ballabio, Jacopo Frigerio, Giovanni Isella, Gaetano Assanto and Lorenzo Colace
Appl. Sci. 2025, 15(16), 8964; https://doi.org/10.3390/app15168964 - 14 Aug 2025
Viewed by 377
Abstract
We present a comprehensive study of LED-based optical sensing systems for the classification of waste materials, analyzing recent developments in the field. Accurate identification of materials such as plastics, glass, aluminum, and paper is a crucial yet challenging task in waste management for [...] Read more.
We present a comprehensive study of LED-based optical sensing systems for the classification of waste materials, analyzing recent developments in the field. Accurate identification of materials such as plastics, glass, aluminum, and paper is a crucial yet challenging task in waste management for recycling. The first approach uses short-wave infrared reflectance spectroscopy with commercial Germanium photodetectors and selected LEDs to keep data complexity and cost at a minimum while achieving classification accuracies up to 98% with machine learning algorithms. The second system employes a voltage-tunable Germanium-on-Silicon photodetector that operates across a broader spectral range (400–1600 nm), in combination with three LEDs in both the visible and short-wave infrared bands. This configuration enables an adaptive spectral response and simplifies the optical setup, supporting energy-efficient and scalable integration. Accuracies up to 99% were obtained with the aid of machine learning algorithms. Across all systems, the strategic use of low-cost LEDs as light sources and compact optical sensors demonstrates the potential of light-emitting devices in the implementation of compact, intelligent, and sustainable solutions for real-time material recognition. This article explores the design, characterization, and performance of such systems, providing insights into the way light-emitting and optoelectronic components can be leveraged for advanced sensing in waste classification applications. Full article
Show Figures

Figure 1

30 pages, 4444 KB  
Article
Unveiling the Potential of Novel Ternary Chalcogenide SrHfSe3 for Eco-Friendly, Self-Powered, Near-Infrared Photodetectors: A SCAPS-1D Simulation Study
by Salah Abdo, Ambali Alade Odebowale, Amer Abdulghani, Khalil As’ham, Sanjida Akter, Haroldo Hattori, Nicholas Kanizaj and Andrey E. Miroshnichenko
Sci 2025, 7(3), 113; https://doi.org/10.3390/sci7030113 - 6 Aug 2025
Viewed by 839
Abstract
Ternary chalcogenide-based sulfide materials with distorted morphologies such as BaZrS3, CaZrS3, and SrZrS3, have recently gained much attention in optoelectronics and photovoltaics due to their high structural and thermal stability and compatibility with low-cost, earth-abundant synthesis routes. [...] Read more.
Ternary chalcogenide-based sulfide materials with distorted morphologies such as BaZrS3, CaZrS3, and SrZrS3, have recently gained much attention in optoelectronics and photovoltaics due to their high structural and thermal stability and compatibility with low-cost, earth-abundant synthesis routes. However, their relatively large bandgaps often limit their suitability for near-infrared (NIR) photodetectors. Here, we conducted a comprehensive investigation of SrHfSe3, a ternary chalcogenide with an orthorhombic crystal structure and distinctive needle-like morphology, as a promising candidate for NIR photodetection. SrHfSe3 exhibits a direct bandgap of 1.02 eV, placing it well within the NIR range. Its robust structure, high temperature stability, phase stability and natural abundance make it a compelling material for next-generation, self-powered NIR photodetectors. An in-depth analysis of the SrHfSe3-based photodetector was performed using SCAPS-1D simulations, focusing on key performance metrics such as J–V behavior, photoresponsivity, and specific detectivity. Device optimization was achieved by thoroughly altering each layer thickness, doping concentrations, and defect densities. Additionally, the influence of interface defects, absorber bandgap, and operating temperature was assessed to enhance the photoresponse. Under optimal conditions, the device achieved a short-circuit current density (Jsc) of 45.88 mA/cm2, an open-circuit voltage (Voc) of 0.7152 V, a peak photoresponsivity of 0.85 AW−1, and a detectivity of 2.26 × 1014 Jones at 1100 nm. A broad spectral response spanning 700–1200 nm confirms its efficacy in the NIR region. These results position SrHfSe3 as a strong contender for future NIR photodetectors and provide a foundation for experimental validation in advanced optoelectronic applications. Full article
Show Figures

