Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = infrasound source localization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 18629 KB  
Article
Infrasound and Low-Audible Acoustic Detections from a Long-Term Microphone Array Deployment in Oklahoma
by Trevor C. Wilson, Christopher E. Petrin and Brian R. Elbing
Remote Sens. 2023, 15(5), 1455; https://doi.org/10.3390/rs15051455 - 5 Mar 2023
Cited by 8 | Viewed by 4956
Abstract
A three-microphone acoustic array (OSU1), with microphones that have a flat response from 0.1 to 200 Hz, was deployed for 6 years (2016–2022) at Oklahoma State University (OSU) in Stillwater, Oklahoma, and sampled at 1000 Hz. This study presents a new dataset of [...] Read more.
A three-microphone acoustic array (OSU1), with microphones that have a flat response from 0.1 to 200 Hz, was deployed for 6 years (2016–2022) at Oklahoma State University (OSU) in Stillwater, Oklahoma, and sampled at 1000 Hz. This study presents a new dataset of acoustic measurements in a high interest region (e.g., study of tornado infrasound), provides a broad overview of acoustic detections and the means to identify them, and provides access to these recordings to the broader scientific community. A wide variety of infrasound and low-audible sources were identified and characterized via analysis of time traces, power spectral densities, spectrograms, and beamforming. Low, median, and high noise models were compared with global noise models. Detected sources investigated include natural (microbaroms, bolides, earthquakes, and tornadoes) and anthropomorphic (fireworks, airplanes, and munition detonations) phenomena. Microbarom detections showed consistency with literature (~0.2 Hz with peak amplitude in the winter) and evidence that the frequency was inversely related to the amplitude. Fireworks and airplanes served as verified local events for the evaluation of data quality and processing procedures. Infrasound from munition detonations, that occur nearly daily at a location 180 km southeast of OSU1, matched the available ground truth on days with favorable propagation to OSU1. A clear bolide detection with an estimated position of approximately 300 km from OSU1 was shown. Most detected earthquakes were seismic arrivals due to sensor vibrations; however, the largest earthquake in Oklahoma history showed an acoustic arrival. Finally, data from multiple tornadoes are discussed, including a previously unpublished quasi-linear convective system tornado. Full article
(This article belongs to the Special Issue Infrasound, Acoustic-Gravity Waves, and Atmospheric Dynamics)
Show Figures

Figure 1

18 pages, 3670 KB  
Article
Detection of the Large Surface Explosion Coupling Experiment by a Sparse Network of Balloon-Borne Infrasound Sensors
by Elizabeth A. Silber, Daniel C. Bowman and Miro Ronac Giannone
Remote Sens. 2023, 15(2), 542; https://doi.org/10.3390/rs15020542 - 16 Jan 2023
Cited by 13 | Viewed by 4196
Abstract
In recent years, high-altitude infrasound sensing has become more prolific, demonstrating an enormous value especially when utilized over regions inaccessible to traditional ground-based sensing. Similar to ground-based infrasound detectors, airborne sensors take advantage of the fact that impulsive atmospheric events such as explosions [...] Read more.
In recent years, high-altitude infrasound sensing has become more prolific, demonstrating an enormous value especially when utilized over regions inaccessible to traditional ground-based sensing. Similar to ground-based infrasound detectors, airborne sensors take advantage of the fact that impulsive atmospheric events such as explosions can generate low frequency acoustic waves, also known as infrasound. Due to negligible attenuation, infrasonic waves can travel over long distances, and provide important clues about their source. Here, we report infrasound detections of the Apollo detonation that was carried on 29 October 2020 as part of the Large Surface Explosion Coupling Experiment in Nevada, USA. Infrasound sensors attached to solar hot air balloons floating in the stratosphere detected the signals generated by the explosion at distances 170–210 km. Three distinct arrival phases seen in the signals are indicative of multipathing caused by the small-scale perturbations in the atmosphere. We also found that the local acoustic environment at these altitudes is more complex than previously thought. Full article
(This article belongs to the Special Issue Infrasound, Acoustic-Gravity Waves, and Atmospheric Dynamics)
Show Figures

Figure 1

17 pages, 1618 KB  
Article
Uncertainty Quantification for Infrasound Propagation in the Atmospheric Environment
by Liang Yu, Xiaoquan Yi, Ran Wang, Chenyu Zhang, Tongdong Wang and Xiaopeng Zhang
Appl. Sci. 2022, 12(17), 8850; https://doi.org/10.3390/app12178850 - 2 Sep 2022
Viewed by 1783
Abstract
The propagation of infrasound in the atmosphere is influenced by atmospheric environmental parameters, which affect the precise localization of the infrasound source. Therefore, it has become crucial to quantify the influence of atmospheric environmental parameters on infrasound propagation. First, in this paper, the [...] Read more.
The propagation of infrasound in the atmosphere is influenced by atmospheric environmental parameters, which affect the precise localization of the infrasound source. Therefore, it has become crucial to quantify the influence of atmospheric environmental parameters on infrasound propagation. First, in this paper, the tau-p model is chosen as the physical model of infrasound propagation in a non-uniform moving medium. The atmospheric environmental parameters affecting infrasound propagation are determined. Secondly, the atmospheric environmental parameter distribution data are generated using the Sobol sampling method. Third, the generated atmospheric data are incorporated into the physical model of infrasound propagation to solve the output. Finally, Sobol sensitivity analysis is performed for each parameter, and the atmospheric parameter with the largest Sobol index is identified as the one with the most significant influence on infrasound propagation. Full article
(This article belongs to the Special Issue Machine Learning in Vibration and Acoustics)
Show Figures