Figure 1

9 pages, 3725 KB  
Article
A Strain-Compensated InGaAs/InGaSb Type-II Superlattice Grown on InAs Substrates for Long-Wavelength Infrared Photodetectors
by Hao Zhou, Chang Liu and Yiqiao Chen
Nanomaterials 2025, 15(15), 1143; https://doi.org/10.3390/nano15151143 - 23 Jul 2025
Viewed by 511
Abstract
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize [...] Read more.
In this paper, the first demonstration of a highly strained In0.8Ga0.2As/In0.2Ga0.8Sb type-II superlattice structure grown on InAs substrates by molecular beam epitaxy (MBE) for long-wavelength infrared detection was reported. Novel methodologies were developed to optimize the As and Sb flux growth conditions. The quality of the epitaxial layer was characterized using multiple analytical techniques, including differential interference contrast microscopy, atomic force microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy. The high-quality superlattice structure, with a total thickness of 1.5 μm, exhibited exceptional surface morphology with a root-mean-square roughness of 0.141 nm over a 5 × 5 μm2 area. Single-element devices with PIN architecture were fabricated and characterized. At 77 K, these devices demonstrated a 50% cutoff wavelength of approximately 12.1 μm. The long-wavelength infrared PIN devices exhibited promising performance metrics, including a dark current density of 7.96 × 10−2 A/cm2 at −50 mV bias and a high peak responsivity of 4.90 A/W under zero bias conditions, both measured at 77 K. Furthermore, the devices achieved a high peak quantum efficiency of 65% and a specific detectivity (D*) of 2.74 × 1010 cm·Hz1/2/W at the peak responsivity wavelength of 10.7 µm. These results demonstrate the viability of this material system for long-wavelength infrared detection applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

10 pages, 2398 KB  
Article
APTES-Modified Interface Optimization in PbS Quantum Dot SWIR Photodetectors and Its Influence on Optoelectronic Properties
by Qian Lei, Lei Rao, Wencan Deng, Xiuqin Ao, Fan Fang, Wei Chen, Jiaji Cheng, Haodong Tang and Junjie Hao
Colloids Interfaces 2025, 9(4), 49; https://doi.org/10.3390/colloids9040049 - 22 Jul 2025
Viewed by 738
Abstract
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing [...] Read more.
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing on the interface between QDs and electrodes remain limited, which hinders further improvement in device performance. In this work, we propose an interface engineering strategy based on 3-aminopropyltriethoxysilane (APTES) to enhance the interfacial contact between PbS QD films and ITO interdigitated electrodes, thereby significantly boosting the overall performance of SWIR photodetectors. Experimental results demonstrate that the optimal 0.5 h APTES treatment duration significantly enhances responsivity by achieving balanced interface passivation and charge carrier transport. Moreover, The APTES-modified device exhibits a controllable dark current and faster photo-response under 1310 nm illumination. This interface engineering approach provides an effective pathway for the development of high-performance PbS QD-based SWIR photodetectors, with promising applications in infrared imaging, spectroscopy, and optical communication. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Figure 1

10 pages, 1632 KB  
Article
An Ultra-Narrowband Graphene-Perfect Absorber Based on Bound States in the Continuum of All-Dielectric Metasurfaces
by Qi Zhang, Xiao Zhang, Zhihong Zhu and Chucai Guo
Nanomaterials 2025, 15(14), 1124; https://doi.org/10.3390/nano15141124 - 19 Jul 2025
Viewed by 564
Abstract
Enhancing light absorption in two-dimensional (2D) materials, particularly few-layer structures, is critical for advancing optoelectronic devices such as light sources, photodetectors, and sensors. However, conventional absorption enhancement strategies often suffer from unstable resonant wavelengths and low-quality factors (Q-factors) due to the inherent weak [...] Read more.
Enhancing light absorption in two-dimensional (2D) materials, particularly few-layer structures, is critical for advancing optoelectronic devices such as light sources, photodetectors, and sensors. However, conventional absorption enhancement strategies often suffer from unstable resonant wavelengths and low-quality factors (Q-factors) due to the inherent weak light–matter interactions in 2D materials. To address these limitations, we propose an all-dielectric metasurface graphene-perfect absorber based on toroidal dipole bound state in the continuum (TD-BIC) with an ultra-narrow bandwidth and stable resonant wavelength. The proposed structure achieves tunable absorption linewidths spanning three orders of magnitude (6 nm to 0.0076 nm) through critical coupling modulation. Furthermore, the operational wavelength can be flexibly extended to any near-infrared region by adjusting the grating width. This work establishes a novel paradigm for enhancing the absorption of 2D materials in photonic device applications. Full article
Show Figures

Figure 1

21 pages, 9529 KB  
Article
Development of a Highly Reliable PbS QDs-Based SWIR Photodetector Based on Metal Oxide Electron/Hole Extraction Layer Formation Conditions
by JinBeom Kwon, Yuntae Ha, Suji Choi and Donggeon Jung
Nanomaterials 2025, 15(14), 1107; https://doi.org/10.3390/nano15141107 - 16 Jul 2025
Viewed by 556
Abstract
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they [...] Read more.
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they have low safety because they use the near-infrared (NIR) region that can damage the retina. Therefore, they are difficult to apply to automation technologies such as automobiles and factories where humans can be constantly exposed. In contrast, short-wavelength infrared photodetectors based on PbS QDs are actively being developed because they can absorb infrared rays in the eye-safe region by controlling the particle size of QDs and can be easily and inexpensively manufactured through a solution process. However, PbS QDs-based SWIR photodetectors have low chemical stability due to the electron/hole extraction layer processed by the solution process, making it difficult to manufacture them in the form of patterning and arrays. In this study, bulk NiO and ZnO were deposited by sputtering to achieve uniformity and patterning of thin films, and the performance of PbS QDs-based photodetectors was improved by optimizing the thickness and annealing conditions of the thin films. The fabricated photodetector achieved a high response characteristic of 114.3% through optimized band gap and improved transmittance characteristics. Full article
(This article belongs to the Special Issue Quantum Dot Materials and Their Optoelectronic Applications)
Show Figures

Figure 1

20 pages, 5206 KB  
Article
Self-Powered Photodetectors with Ultra-Broad Spectral Response and Thermal Stability for Broadband, Energy Efficient Wearable Sensing and Optoelectronics
by Peter X. Feng, Elluz Pacheco Cabrera, Jin Chu, Badi Zhou, Soraya Y. Flores, Xiaoyan Peng, Yiming Li, Liz M. Diaz-Vazquez and Andrew F. Zhou
Molecules 2025, 30(14), 2897; https://doi.org/10.3390/molecules30142897 - 8 Jul 2025
Viewed by 609
Abstract
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), [...] Read more.
This work presents a high-performance novel photodetector based on two-dimensional boron nitride (BN) nanosheets functionalized with gold nanoparticles (Au NPs), offering ultra-broadband photoresponse from 0.25 to 5.9 μm. Operating in both photovoltaic and photoconductive modes, the device features rapid response times (<0.5 ms), high responsivity (up to 1015 mA/W at 250 nm and 2.5 V bias), and thermal stability up to 100 °C. The synthesis process involved CO2 laser exfoliation of hexagonal boron nitride, followed by gold NP deposition via RF sputtering and thermal annealing. Structural and compositional analyses confirmed the formation of a three-dimensional network of atomically thin BN nanosheets decorated with uniformly distributed gold nanoparticles. This architecture facilitates plasmon-enhanced absorption and efficient charge separation via heterojunction interfaces, significantly boosting photocurrent generation across the deep ultraviolet (DUV), visible, near-infrared (NIR), and mid-infrared (MIR) spectral regions. First-principles calculations support the observed broadband response, confirming bandgap narrowing induced by defects in h-BN and functionalization by gold nanoparticles. The device’s self-driven operation, wide spectral response, and durability under elevated temperatures underscore its strong potential for next-generation broadband, self-powered, and wearable sensing and optoelectronic applications. Full article
(This article belongs to the Special Issue Novel Nanomaterials: Sensing Development and Applications)
Show Figures

Figure 1

28 pages, 63037 KB  
Review
Advances in 2D Photodetectors: Materials, Mechanisms, and Applications
by Ambali Alade Odebowale, Andergachew Mekonnen Berhe, Dinelka Somaweera, Han Wang, Wen Lei, Andrey E. Miroshnichenko and Haroldo T. Hattori
Micromachines 2025, 16(7), 776; https://doi.org/10.3390/mi16070776 - 30 Jun 2025
Cited by 2 | Viewed by 2146
Abstract
Two-dimensional (2D) materials have revolutionized the field of optoelectronics by offering exceptional properties such as atomically thin structures, high carrier mobility, tunable bandgaps, and strong light–matter interactions. These attributes make them ideal candidates for next-generation photodetectors operating across a broad spectral range—from ultraviolet [...] Read more.
Two-dimensional (2D) materials have revolutionized the field of optoelectronics by offering exceptional properties such as atomically thin structures, high carrier mobility, tunable bandgaps, and strong light–matter interactions. These attributes make them ideal candidates for next-generation photodetectors operating across a broad spectral range—from ultraviolet to mid-infrared. This review comprehensively examines the recent progress in 2D material-based photodetectors, highlighting key material classes including graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP), MXenes, chalcogenides, and carbides. We explore their photodetection mechanisms—such as photovoltaic, photoconductive, photothermoelectric, bolometric, and plasmon-enhanced effects—and discuss their impact on critical performance metrics like responsivity, detectivity, and response time. Emphasis is placed on material integration strategies, heterostructure engineering, and plasmonic enhancements that have enabled improved sensitivity and spectral tunability. The review also addresses the remaining challenges related to environmental stability, scalability, and device architecture. Finally, we outline future directions for the development of high-performance, broadband, and flexible 2D photodetectors for diverse applications in sensing, imaging, and communication technologies. Full article
Show Figures

Figure 1

Back to TopTop