Figure 1

25 pages, 2615 KB  
Article
Infrasound Source Localization of Distributed Stations Using Sparse Bayesian Learning and Bayesian Information Fusion
by Ran Wang, Xiaoquan Yi, Liang Yu, Chenyu Zhang, Tongdong Wang and Xiaopeng Zhang
Remote Sens. 2022, 14(13), 3181; https://doi.org/10.3390/rs14133181 - 2 Jul 2022
Cited by 9 | Viewed by 3249
Abstract
The precise localization of the infrasound source is important for infrasound event monitoring. The localization of infrasound sources is influenced by the atmospheric propagation environment and infrasound measurement equipment in the large-scale global distribution of infrasound arrays. A distributed infrasound source localization method [...] Read more.
The precise localization of the infrasound source is important for infrasound event monitoring. The localization of infrasound sources is influenced by the atmospheric propagation environment and infrasound measurement equipment in the large-scale global distribution of infrasound arrays. A distributed infrasound source localization method based on sparse Bayesian learning (SBL) and Bayesian information fusion is proposed to reduce the localization error. First, the arrival azimuth of the infrasound source is obtained based on the SBL algorithm. Then, the infrasound source localization result is obtained by the Bayesian information fusion algorithm. The localization error of the infrasound source can be reduced by this infrasound source method, which incorporates the uncertainty of the infrasound propagation environment and infrasound measurement equipment into the infrasound source localization results. The effectiveness of the proposed algorithm was validated using rocket motor explosion data from the Utah Test and Training Range (UTTR). The experimental results show that the arrival azimuth estimation error can be within 2° and the localization distance error is 3.5 km. Full article
(This article belongs to the Special Issue Infrasound, Acoustic-Gravity Waves, and Atmospheric Dynamics)
Show Figures

Graphical abstract

16 pages, 3113 KB  
Article
Global Monitoring and Characterization of Infrasound Signatures by Large Fireballs
by Christoph Pilger, Peter Gaebler, Patrick Hupe, Theresa Ott and Esther Drolshagen
Atmosphere 2020, 11(1), 83; https://doi.org/10.3390/atmos11010083 - 10 Jan 2020
Cited by 27 | Viewed by 4953
Abstract
Large meteoroids can be registered in infrasound recordings during their entry into the Earth’s atmosphere. A comprehensive study of 10 large fireball events of the years 2018 and 2019 highlights their detection and characterization using global infrasound arrays of the International Monitoring System [...] Read more.
Large meteoroids can be registered in infrasound recordings during their entry into the Earth’s atmosphere. A comprehensive study of 10 large fireball events of the years 2018 and 2019 highlights their detection and characterization using global infrasound arrays of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The study focuses on the observation and event analysis of the fireballs to estimate their respective location, yield, trajectory, and entry behavior. Signal characteristics are derived by applying the Progressive Multi-Channel Correlation method as an array technique. The comparison of the events with a NASA reference database as well as the application of atmospheric propagation modeling allows to draw conclusions about infrasound-based detection capability, localization accuracy, yield estimation, and source characterization. The infrasound technique provides a time- and location-independent remote monitoring opportunity of impacting near-Earth objects (NEOs), either independent or complementary to other fireball observation methods. Additionally, insights about the detection and localization capability of IMS infrasound stations can be gained from using large fireballs as reference events, being of importance for the continuous monitoring and verification of atmospheric explosions in a CTBT context. Full article
(This article belongs to the Special Issue Shock Wave Dynamics and Its Effects on Planetary Atmospheres)
Show Figures

Figure 1

18 pages, 5174 KB  
Article
Recent Developments and Applications of Acoustic Infrasound to Monitor Volcanic Emissions
by Silvio De Angelis, Alejandro Diaz-Moreno and Luciano Zuccarello
Remote Sens. 2019, 11(11), 1302; https://doi.org/10.3390/rs11111302 - 31 May 2019
Cited by 40 | Viewed by 6829
Abstract
Volcanic ash is a well-known hazard to population, infrastructure, and commercial and civil aviation. Early assessment of the parameters that control the development and evolution of volcanic plumes is crucial to effective risk mitigation. Acoustic infrasound is a ground-based remote sensing technique—increasingly popular [...] Read more.
Volcanic ash is a well-known hazard to population, infrastructure, and commercial and civil aviation. Early assessment of the parameters that control the development and evolution of volcanic plumes is crucial to effective risk mitigation. Acoustic infrasound is a ground-based remote sensing technique—increasingly popular in the past two decades—that allows rapid estimates of eruption source parameters, including fluid flow velocities and volume flow rates of erupted material. The rate at which material is ejected from volcanic vents during eruptions, is one of the main inputs into models of atmospheric ash transport used to dispatch aviation warnings during eruptive crises. During explosive activity at volcanoes, the injection of hot gas-laden pyroclasts into the atmosphere generates acoustic waves that are recorded at local, regional and global scale. Within the framework of linear acoustic theory, infrasound sources can be modelled as multipole series, and acoustic pressure waveforms can be inverted to obtain the time history of volume flow at the vent. Here, we review near-field (<10 km from the vent) linear acoustic wave theory and its applications to the assessment of eruption source parameters. We evaluate recent advances in volcano infrasound modelling and inversion, and comment on the advantages and current limitations of these methods. We review published case studies from different volcanoes and show applications to new data that provide a benchmark for future acoustic infrasound studies. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

Back to TopTop